#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha, real *a, integer *lda, real *x, integer *incx, real *beta, real *y, integer *incy) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer i__, j, l, ix, iy, jx, jy, kx, ky, info; real temp1, temp2; extern logical lsame_(char *, char *); integer kplus1; extern /* Subroutine */ int xerbla_(char *, integer *); /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSBMV performs the matrix-vector operation */ /* y := alpha*A*x + beta*y, */ /* where alpha and beta are scalars, x and y are n element vectors and */ /* A is an n by n symmetric band matrix, with k super-diagonals. */ /* Arguments */ /* ========== */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the band matrix A is being supplied as */ /* follows: */ /* UPLO = 'U' or 'u' The upper triangular part of A is */ /* being supplied. */ /* UPLO = 'L' or 'l' The lower triangular part of A is */ /* being supplied. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* K - INTEGER. */ /* On entry, K specifies the number of super-diagonals of the */ /* matrix A. K must satisfy 0 .le. K. */ /* Unchanged on exit. */ /* ALPHA - REAL . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* A - REAL array of DIMENSION ( LDA, n ). */ /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ /* by n part of the array A must contain the upper triangular */ /* band part of the symmetric matrix, supplied column by */ /* column, with the leading diagonal of the matrix in row */ /* ( k + 1 ) of the array, the first super-diagonal starting at */ /* position 2 in row k, and so on. The top left k by k triangle */ /* of the array A is not referenced. */ /* The following program segment will transfer the upper */ /* triangular part of a symmetric band matrix from conventional */ /* full matrix storage to band storage: */ /* DO 20, J = 1, N */ /* M = K + 1 - J */ /* DO 10, I = MAX( 1, J - K ), J */ /* A( M + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */ /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ /* by n part of the array A must contain the lower triangular */ /* band part of the symmetric matrix, supplied column by */ /* column, with the leading diagonal of the matrix in row 1 of */ /* the array, the first sub-diagonal starting at position 1 in */ /* row 2, and so on. The bottom right k by k triangle of the */ /* array A is not referenced. */ /* The following program segment will transfer the lower */ /* triangular part of a symmetric band matrix from conventional */ /* full matrix storage to band storage: */ /* DO 20, J = 1, N */ /* M = 1 - J */ /* DO 10, I = J, MIN( N, J + K ) */ /* A( M + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. LDA must be at least */ /* ( k + 1 ). */ /* Unchanged on exit. */ /* X - REAL array of DIMENSION at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the */ /* vector x. */ /* Unchanged on exit. */ /* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */ /* BETA - REAL . */ /* On entry, BETA specifies the scalar beta. */ /* Unchanged on exit. */ /* Y - REAL array of DIMENSION at least */ /* ( 1 + ( n - 1 )*abs( INCY ) ). */ /* Before entry, the incremented array Y must contain the */ /* vector y. On exit, Y is overwritten by the updated vector y. */ /* INCY - INTEGER. */ /* On entry, INCY specifies the increment for the elements of */ /* Y. INCY must not be zero. */ /* Unchanged on exit. */ /* Level 2 Blas routine. */ /* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; --y; /* Function Body */ info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (*n < 0) { info = 2; } else if (*k < 0) { info = 3; } else if (*lda < *k + 1) { info = 6; } else if (*incx == 0) { info = 8; } else if (*incy == 0) { info = 11; } if (info != 0) { xerbla_("SSBMV ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || *alpha == 0.f && *beta == 1.f) { return 0; } /* Set up the start points in X and Y. */ if (*incx > 0) { kx = 1; } else { kx = 1 - (*n - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (*n - 1) * *incy; } /* Start the operations. In this version the elements of the array A */ /* are accessed sequentially with one pass through A. */ /* First form y := beta*y. */ if (*beta != 1.f) { if (*incy == 1) { if (*beta == 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = 0.f; /* L10: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = *beta * y[i__]; /* L20: */ } } } else { iy = ky; if (*beta == 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { y[iy] = 0.f; iy += *incy; /* L30: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { y[iy] = *beta * y[iy]; iy += *incy; /* L40: */ } } } } if (*alpha == 0.f) { return 0; } if (lsame_(uplo, "U")) { /* Form y when upper triangle of A is stored. */ kplus1 = *k + 1; if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * x[j]; temp2 = 0.f; l = kplus1 - j; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__4 = j - 1; for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { y[i__] += temp1 * a[l + i__ + j * a_dim1]; temp2 += a[l + i__ + j * a_dim1] * x[i__]; /* L50: */ } y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2; /* L60: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * x[jx]; temp2 = 0.f; ix = kx; iy = ky; l = kplus1 - j; /* Computing MAX */ i__4 = 1, i__2 = j - *k; i__3 = j - 1; for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { y[iy] += temp1 * a[l + i__ + j * a_dim1]; temp2 += a[l + i__ + j * a_dim1] * x[ix]; ix += *incx; iy += *incy; /* L70: */ } y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2; jx += *incx; jy += *incy; if (j > *k) { kx += *incx; ky += *incy; } /* L80: */ } } } else { /* Form y when lower triangle of A is stored. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * x[j]; temp2 = 0.f; y[j] += temp1 * a[j * a_dim1 + 1]; l = 1 - j; /* Computing MIN */ i__4 = *n, i__2 = j + *k; i__3 = min(i__4,i__2); for (i__ = j + 1; i__ <= i__3; ++i__) { y[i__] += temp1 * a[l + i__ + j * a_dim1]; temp2 += a[l + i__ + j * a_dim1] * x[i__]; /* L90: */ } y[j] += *alpha * temp2; /* L100: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * x[jx]; temp2 = 0.f; y[jy] += temp1 * a[j * a_dim1 + 1]; l = 1 - j; ix = jx; iy = jy; /* Computing MIN */ i__4 = *n, i__2 = j + *k; i__3 = min(i__4,i__2); for (i__ = j + 1; i__ <= i__3; ++i__) { ix += *incx; iy += *incy; y[iy] += temp1 * a[l + i__ + j * a_dim1]; temp2 += a[l + i__ + j * a_dim1] * x[ix]; /* L110: */ } y[jy] += *alpha * temp2; jx += *incx; jy += *incy; /* L120: */ } } } return 0; /* End of SSBMV . */ } /* ssbmv_ */