#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int cgeqr2_(integer *m, integer *n, complex *a, integer *lda, complex *tau, complex *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; complex q__1; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ integer i__, k; complex alpha; extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * , integer *, complex *, complex *, integer *, complex *), clarfg_(integer *, complex *, complex *, integer *, complex *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGEQR2 computes a QR factorization of a complex m by n matrix A: */ /* A = Q * R. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the m by n matrix A. */ /* On exit, the elements on and above the diagonal of the array */ /* contain the min(m,n) by n upper trapezoidal matrix R (R is */ /* upper triangular if m >= n); the elements below the diagonal, */ /* with the array TAU, represent the unitary matrix Q as a */ /* product of elementary reflectors (see Further Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) COMPLEX array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace) COMPLEX array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */ /* and tau in TAU(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEQR2", &i__1); return 0; } k = min(*m,*n); i__1 = k; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ i__2 = *m - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; clarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * a_dim1] , &c__1, &tau[i__]); if (i__ < *n) { /* Apply H(i)' to A(i:m,i+1:n) from the left */ i__2 = i__ + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = i__ + i__ * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; i__2 = *m - i__ + 1; i__3 = *n - i__; r_cnjg(&q__1, &tau[i__]); clarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &q__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); i__2 = i__ + i__ * a_dim1; a[i__2].r = alpha.r, a[i__2].i = alpha.i; } /* L10: */ } return 0; /* End of CGEQR2 */ } /* cgeqr2_ */