#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int ctbcon_(char *norm, char *uplo, char *diag, integer *n, integer *kd, complex *ab, integer *ldab, real *rcond, complex *work, real *rwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1; real r__1, r__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ integer ix, kase, kase1; real scale; extern logical lsame_(char *, char *); integer isave[3]; real anorm; logical upper; extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real *, integer *, integer *); real xnorm; extern integer icamax_(integer *, complex *, integer *); extern doublereal clantb_(char *, char *, char *, integer *, integer *, complex *, integer *, real *), slamch_( char *); extern /* Subroutine */ int clatbs_(char *, char *, char *, char *, integer *, integer *, complex *, integer *, complex *, real *, real *, integer *), xerbla_(char * , integer *); real ainvnm; extern /* Subroutine */ int csrscl_(integer *, real *, complex *, integer *); logical onenrm; char normin[1]; real smlnum; logical nounit; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CTBCON estimates the reciprocal of the condition number of a */ /* triangular band matrix A, in either the 1-norm or the infinity-norm. */ /* The norm of A is computed and an estimate is obtained for */ /* norm(inv(A)), then the reciprocal of the condition number is */ /* computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals or subdiagonals of the */ /* triangular band matrix A. KD >= 0. */ /* AB (input) COMPLEX array, dimension (LDAB,N) */ /* The upper or lower triangular band matrix A, stored in the */ /* first kd+1 rows of the array. The j-th column of A is stored */ /* in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* If DIAG = 'U', the diagonal elements of A are not referenced */ /* and are assumed to be 1. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) COMPLEX array, dimension (2*N) */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --work; --rwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); nounit = lsame_(diag, "N"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*kd < 0) { *info = -5; } else if (*ldab < *kd + 1) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("CTBCON", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *rcond = 1.f; return 0; } *rcond = 0.f; smlnum = slamch_("Safe minimum") * (real) max(*n,1); /* Compute the 1-norm of the triangular matrix A or A'. */ anorm = clantb_(norm, uplo, diag, n, kd, &ab[ab_offset], ldab, &rwork[1]); /* Continue only if ANORM > 0. */ if (anorm > 0.f) { /* Estimate the 1-norm of the inverse of A. */ ainvnm = 0.f; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(A). */ clatbs_(uplo, "No transpose", diag, normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scale, &rwork[1], info); } else { /* Multiply by inv(A'). */ clatbs_(uplo, "Conjugate transpose", diag, normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scale, &rwork[1], info); } *(unsigned char *)normin = 'Y'; /* Multiply by 1/SCALE if doing so will not cause overflow. */ if (scale != 1.f) { ix = icamax_(n, &work[1], &c__1); i__1 = ix; xnorm = (r__1 = work[i__1].r, dabs(r__1)) + (r__2 = r_imag(& work[ix]), dabs(r__2)); if (scale < xnorm * smlnum || scale == 0.f) { goto L20; } csrscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / anorm / ainvnm; } } L20: return 0; /* End of CTBCON */ } /* ctbcon_ */