#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int cgerq2_(integer *m, integer *n, complex *a, integer *lda, complex *tau, complex *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, k; complex alpha; extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * , integer *, complex *, complex *, integer *, complex *), clarfg_(integer *, complex *, complex *, integer *, complex *), clacgv_(integer *, complex *, integer *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGERQ2 computes an RQ factorization of a complex m by n matrix A: */ /* A = R * Q. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the m by n matrix A. */ /* On exit, if m <= n, the upper triangle of the subarray */ /* A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; */ /* if m >= n, the elements on and above the (m-n)-th subdiagonal */ /* contain the m by n upper trapezoidal matrix R; the remaining */ /* elements, with the array TAU, represent the unitary matrix */ /* Q as a product of elementary reflectors (see Further */ /* Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) COMPLEX array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace) COMPLEX array, dimension (M) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1)' H(2)' . . . H(k)', where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on */ /* exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("CGERQ2", &i__1); return 0; } k = min(*m,*n); for (i__ = k; i__ >= 1; --i__) { /* Generate elementary reflector H(i) to annihilate */ /* A(m-k+i,1:n-k+i-1) */ i__1 = *n - k + i__; clacgv_(&i__1, &a[*m - k + i__ + a_dim1], lda); i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; alpha.r = a[i__1].r, alpha.i = a[i__1].i; i__1 = *n - k + i__; clarfg_(&i__1, &alpha, &a[*m - k + i__ + a_dim1], lda, &tau[i__]); /* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */ i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; a[i__1].r = 1.f, a[i__1].i = 0.f; i__1 = *m - k + i__ - 1; i__2 = *n - k + i__; clarf_("Right", &i__1, &i__2, &a[*m - k + i__ + a_dim1], lda, &tau[ i__], &a[a_offset], lda, &work[1]); i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; a[i__1].r = alpha.r, a[i__1].i = alpha.i; i__1 = *n - k + i__ - 1; clacgv_(&i__1, &a[*m - k + i__ + a_dim1], lda); /* L10: */ } return 0; /* End of CGERQ2 */ } /* cgerq2_ */