#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int cgeql2_(integer *m, integer *n, complex *a, integer *lda, complex *tau, complex *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; complex q__1; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ integer i__, k; complex alpha; extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * , integer *, complex *, complex *, integer *, complex *), clarfg_(integer *, complex *, complex *, integer *, complex *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGEQL2 computes a QL factorization of a complex m by n matrix A: */ /* A = Q * L. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the m by n matrix A. */ /* On exit, if m >= n, the lower triangle of the subarray */ /* A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; */ /* if m <= n, the elements on and below the (n-m)-th */ /* superdiagonal contain the m by n lower trapezoidal matrix L; */ /* the remaining elements, with the array TAU, represent the */ /* unitary matrix Q as a product of elementary reflectors */ /* (see Further Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) COMPLEX array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace) COMPLEX array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(k) . . . H(2) H(1), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in */ /* A(1:m-k+i-1,n-k+i), and tau in TAU(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEQL2", &i__1); return 0; } k = min(*m,*n); for (i__ = k; i__ >= 1; --i__) { /* Generate elementary reflector H(i) to annihilate */ /* A(1:m-k+i-1,n-k+i) */ i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; alpha.r = a[i__1].r, alpha.i = a[i__1].i; i__1 = *m - k + i__; clarfg_(&i__1, &alpha, &a[(*n - k + i__) * a_dim1 + 1], &c__1, &tau[ i__]); /* Apply H(i)' to A(1:m-k+i,1:n-k+i-1) from the left */ i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; a[i__1].r = 1.f, a[i__1].i = 0.f; i__1 = *m - k + i__; i__2 = *n - k + i__ - 1; r_cnjg(&q__1, &tau[i__]); clarf_("Left", &i__1, &i__2, &a[(*n - k + i__) * a_dim1 + 1], &c__1, & q__1, &a[a_offset], lda, &work[1]); i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; a[i__1].r = alpha.r, a[i__1].i = alpha.i; /* L10: */ } return 0; /* End of CGEQL2 */ } /* cgeql2_ */