* ************************************************************************ * SUBROUTINE ECGERC( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) * .. Scalar Arguments .. COMPLEX ALPHA INTEGER INCX, INCY, LDA, M, N * .. Array Arguments .. COMPLEX*16 X( * ), Y( * ) COMPLEX A( LDA, * ) * .. * * Purpose * ======= * * ECGERC performs the rank 1 operation * * A := alpha*x*conjg( y' ) + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. Additional precision is used in the * computation. * * Parameters * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. At least double precision * arithmetic is used in the computation of A. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 20-July-1986. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. Local Scalars .. COMPLEX*16 TEMP INTEGER I, INFO, IX, J, JY, KX * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC DCONJG, CMPLX, MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( M.LT.0 ) THEN INFO = 1 ELSE IF ( N.LT.0 ) THEN INFO = 2 ELSE IF ( INCX.EQ.0 ) THEN INFO = 5 ELSE IF ( INCY.EQ.0 ) THEN INFO = 7 ELSE IF ( LDA.LT.MAX(1,M) ) THEN INFO = 9 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'ECGERC', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.CMPLX( ZERO ) ) ) \$ RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN DO 20, J = 1, N IF( Y( J ).NE.ZERO )THEN TEMP = ALPHA*DCONJG( Y( J ) ) DO 10, I = 1, M A( I, J ) = A( I, J ) + X( I )*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( M - 1 )*INCX END IF IF( INCY.GT.0 )THEN JY = 1 ELSE JY = 1 - ( N - 1 )*INCY END IF DO 40, J = 1, N IF( Y( JY ).NE.ZERO )THEN TEMP = ALPHA*DCONJG( Y( JY ) ) IX = KX DO 30, I = 1, M A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of ECGERC. * END