#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; static integer c_n1 = -1; static real c_b24 = 1.f; /* Subroutine */ int clatdf_(integer *ijob, integer *n, complex *z__, integer *ldz, complex *rhs, real *rdsum, real *rdscal, integer *ipiv, integer *jpiv) { /* System generated locals */ integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; complex q__1, q__2, q__3; /* Builtin functions */ void c_div(complex *, complex *, complex *); double c_abs(complex *); void c_sqrt(complex *, complex *); /* Local variables */ integer i__, j, k; complex bm, bp, xm[2], xp[2]; integer info; complex temp, work[8]; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *); real scale; extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); complex pmone; extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); real rtemp, sminu, rwork[2], splus; extern /* Subroutine */ int cgesc2_(integer *, complex *, integer *, complex *, integer *, integer *, real *), cgecon_(char *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *), classq_(integer *, complex *, integer *, real *, real *), claswp_(integer *, complex *, integer *, integer *, integer *, integer *, integer *); extern doublereal scasum_(integer *, complex *, integer *); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CLATDF computes the contribution to the reciprocal Dif-estimate */ /* by solving for x in Z * x = b, where b is chosen such that the norm */ /* of x is as large as possible. It is assumed that LU decomposition */ /* of Z has been computed by CGETC2. On entry RHS = f holds the */ /* contribution from earlier solved sub-systems, and on return RHS = x. */ /* The factorization of Z returned by CGETC2 has the form */ /* Z = P * L * U * Q, where P and Q are permutation matrices. L is lower */ /* triangular with unit diagonal elements and U is upper triangular. */ /* Arguments */ /* ========= */ /* IJOB (input) INTEGER */ /* IJOB = 2: First compute an approximative null-vector e */ /* of Z using CGECON, e is normalized and solve for */ /* Zx = +-e - f with the sign giving the greater value of */ /* 2-norm(x). About 5 times as expensive as Default. */ /* IJOB .ne. 2: Local look ahead strategy where */ /* all entries of the r.h.s. b is choosen as either +1 or */ /* -1. Default. */ /* N (input) INTEGER */ /* The number of columns of the matrix Z. */ /* Z (input) REAL array, dimension (LDZ, N) */ /* On entry, the LU part of the factorization of the n-by-n */ /* matrix Z computed by CGETC2: Z = P * L * U * Q */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDA >= max(1, N). */ /* RHS (input/output) REAL array, dimension (N). */ /* On entry, RHS contains contributions from other subsystems. */ /* On exit, RHS contains the solution of the subsystem with */ /* entries according to the value of IJOB (see above). */ /* RDSUM (input/output) REAL */ /* On entry, the sum of squares of computed contributions to */ /* the Dif-estimate under computation by CTGSYL, where the */ /* scaling factor RDSCAL (see below) has been factored out. */ /* On exit, the corresponding sum of squares updated with the */ /* contributions from the current sub-system. */ /* If TRANS = 'T' RDSUM is not touched. */ /* NOTE: RDSUM only makes sense when CTGSY2 is called by CTGSYL. */ /* RDSCAL (input/output) REAL */ /* On entry, scaling factor used to prevent overflow in RDSUM. */ /* On exit, RDSCAL is updated w.r.t. the current contributions */ /* in RDSUM. */ /* If TRANS = 'T', RDSCAL is not touched. */ /* NOTE: RDSCAL only makes sense when CTGSY2 is called by */ /* CTGSYL. */ /* IPIV (input) INTEGER array, dimension (N). */ /* The pivot indices; for 1 <= i <= N, row i of the */ /* matrix has been interchanged with row IPIV(i). */ /* JPIV (input) INTEGER array, dimension (N). */ /* The pivot indices; for 1 <= j <= N, column j of the */ /* matrix has been interchanged with column JPIV(j). */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ /* Umea University, S-901 87 Umea, Sweden. */ /* This routine is a further developed implementation of algorithm */ /* BSOLVE in [1] using complete pivoting in the LU factorization. */ /* [1] Bo Kagstrom and Lars Westin, */ /* Generalized Schur Methods with Condition Estimators for */ /* Solving the Generalized Sylvester Equation, IEEE Transactions */ /* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */ /* [2] Peter Poromaa, */ /* On Efficient and Robust Estimators for the Separation */ /* between two Regular Matrix Pairs with Applications in */ /* Condition Estimation. Report UMINF-95.05, Department of */ /* Computing Science, Umea University, S-901 87 Umea, Sweden, */ /* 1995. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --rhs; --ipiv; --jpiv; /* Function Body */ if (*ijob != 2) { /* Apply permutations IPIV to RHS */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1); /* Solve for L-part choosing RHS either to +1 or -1. */ q__1.r = -1.f, q__1.i = -0.f; pmone.r = q__1.r, pmone.i = q__1.i; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j; q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f; bp.r = q__1.r, bp.i = q__1.i; i__2 = j; q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i - 0.f; bm.r = q__1.r, bm.i = q__1.i; splus = 1.f; /* Lockahead for L- part RHS(1:N-1) = +-1 */ /* SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */ i__2 = *n - j; cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 + j * z_dim1], &c__1); splus += q__1.r; i__2 = *n - j; cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], &c__1); sminu = q__1.r; i__2 = j; splus *= rhs[i__2].r; if (splus > sminu) { i__2 = j; rhs[i__2].r = bp.r, rhs[i__2].i = bp.i; } else if (sminu > splus) { i__2 = j; rhs[i__2].r = bm.r, rhs[i__2].i = bm.i; } else { /* In this case the updating sums are equal and we can */ /* choose RHS(J) +1 or -1. The first time this happens we */ /* choose -1, thereafter +1. This is a simple way to get */ /* good estimates of matrices like Byers well-known example */ /* (see [1]). (Not done in BSOLVE.) */ i__2 = j; i__3 = j; q__1.r = rhs[i__3].r + pmone.r, q__1.i = rhs[i__3].i + pmone.i; rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; pmone.r = 1.f, pmone.i = 0.f; } /* Compute the remaining r.h.s. */ i__2 = j; q__1.r = -rhs[i__2].r, q__1.i = -rhs[i__2].i; temp.r = q__1.r, temp.i = q__1.i; i__2 = *n - j; caxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], &c__1); /* L10: */ } /* Solve for U- part, lockahead for RHS(N) = +-1. This is not done */ /* In BSOLVE and will hopefully give us a better estimate because */ /* any ill-conditioning of the original matrix is transfered to U */ /* and not to L. U(N, N) is an approximation to sigma_min(LU). */ i__1 = *n - 1; ccopy_(&i__1, &rhs[1], &c__1, work, &c__1); i__1 = *n - 1; i__2 = *n; q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = *n; i__2 = *n; q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i - 0.f; rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; splus = 0.f; sminu = 0.f; for (i__ = *n; i__ >= 1; --i__) { c_div(&q__1, &c_b1, &z__[i__ + i__ * z_dim1]); temp.r = q__1.r, temp.i = q__1.i; i__1 = i__ - 1; i__2 = i__ - 1; q__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, q__1.i = work[i__2].r * temp.i + work[i__2].i * temp.r; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = i__; i__2 = i__; q__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, q__1.i = rhs[i__2].r * temp.i + rhs[i__2].i * temp.r; rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; i__1 = *n; for (k = i__ + 1; k <= i__1; ++k) { i__2 = i__ - 1; i__3 = i__ - 1; i__4 = k - 1; i__5 = i__ + k * z_dim1; q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i = z__[i__5].r * temp.i + z__[i__5].i * temp.r; q__2.r = work[i__4].r * q__3.r - work[i__4].i * q__3.i, q__2.i = work[i__4].r * q__3.i + work[i__4].i * q__3.r; q__1.r = work[i__3].r - q__2.r, q__1.i = work[i__3].i - q__2.i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = i__; i__3 = i__; i__4 = k; i__5 = i__ + k * z_dim1; q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i = z__[i__5].r * temp.i + z__[i__5].i * temp.r; q__2.r = rhs[i__4].r * q__3.r - rhs[i__4].i * q__3.i, q__2.i = rhs[i__4].r * q__3.i + rhs[i__4].i * q__3.r; q__1.r = rhs[i__3].r - q__2.r, q__1.i = rhs[i__3].i - q__2.i; rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; /* L20: */ } splus += c_abs(&work[i__ - 1]); sminu += c_abs(&rhs[i__]); /* L30: */ } if (splus > sminu) { ccopy_(n, work, &c__1, &rhs[1], &c__1); } /* Apply the permutations JPIV to the computed solution (RHS) */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1); /* Compute the sum of squares */ classq_(n, &rhs[1], &c__1, rdscal, rdsum); return 0; } /* ENTRY IJOB = 2 */ /* Compute approximate nullvector XM of Z */ cgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info); ccopy_(n, &work[*n], &c__1, xm, &c__1); /* Compute RHS */ i__1 = *n - 1; claswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1); cdotc_(&q__3, n, xm, &c__1, xm, &c__1); c_sqrt(&q__2, &q__3); c_div(&q__1, &c_b1, &q__2); temp.r = q__1.r, temp.i = q__1.i; cscal_(n, &temp, xm, &c__1); ccopy_(n, xm, &c__1, xp, &c__1); caxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1); q__1.r = -1.f, q__1.i = -0.f; caxpy_(n, &q__1, xm, &c__1, &rhs[1], &c__1); cgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale); cgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale); if (scasum_(n, xp, &c__1) > scasum_(n, &rhs[1], &c__1)) { ccopy_(n, xp, &c__1, &rhs[1], &c__1); } /* Compute the sum of squares */ classq_(n, &rhs[1], &c__1, rdscal, rdsum); return 0; /* End of CLATDF */ } /* clatdf_ */