A Bibliography of Publications about the Fast Multipole Method

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

03 June 2024
Version 2.177

Title word cross-reference

1 [TPKP12]. \$15K [WGL+98]. 2
[Bord04, HHL+21, Lab98, Liu08, ON08a, RS94, VGZB09, WYW05, WXQL08]. 3
[BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GP08, GD03, HLN24,
JMC97, LHYS24, NW89, NH97, ON08b, PG94, Pta21, QCG15, Sar03, TCD17, WY05,
WLL+07, WZC+17, WZC19, WZC+20, WZC21a, WZC21b, iYNK02, YB01, ZY05].

\$50/Mflop [WSB+97]. \$7.3/Mflops [KFM99]. 3 [PG96b]. h = 0 [DNS90]. H2
[HXC21]. K [MG05, CK95b].
K(x, y) = K(x − y) [LX22]. LU [MG07]. m
[YRB16]. R11 [CBN02]. H2 [Bör23]. N
[Aar85, Alu94, APG94, Alu96, AGPS98, AAL+01, And99, Ano94a, Ano94c, ADB94,
ABDBG099, Bag02, Bar86, BADP06, BAAD+97, BADG00, BAD01, BS97, BN97,
BOX00, Bor86, BDS07, BME90, BME93, BEM94, DH86, Dem95, Dem96a, Dem96b,
DHM03, FRE+08, FM95, FM96, FQG+92, HTG02, HJ96, IFM09, IHM05, Kat89,
KFM99, KFMT00, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05,
MMC99, McD97, NH06, Oku96, PG05, Per99, PRL03, SWW94, Shl96, Sha06, SP99,
Sin92, SHG95, SHT+95, SRK+12, TMES94, TWYC06, TYON12, Ten98, TL14,
WPM+02, WS92, WS93, WN14, WSWL95, WSH+12, Xu95, Yin15, YF05, Ano94b,
CK95a, CK95b, GKS94, GKS98, Gre90b, HNY+09, HN10, HS95, INS+20, KK95,
Xue98]. N log N [AO10, DYP93, ADO11]. ν
\[O(\log_2 n) \] [JBL02]. \(O(N) \) [BSL11, Deh02, DTG96, OKF14, Xue98]. \(O(N \log N) \) [BH86, FGM11, PJY95]. \(r^{-\frac{\lambda}{2}} \) [CJ05]. \(R^{-\nu} \) [SH07]. \(r \pm 1.12 \) [Pan95].

-Body

[Ano94b, CK95b, GKS94, KK95, BEM94, CK95a, GSK98, G906b, HNY+09, HN10, HS95, INS+20, Xue98, AGPS98, AAL+01, And99, ADB94, Bag02, BADG00, BS97, BN97, BOX00, FM96, HTG02, HJ96, KFM99, KFM00, SWW94, SHG95, SHT+95, Ten98, WPM+02, WS93, Xu95, Yin15, YF05, Aar85, Aar94, APG94, Alu96, Ano94a, Ano94c, ADBGP99, Bar86, BADP96, BAAD+97, BAD01, BDS07, BME90, BME93, DH86, Dem95, Dem96a, Dem96b, DFM03, FRE+08, FM95, FOM99, IFM09, IHM05, Kat89, KTM94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05, MMC99, NMIH06, Oku96, PGB05, Per99, PRL03, Sa96, Sha06, SP99, Sin92, SRK+12, TMES94, TWY06, TYON12, TYNO12, TL14, WS92, WN14, WSWL95, WSH+12].

-2-D \[[FMI+93, HF98, KMT94], 1.349 \] \[[MKFD02, MKFD03, MFKN03], 6 \] \[[Ano97b], 2A \] \[[EIM+92], 2D \] \[[CCZ97], 2nd \] \[[HOST95, Mak93], 2A \]

-3-D \[[Lab98], 3-D [HOST95, Mak93] \]

-Accurate [BSSJ23, SRPD06, AHLP93, Dac06, EG90a, ACM97, HTA+97, IEEE97].

-accuracy [CDCD97, DY98, CB09, GL96, JP89, RKRRL22].

-Accelerated [BSSJ23, CL+92, EB96, SH07, WZC+17, WN14, AC17, BHE+94, BHER94, EB94, EG01, GD90, GODZ10, GAD13, Ham11, HN08, LCM07, MR07, QCG15, Tak14, WLL+07, WVK21, ZD05].

-Acceleration [GHRW98, MG90, WC94a].

-Accelerator [ATMK03, MD12].

-Accomplishments [Ano90].

-Accentuate [XTH09].

-Accuracy [CDCD97, DY98, CB09, GL96, JP89, RKRRL22].

-accuracy [ATMK03, MD12].

-2-D \[[BCAD06, GA96b, MHI07, Spr05], 2-D [GA96b], 2-Pflops [MHI07], 20.5Gflops [MD12], 20.5Gflops/W [MD12], 2003 [ACM03, CHJN03], 2009 [ERT12], 2011 [LCK11], 2012 [Hol12], 20th [Cip00], 240-Processor [WWF02], 25th [Ano95a], 29.5 [MKFD02], 2A [EIM+92], 2D [CCZ97], 2nd [HOST95, Mak93].

-3-D \[[OME+92], 3-D [WY07a], 3051-66 [YB97], 33rd [IEEE92a], 3D [LO96b].

-4 \[[Ano94a, FM95, FM96, MTES94, MT95, TMES94], 42 [HNY+09].

-Accelerating [ATMK03, MD12].

-Acceleration [ATMK03, MD12].

-Accelerator [ATMK03, MD12].

-Accomplishments [Ano90].

-Accuracy [CDCD97, DY98, CB09, GL96, JP89, RKRRL22].

-Accurate [BSSJ23, SRPD06, AHLP93, Dac06, EG90a, ACM97, HTA+97, IEEE97].

-accuracy [ATMK03, MD12].

-Accomplishments [Ano90].

-Accuracy [CDCD97, DY98, CB09, GL96, JP89, RKRRL22].
EG13, HHKP09, HHM19, ZGD+16].

achieves [WGL+98]. Achieving [SSF96].

ACM [ACM97, IEE02, Kar95].

ACM/IEEE [ACM97, Kar95], acoustic [AD05, BSL09, BN07, CWW08, GF06b, GF06a, HW10, TCW08, WJYO06, ZGD+16].

acoustic-structure [GF06b, GF06a].

acoustics [AD05, YBZ04, Yin06, YB12, ZCG00, ZBS11, ZCL+98, ZB95, ZD05, Lea92, MB16].

Algorithms [APG94, AGPS98, Ano94c, ADBGP99, BF78, Bha97, BN97, Boy92a, CK95a, Cip00, DMO00, DGR96, LCE+06, Liu94, MBS+00, MBS15, Pri94, Ten98, BCP08, BHE+94, BHER94, BME93, BEM94, DHM03, Ess95, Gre94, K+96, Mak93, PRT92, Pel98, WJ95, Yin09].

ALICE [HTG02]. All-to-All [HP95].

almost [FL13]. Alpha [WGL+98].

Alpha/Linux [WGL+98]. Alternative [AC05, CL91]. AMBER [DK93].

AMBERCUBE [DK93]. AMS [RSS96].

Analyse [Ano97b]. analyses [HM11, XWY+08]. Analysis [AP99, AP00, BH89, ERT12, HAS02, Hol12, JMC98, LCK11, Sat10, VTG91, Ano97b, Car07, Car09, Dar00a, EG13, JMC98, JKCGJ08, KSC99, NH97, OC03, OLL04, Pel98, RC97, RSS96, SGD+04, SS07, Sud04, WY05, WY07a]. Analytic [ABD04, BSS96a, LDA14, BSS96b, DD13].

Analytical [Gus98, LBGS16, CC13].

analyze [SHM98]. Analyzing [CSMXX, JMC97, HLL+21, HLN24].

Arrange [AG88, Rod89]. Anger [CC04].

angular [GW08, WHG96b]. Animated [BT95]. anisotropic [AY02]. Ankara [Ano97b]. Annual [Ano95b, Ano96, Ano97a, IEE92a, Mak93, PA02]. anomalies [ON09a].

Antennas [IEE94a, IEE95, IEE96a, IEE97, MI95].

anterpolation [Sar03]. Appendix [Ano90].

Application [LSCM96, LJ96b, LJ96a, NH97, SG+04, TC17, VOD08, WSL+95, HNM03, ESR01, GROZ04, HH006, LWM+02, SGD+04, TC20, YR98].

Applications [CK95b, CCKL09, OSW05, RSBS19, BHER94, HNY+09, LGG+13, OF07,
Based [AAB+17, CD13, CCF23, GS29a, GS00, MPAA96, YB01, A010, BLA05, B98, BHG03, FMI+93, GROZ04, GKG00, GP08, GA24, HHK09, HLL08, HHL+21, HLL+18, KKLZ23, LM02, LDB06, LX23, Lx08, NN12, Sd22, Su04, Ta14, WL96, WCZ+20, WVK21, ZHPS11, ZGD+16].
bases [FB09, T03]. \textit{basis} [BLA05, BL97, BN98, BCR01, Buh03, CB02, GH08, GDC08, GD07a, LC07, Yin06]. \textbf{BE} [SGD+04]. \textit{Beach} [IEE95]. \textit{Behaviour} [ON09a], \textit{Beltrami} [SHMC97, SM97, SMCM97]. \textbf{BEM} [Sel22, A08, B07, FPG05, GF06b, GF06a, H05, HLN24, MB05, Hu09, PSJ04, WWY05, XWT09, XXY+08, hYtlWbWL08, YB+11, ZY05, ZGD+16].

\textbf{BEM-FEM} [MB05]. \textit{Beowulf} [WWF02]. \textbf{Best} [Cip00], \textit{better} [GA24]. \textit{Between} [AAB+17, Pie93, CDM98, RSZ09]. \textit{beyond} [ZB14]. \textbf{Biaxial}, \textit{Biaxial} [SHMC97, SM98].

\textit{BIE} [Lu08]. \textit{biharmonic} [GD06]. \textit{billion} [YB+11]. \textbf{binary} [PD89]. \textit{binding} [KSS10]. \textbf{biomacromolecular} [SKT94].

\textbf{Biomolecular} [SRPD06, YB+11, GCH+18, KP08, LCM07, LCHM10, LCHM13, SKT93].

\textit{biomolecules} [A09, FMG9]. \textbf{Biot} [Ros06]. \textit{black} [FD09, MFK00, WCLD21].

\textbf{black-box} [FD09, WCLD21]. \textit{BLAS} [CFF08, CFR10]. \textit{Blob} [DD95]. \textbf{blobs} [HM95]. \textit{block} [CG04]. \textit{block-diagonal} [CG04]. \textit{blocking} [TSM16]. \textit{Blue} [FR+08]. \textbf{BO12} [LB91]. \textit{board} [ATMK03].

\textbf{Bodies} [BT95]. \textit{Body} [AGPS98, AAL+01, And99, A094b, A094c, Bad94, B02, G04, BS97, BN97, BOX00, CK95b, FM96, GKS94, HP95, HTG02, HJ96, KFM99, KFM00, KK95, Pie93, SLW94, SHG95, SHT+95, Ten98, WPM+02, WCZ+17, WS93, Xn95, Yin15, Y05, Aar85, Ahu94, APG94, Ahu96, A094a, A094c, ADBGP99, App85, Bar86,}
BADP96, BAAD$^+$97, BAD01, BDS07, BME90, BME93, BEM94, CK95a, DH86, Dem95, Dem96a, Dem96b, DM03, EIM$^+$92, EFT$^+$93, FRE$^+$08, FM95, FQG$^+$92, GKS98, Gre90b, HFKM98, HNY$^+$09, HN10, HS95, IFM09, INS$^+$20, IHM05, Kat89, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05, MMC99, MHE06, OME$^+$92, Oku96, PGB05, Per99, PG96a, PRL03, Sal96, Sha06, SP99, Sin92, SRK$^+$12, SCM$^+$90, TMES94, TWYC06, TYON12, TYNO12, TL14, WS92, WN14, WSWL95.

body

[BWSH$^+$12, Xue98, ZBG15].

Bologna

[Ano95a].

Boltzmann

[BH03, LCHM10, LCHM13, WZC21b]. Book

[Gav11].

Born

[ADO11, HC10].

Boston

[K$^+$96]. both [HN$^+$09].

Boulevard

[ACM99]. boundaries [Mil08]. Boundary

[BSSJ23, BH03, Boe23, BR93, Bre04, LJ96b, LJ96a, MBA97, OWS06b, SO07, Sel22, WZC$^+$17, WMOZ22, WSW$^+$95, YRB16, Ap03, Atk97, BSO9, Bes00, BWS$^+$95, BHR04, BHGR04, Car06, Car07, CWHG97, CWK08, DMC20, Gav97, GBMN06, Gav11, GOS99, GP08, GD90, GODZ10, GAD13, Ham11, HHL$^+$21, KMC09, KCF$^+$05, LS05, LOSZ07a, LOSZ07b, LCPQ18, LHL08, Lin95, Lin08, Lin09, LC94, Mil08, OWS05, OWS06a, Of08, OKS09, ON08a, ON09a, ON09b, PN95, QCG15, RS20, R$^+$97, SGG$^+$04, Sat10, SK93, Sin95, Tak14, TCD17, TCD20, TW03, Tau04, VGZB09, WY05, WY07b, WY07a, WLB22, WSWL95, XJM08, Yin09, iYNK02, YAO18, YAO20, YSM05, BR93].

Boundary-Integral [LJ96b].

boundary-value [Lin95]. Bounds

[GS98a, GS00, WK18]. box

[FD09, WCLD21]. breast [ES04].

Breit

[JD$^+$18].

Broadband [WJO06, GD09]. Brownian

[DHM03].

Building [TD09]. buried

[ESRS01, GSC01].

Burton

[Sel22].
Convergence [FDvW21, VTG91, Lab98, RO04].
convolution [BKM09, HW10, PSN04].
cooperation [ATMK03]. Coordinate [BF78], coordinates [HF92].
Copper [MC92]. core [HYS21, INS+20, LHYS24, MHI07].
Corrected [Das10, GORV21]. correction [JH08]. corrections [MCBB07]. correlated [Sal96].
Corrections [Dac10, GORV21]. correction [JH08]. corrections [MCBB07]. correlated [Sal96].
Correlations [ZQSW94]. Cosmological
Coulomb [ADG96, BFO99, CFH89, DNS90, DKG92a, DKG92b, DTG96, GGM01, GH02, HJZ09, HLL+18, HS92, SFS96, ZHS10].
Coulombic [HA17, PG96b, SKT93]. Coupled [LS05, MBS15, PB94, SGD+04, NMD99, RSBS19].
Coupling [MD98, MSS20]. course [BG97]. CPU [HEGH14].
crack [iYNK02]. cracks [ON08a, WYW05]. CRAY [BAAD+97].
creeping [Kro99, Kro01, Kro02]. Cross [Gue97, GP08]. Crystal [MPPA96].
crystals [ON08b]. CS [Dem95, Dem96a, Dem96b]. Cubic [WWF02]. CUDA [KKB+21], cultura [Ano95a].
cutoffs [DKG92b]. cylinders [CG97, ZCG00].
Cylindrical [SHMC97, SME97, SM97, SHM98].
D [HHL+21, NH97, WZC21b, BDMN03b, BHR04, BHG904, CD98, DDL13, Dar02, GROZ04, GP08, GD93, GAA9b, HLN24, JMC97, Liu08, LHYS24, NW89, ON08a, ON08b, PG94, Pta21, QC95, RS94, Sar03, TCD17, TPK12, VGB90, WYW05, WY05, WY07a, WLL+07, WXLQ08, WZC+17, WZC19, WZC+20, WZC21a, iYNK02, YB01, ZY05]. Dame [IEE96c].

dangers [BS93]. Dark [ZQSW94]. Data
AAL+01, And99, BGLM05, HJ96, LY14,
NPR93, SS95, SHT+95, WPM+02, BAPD96,
BAAD+97, DR95, KP08, LOSZ07a, RŠŽ09,
WS92, YGSR01]. Data-driven [LY14].
Data-Parallel [HJ96, NPR93].
data-sharing [BAPD96]. Data-Parallel [BADP96].
data-sparse [LOSZ07a]. databases [Mak93]. DC [IEE94c]. debugging [RC97].
December [Ano92, IEE98, Kar95, K+96, Rod89].
Decomposition [CK95b, BJWS96, BP03, BCOY93, BCOY94, CvlHMS94, CWD08, LM02, OSTER06b, RTA+08, ZT07].
Decoupled [PGdS+15]. deferred [JH08].
deformable [Ros06, ZD05]. della [Ano95a]. Delta [FQG+92]. Dense
[CPD17, GSS98b, BGGC06, CG97, PG94].
densities [GY08]. Density [AC94, BS19, LBGS16, PB94, WWF02, CK20, KAN95, KAN96, MSS20, WJGHG96a, WJGHG96b].
dependence [RC97], dependent
[MD98, MSS20]. deployment [FL13].
Derivation [WH94], derivative [BN07].
Derivatives [BSS96b]. Derive [RGK91].
Descent [JMC97, JMB98, ESRS01].
Descent-Fast [ABMC98]. description [HF92].
Design [BG1+99, Lea92, ZBS15, And08]. detect
[TD09]. Detection
[BT95, ESRS01, JdR+18]. Determination
[PN94, Dac06]. Developer [IEE96c].
Development [ATMK03, TDBE11].
developments [CC15]. Diagional
[Rah96, AP99, CG04, ESM98, KSC99, Rok98].
Diagonalizations [HC08]. Diego [Kar95].
Dielectric [BVW96, MG11, CD07, DOC07,
EG09a, Erg11, JBCM98, WZC21b, ZCG00].
difference [LC14], different
[BME93, BEM94]. Differentiation
[DGR96, KL+06, TXL19]. Difficulties
[BSS97]. Diffusion
[BSSJ23, CM06, KP08, STZ14]. digest
[IEE94a, IEE95, IEE96a, IEE97]. DIMACS
Bha97. dimension [MR07]. Dimensional
[JMBC98, LS93, Pri94, SC95, WSW+95, BSL09, BL97, BCR01, CWK08, CC10, CC12, ESRS01, ES04, ECL02, ESM98, GH98, GD90, Kro01, Lab98, LCQF18, LQGQ21, NT09, OLLL03, PSPS95, PSS95, RR03, SK04, Tak14, TC09, TG08, WY07b, WSWL95, XJM08, YAO20].

Dimensions [CS98a, LO96a, McK96, Nil04, RRR05, SL91, BPT07, CGR99, CHL06, CCG06a, CCG06b, EG01, GR88a, GR97, GD06, LB92b, MCBB07, Rok90, Rok98, Sel22, SKPP95, TSIM16, YBZ04, SL97a].

dipolar [CPP93, CFH89, KN95].

Direct [Aar85, CPD17, BME90, BME93, BEM94, FL13, GL96, GA24, LHL08, NMH06].

direction [HM95]. Directional [BPT+14, CCFG23]. directions [YAO20].

discretization [BDMN03a, BDMN03b, Dar02, GBMN06]. discretizations [Beb06]. Discretized [VTG91]. dispersions [CG97].

displacement [RSBS19]. distorted [HC10].

dna [FOCB96]. domain [BCOY93, BCOY94, CWD08, GP08, LM02, Liu08, LCZ07, Mil08, OSW06b, OFH+08, RS09, WW20]. domains [BHR04, GGM93, GK04, RS20]. Don’t [Bar90]. doubly [GK04]. doubly-periodic [GK04].

dual-level [LCQF18]. Dynamic [HEGH14, BAAAD+97, CK95a, FG96, MG05]. Dynamical [SSW94, WSWL95].

Dynamics [BGGT90, BHGS90, BP88, CDCD97, HM86, JBL02, LCP93, MPPA96, NT96, OKF14, Sch94, TBEE11, WLM99, ATMK03, AIIS+21, BSL11, BAL91, BSS97, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP93, CvHMS94, DK93, EGHT97, FMI+93, GDDK89, GKZ07, HS90, Ich02, KM00, KP05a, LM02, LBC91, LB+97, LMCP92, LWM+92, LRI+99, NKV94, NT94, OMH+94, OYK+14, OP07, PGB05, SF18, Ske89, VGB09, VMC00, WS91, Win95, ZB95].

Dynamo [BSL11].

Economization [LRW95]. Editor [GW98]. Editors [Cip00, MB+00, DSO0]. EEG [KCF+05]. effects [AB95, BPT85].

Efficiency [HZH+18, HLL+18, KK16]. Efficient [BS97, DH04a, EG08, HS08, HYS21, NT96, RS06, SRT93, Ami00, App85, Bar86, BHR04, CL91, CCZ97, CWD08, EG09b, GR88b, KM00, KKB+21, Kro01, KS98a, LDB96, OF08, PN95, RS20, TSIM16, WL96, WHG94, YF98, ZGD+16].

eigendecomposition [CG94]. eigensolver [ZGD+16]. Eighth [HT+97]. elastic [CCZ97, TC97]. elasticity [GKM96].

elastodynamic [CB14]. elastoplastic [WY07b]. Elastostatic [WZ+17, GG16, GH98, HLL08, Liu08, MB+05, iYNK02, ZY05].

elastostatics [OSW05, PN95]. Electric [Gus98, PNB94, ZZ93, ABD04, CS82, HF92, WFC08]. Electrically [HAS02, GDDC08].

Electrode [HB93]. Electrode-Electrolyte [HB93]. Electrolyte [HB93, WZC21b]. electrolyte-dielectric [WZC21b].

Electromagnetic [CSMCxx, EMRV92, GA96a, GA96b, SLC97, BGCG06, Cur09, ESRS01, ES04, GH98, HYS21, LHY924, MG07, MD98].

electromagnetics [An95b, An96, An97a, An98].
CJL+97, Erg11, Gib08, LZL04, OMC08].

Electromagnetism
[CDGS03, CDGS05, BDMN03a, BDMN03b, Car06, Car07, DM07, Sy03], electron [GIS98, NH97].

Electrostatic
[CDGS03, CDGS05, BDMN03a, BDMN03b, Car06, Car07, CCZ97, DH04b, Fuj98, Gas97, GBMN06, GOS99, GD07b, Hav03, LZL04, LX22, LC93, NT09, ON08b, ON09a, ON09b, RŠ09, RO04, Rok85, Rok90, RS94, Tau04, TG08, VW02, WLL+07, WCZ+20, Yin09, ZC00].

Equispaced [CCFG23, DR95]. equivalent [RKRRL21]. equivalent/check [RKRRL21]. Erratum [BEM94, FLZB97a, SL97a]. Error [BH89, CC04, CC05, GKD09, GSS98a, GSS00, KSC99, OC05, PSS95, PSS95, SP97, Sac09, Sac10, Sac11, Pel98, WK18, Dar00a]. error-controlled [Sac09, Sac10]. Error-estimates [PSS95]. errors [AP00].

estimates [CC04, CC05, PSS95, PSS95, SP97]. Euler [RS94]. Eulerian [NMDK99]. EuMC [Ano95a]. European [Ano95a]. Evaluate [CDM98]. Evaluated [Z93]. Evaluating [Z93]. Evaluations [Z93]. examples [CX21].

Exascale [YB12]. Excitation [GIS98]. execution [BDS07, LY14, YF98]. exhibition [Ano95a]. Existence [YSM05]. Expansion [FDvW21, Le 97, OC05, Pan95, PSS96, AHLP93, OC03, WL96, WXQL08, WCZ+20, WK18]. Expansions [Boy92b, CJ05, McD97, RGKM12, AR91].
GB11, Lem98, MD98, SH07]. explicit [JP89, Pud16]. exponential [TWYC06].
Expressions [Pan95, CS82]. extended [KS11]. Extending [CDJ07, DC07].
Extension [AYO20, GY08, TYON12].
eXtensions [TYON12]. exterior [AP03]. Extraction [YB01, JC04, NW89]. extreme
[INS +20, WSH +12]. extreme-scale [INS +20, WSH +12].
facility [RTZ +96]. FAMUSAMM [EGHT97]. Far [LSCM96, HW11, KKB +21].
Far-Field [LSCM96, HW11]. Fast [And92, BT95, BSSJ92, BL97, BN98, BCR01, BPT07, BK15, BPT +14, BF78, BCP08, BKM09, BVW96, BV96b, BS00, BL98, BL05, BFO99, Boy92a, BHR04, BHGR04, BHGR05, CDM98, CDGS03, CDGS05, CL12, CC15, CMSM97, CC98a, CS98b, CW14, CBN20, CJL +97, CC10, CC12, CCFG23, CPD17, CKB11, Dac06, Dar97, D98, Dem95, Dem96a, Dem96b, DD95, DR95, DGR96, EB94, EB96, EMRV92, ESM98, EG13, FOCB96, Gas97, Gav11, GSC01, GP93, Gre94, GHRW98, G98, GORV21, Gue97, GA24, GD06, GD07a, GD08, GAD13, GA96a, GA96b, GS98b, HOST95, HAS02, HC10, HA17, HEGH14, JMC97, JMC98, JMB99, KL +06, KMC09, KK75, KCF +05, L94, L95, L96, BSH94, L95, WWS95, XWG94, WY05, WY07b, WXQ95, WZC +17, WZC19, WZC21a, WZC21b, WMOZ22, WSW +95, XWY +08, XM98, YR99, Yn09, Yin09, Yin15, YNS +09, YAO20, YRB16, YBO1, ZY05, AHP93, AR91, AGR88a, AGR88b, AP99, AP00, AP03, Ami00, ATMK03, AYO20, AII +21, AT +12, AC17, BDMN03a, BDMN03b, BS09, BG79, BS19, BWS +95, BV96a, BSS97, BCL +92, BP03, BSSF96a, BSSF96b, BK96, CD07, CX21, CC04, CC05, Car09, CGR88, CWHG97, CDF10, CWK08, CCKL99, CRR99, CHL06, CCG +06b, CRG01, CPP93, CWD08, CRW93]. fast [CB20, CFR08, CB09, Dac09, Dac10, DMC20, Dar02, DM07, DM12, Dar00a, Dar00b, DH04a, DH04b, DC07, DR96, ESRS01, ES04, Eng11, EG08, EG09a, EG09b, Erg11, EG01, FGM11, FLZB97a, FLZB97b, FP05, FD09, Fuj98, GDDC08, GBM06, GF06b, GF06a, GIS98, GY08, GR02, GG16, GROZ04, GKD09, GE13, GR87, GR88b, GG89, GG90, GS91, GH02, GCH +18, GD05, GD09, GZ01, Ham11, HMKP09, HS08, Hav03, HLY5, HD10, HW10, HW11, HU97, HR98, HG91, HHL +21, HLN24, HJZ09, HLL +18, IYK16, KKL23, Kan15, KM00, KSS10, KS11, KKB +21, Kon93, KLM +09, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KAN96, Lab98, LOSZ07b, LCL +12, LBGS16, LB91, LB92a, LB92b, L98, LZL04, LCQF18, LGQZ21, LGG +13, LX22, LX23, LC14, Liu08, LHYS24, LY14]. fast [LCZ07, LCM07, LCHM10, LCHM13, LWM +02, Mak99, MG07, MG09, MR07, MRH94, M820, NT09, NN12, NH97, OR89, OS05, OSW06a, OA08, OCK +03, OYK +14, OMC08, OLL03, OLL04, OFH +08, OP07, ON09a, PJ96, PS94, PS95, PS95, PA14, Pa21, Rah96, RRR03, RS20, RS90, RRRRL21, RRRL22, RSBS19, RTZ +96, RO04, RTA +08, RS97, RS06, RCWY07, SG +04, Sar03, Sat10, SL97a, SL97b, ST06, SWW99, SM97, SHM98, SH17, STK94, Sin95, SKPP95, SP97, Sta95b, SB96, ST02, SK04, Sud04, SYL14, TSIM16, TCD17, TCD20, T103b, T104, TCW08, TC09, TG08, TD09, VOD08, WK18, WYJO06, WL96, WT05, WY07a, WLL +07, WFC08, WZC +20, WLB22, WH94.
WJGHG96a, WHG96a, WJGHG96b, WHG96b, WVK21, WSWL95, XWT09, YB21, YRGS13, hYtWbWL08, YR98, YB97, YBZL03, YBZ04, fast [Yin06, YBK+11, YRN12, YB12, YRN13, iYNK02, YAO18, YSM05, ZCG00, ZT07, ZHPS10, ZHPS11, ZB14, ZX19, ZCL+98, ZKl+07, ZGD+16, ZB95, AAB+17, Boy92b, CD13, CB14, CKE08, CFR10, DDL13, EMT99, FL13, GR97, GS98a, Lea92, LCP93, RGKM12, SL91, SLCL98a, SLCL98b, YTK14].

Fast-multipole [Yin06, YBK+11, YBNY12, YB12, YBNY13, iYNK02, YAO18, YSM05, ZCG00, ZT07, ZHPS10, ZHPS11, ZB14, ZX19, ZCL+98, ZKl+07, ZGD+16, ZB95, AAB+17, Boy92b, CD13, CB14, CKE08, CFR10, DDL13, EMT99, FL13, GR97, GS98a, Lea92, LCP93, RGKM12, SL91, SLCL98a, SLCL98b, YTK14].

Fast-Multipole-Accelerated [BSSJ23].

FCCM [PA02].

FE [SGD+04]. February [B+95]. FEM [MB05]. ferrofluids [HHM19]. FFT [TPKP12]. FFTM [HLL08, LHL08, OLL04]. fiber [WY07a].

fiber-reinforced [WY07a]. Field [LSCM96, PA02, ABDO4, BGHR04, BHGR05, HW11, KKLZ23, KKB+21, MD98, OKS09, WFC08, Xue98]. Field-Programmable [PA02]. Fields [CK95b, Gre87, SHMC97, SMC97, SB98, YR99, CK99a, CG97, DC07, ESM98, GG16, Gre88, GR88a, GM94, GH98, HR98, OLLL03, Pel98, RKRR21, ST06, SM97, VOD08].

Fifth [Ano92, IEE96b, MC92, IEE98].

fitting [BP03, YR98]. fine [Bar86].

fine-grain [Bar86]. Finite [FST05, Lj09b, Lj09a, Bel06, Ich02, LS05, LCZ07, SGG+04, Sat10, VW02].

Finite-Element [Lj09b]. finite-sized [Sat10]. First [OKF14, AHP93].

First-Principles [OKF14]. FISC [SLCL98a, SLCL98b]. Fitted [AC94].

fitting [BS19, CK20, LBGS16, MSS20, TWYC06].

Flexibly [YS18]. floating [LKM02]. floating-point [LKM02]. Flow [Pri94, ECL02, Gre90a, GKM96, GK04, NMDK99, Tau03a]. Flows [GCG+99, WSW+95, BCH93, Kro99, Kro01, Kro02].

Fluid [SWW94, TDBEE11, Bat03, OMH+94, VGZB09, WSL95]. fluids [Ang17, BPK85, LRT+99, ZB14]. FLY [BAD01, BCAD06]. FM [BN07]. FM-BEM [BN07]. FMA [LO96b]. FMBEM [CWK08]. FMD [LWM+02].

FMM/BEM [Sel22]. Fock [KAN96, WJGHG96a, CK20, KAN95].

Forces [BP88, CDM98, NT96, Pie93, WZC+17, BH03, CKS91, DM90, LDB96]. Forest [MPZ21]. Form [CJ05, AP99, BCPO8, SH07]. Formation [FM96, FM95, SWJ+05]. forms [KSC99, Rah96, Rok98]. Formula [CL12]. formulae [NN12].

Formulation [AAL+01, JBL02, CB14, CWK08, CCKL09, CFR08, CFR10, DM07, GD07b, Liu08, OSW06a, Sel22, DM12]. Formulations [Ano94b, GKS94, MG11, EG09a, GKS98].

Fortran [GDK89]. Foundations [IEE92a]. four [BCR01]. four-dimensional [BCR01].

Fourier [Boy92b, EMT99, Boy92a, CD13, DR95, EB94, EB96, HLL08, HW10, LHL08, OLLL03, OLL04, Sar03, ZHPS11].

Fourier-Based [CD13].

Fourier-series-based [ZHS11]. FPGAs [LKM02]. Fractal [PD15]. Fractional [WHG96a]. fracture [XWT+08, ZBG15].

fracturing [RSBS19]. framework [TPKP12]. Francisco [B+95]. Fredholm [AHLP93, LX22]. free [BSL11, BKM09, Car06].

Frequencies [GHRW98, DH04b, ZC00]. Frequency [Nil04, BK96, DH04a, KMC09, QCG15, TSM16, ZC00]. frontiers [And08]. Fully [VTG91, RSBS19]. function [BLA05, BKM09, GDDC08, GD07a, GODZ10, LX17].

Functional [DRS96, BS19, KAN95, KAN96, LBGS16, MSS20, WJGHG96a, WJGHG96b].
Functions [Boy92b, BL97, BN98, BCR01, Buhl03, CBN02, KMC09, LCZ07, Tau03b, Yin06].

Future [EMT99].

GADGET [Spr05]. GADGET-2 [Spr05]. galactic [MFK00]. galaxies [SWJ +05]. Galaxy [FM96, FM95]. Galerkin [AHLP93, AP03, DMC20, HK805, OSW05, XWT09]. Gap [AAB +17]. Gauss [GS98a, GS91]. Gaussian [BSSF96a, BSSF96b, KS98a, Le 97, Ros06, Sal96]. Gegenbauer [CC05]. General [LCD14, McD97, BSL11, FG06, LX22]. Generalization [Boy92b]. Generalized [ADO11, CBN02, GR02, KAN95, KAN96, ST06, SK04, WJGHG96a, YR98]. generating [CB20]. Generation [HL15, Sal96]. geometric [CDF10].

guided-mode [Sat10]. Guidelines [BV96b, BV96a]. guns [NH97]. GvFMM [BSSF96a, BSSF96b].

H2Pack [HXC21]. half [BSL09, CB14, GSC01, GG16]. half-space [BSL09, CB14, GG16]. Halos [ZQS94].

Hamiltonian [CDF10]. Hanover [Mak93]. Hardware [HZH +18, ATMK03]. Harmonic [CAJ90, GD07b, GODZ10]. harmonics [PJY96, ST02, WL96, YR98]. HARP [KMT94]. HARP-1 [KMT94]. Hartree [KAN96, WJGHG96a, CK20, KAN95].

Helmholtz [AP03, BKM09, CD13, CC15, CHLO06, CCG +06a, CCG +06b, CC10, CC12, DDL13, Dar02, GHRW98, GD03, GD09, GD13, GS98b, NN12, NII04, OLL04, ON08a, QCG15, RS97, Rok98, Sta95b, Sta95a, TCD17, WVO2, WZC19, WCZ +20].

Hermite [KMT94, NMH06].

Heterogeneous [ADB94, HGD11, INS +20, LCL +12].
Hierarchical
[Alu94, AGPS98, BH86, BJWS96, BH88, Deh02, Dem95, Dem96a, Dem96b, HS95, HJ96, SHG95, SHT+95, EG09b, HNY+99, HSA91, JP89, MG05, PG94, Sin92, VCM00, Wam99, WS92, Xue98, YGSR01].
hierarchical-element [VCM00].
High
[ACM97, BGI+99, BK96, CFR08, CFR10, FHM99, GBMN06, HL15, Hol12, HZH+18, HXC21, IEE94b, IEE96b, IEE98, LCK11, Nil04, TWYC06, WWF02, DC07, GH08, GY08, IYK16].
High-Density
[WWF02].
High-frequency
[BK96].
High-order
[TWYC06, DC07, GH08].
High-Performance
[FHM99, IEE94b, HXC21, IYK16].
Higher
[PNB94, RRR05, HHL+21, Pta21].
Higher-order
[Pta21].
Highly
[BS97, KKB+21, OME+92, YBNY13, ZX19].
Hilton
[IEE90].
HODLR
[GA24].
homogeneous
[CL91, YRGS13].
Hut
[AAL+01, Ano94b, BJWS96, BGLM05, GKS94, GKS98, INS+20, MPZ21, SHT+95, WSH+12, ZBS11, ZBS15].
Hutnik
[Hutnik].
Hydraulic
[RBS19].
Hydrolac
[HBO02].
hydraulic
[GCH+18].
Hydraulics
[RBS19].
Hypersystemic
[DHM03].
Hypercubicle
[BME93, BEM94, BME90, DK93].
Hypercubes
[SS89].
I/O
[Mak93].
ICCAM
[BGPW00].
ICCAM-98
[BGPW00].
ICS
[KK88].
IEEE
[IEE96b, IEE02, PA02, ACM97, Kar95].
Igniting
[ACM03].
II
[CC05, PG95, WSB+97].
Illinois
[SLCL98a, SLCL98b].
imaging
[DC07].
imaging
[ANO97b].
impact
[GIS98].
Implementation
[And92, HJ96, INS+20, Liu94, MPPA96, NPR93, OP07, YB01, AHLPR93, Bes00, BJWS96, Bha97, CCG+96a, Dar06b, GR88b, Hav03, KP05b, KP08, LO96b, Mak93, OCK+03, RS06, Sin95, WHG94].
Implementations
[BS97, WLMP99, BHE+94, Buh03, TL14].
Implementing
[KN95, SL91, MRH14, SL97a].
Implications
[SN92, SHG95, DRS96].
implicit
[CC13], imposing
[YS18].
Improve
[HLL+18].
Improved
[MPPA96, YR99, HR98, PRT92, PA14].
Improvement
[Ich02].
Improving
[CDCD97, GSS98a, GSS00, MPZ21, KK16].
incident
[CCKL09].
inclusion
[HNO06].
Incomplete
[MG07].
Independent
[Alu94, AP94, AGPS98, Ano94c, SB98, LC23,MR07,RKRRL22,YS18, YBZL03, YBZ04, Yin06, ZHS11].
India
[IEE98].
indirect
[GAD13, Ham11, LHL08].
Induction
[Pie93].
industrial
[And08, GLS06, Sy103].
Inexact
[LOSZ07a, LOSZ07b, WL22].
Inextensible
[VGZB09].
Infinite
[KS04, MI08].
Inhomogeneous
[SHMC97, SMC97, CL91, SM97, SHM98].
Innovation
[ACM03].
Insight
[IEE02].
Institute
[BR93, HM86].
instruction
[TYON12, TYNO12].
Integral
[BSSJ23, CL12, GKM96, GK04, Kr099, L096b, L096a, MG11, SC95, ZC00, AP03, ABD04, AD05, Atk97, BDMN03a, BDMN03b, Bes00, Car06, Car07, CCZ97, CCKL09, DM07, EG09a, Fj098, Gas97, GBMN06, GOS99, LZL04, LX22, LC93, LC94, NT09, OSM06a, ON09a, RZ09, RO04, Rok85, Rok90, Ros06, Tak14, TW03, Tau04, VGZB09, WLL+07, WFC08, Yin09, iYNK02, ZX19, ZGD+16].
Integral-Equation
[MG11, EG09a].
Integrals
[BL05, Gus98, ZZ93, BL98].
Integration
[DGR96, Oku96, WZ+17, HLN24, NMH06].
integrations
[CDF10].
Integrator
integrators [Per99, SP99, KM00, KMT94].
Intel [FQG92]. Interacting [BP88, BP93].
interaction [FLZB97a, FLZB97b, Sha06].
[Per99, SP99, KM00, KMT94].

Interactions
BFO99, DD95, GGM01, LS93, ATMK03, A010, BAL91, BPK85, CFH89, CKB11, DKG92a, DKG92b, DKG92c, EGH97, Ess95, GH02, HJZ09, NT94, PJY95, SKT93, SKT93, ZHPS10. interatomic [CKS91].

Interacting [BP88, BP93].

Interactions
GF06b, GF06a, HLL+18, Kan15, YAO18, ZD05. Interactions
BFO99, DD95, GGM01, LS93, ATMK03, A010, BAL91, BPK85, CFH89, CKB11, DKG92a, DKG92b, DKG92c, EGHT97, Ess95, GH02, HJZ09, NT94, PJY95, SKT93, SKT93, ZHPS10. interatomic [CKS91].

InterCom [BSvdG+94]. interconnecting
LS05, LOSZ07a, LOSZ07b, OSW06b.

Intercontinental [ZGI+10]. Interfaces
HB93, Kro02. interfacial [Kro01].

Interpolation [Boy92a, CCFG23, DGR96, KLZ+06, BLA05, GD07a, KKLZ23, LX23, Sar03, Tak14, WVK21].

Interpolation-Based [CCFG23, KKLZ23, Tak14]. Interprocessor
BSvdG+94. Introduction [DS00, GW98].

Inverse
CDGS03, CDGS05, CPID17, GA24, Beb06, BN07, FPG05, HC10, LNZ04, MG09, TCD17, TCD20. Inverting [GGM01].

Investigations [hYtWbWL08]. inviscid [Kro02]. Invited [HOST95]. involving
AB95, EG09a, Erg11, Lin95. ion [RTZ+96], ionic [BPK85, CL91, DC07].

irGPU.proton.Net [Kan15]. Irregular [Boy92a, Kan15, YF98]. isotropic
GKM96, GH98. issue [MC92]. issues
Mak93. Italy [Ano95a, MBA97]. Iteration
YRB16, GD07a. iterations [WLB22].

Iterative
GSS98b, AD05, FG96, GDDC08, HC10, Mil08).

J [BEM94, Dac10]. Jacobi [CC04]. Jose
[ACM97]. Jr [ACM99]. July
[IEE96a, IEE96c, IEE97, RSS96]. June
[HM86, IEE94a, IEE95, Mak93].

Karhunen [ST06]. Kernel
CWA14, HXC21, YB21, CC15, LX22, LX23, MR07, RKIRL22, WCLD21, YS18, YBZL03, YBZ04, Yn06, ZHPS11. kernel-independent
LX23, MR07, YBZL03, YBZ04, ZHPS11.

Kernels
[CCFG23, LCD14, GR02, PSN04, ZK19]. kind
[AHLP93, LX22, Tan04]. kinematics
[RZ09]. King [ACM99]. KNN [MPZ21].
knots [PSN04]. Knoxville [IEE94b]. Kohn
[BSSF96b]. Kohn
[BSSF96b]. Krylov [Car07, GD06a, JH08].

KWI [DTG96].

Lagrange [WVK21]. Lagrangian
[NMDK99]. Lake [Hol12]. Landau
[Lem98, Lem04]. language [MRH14].

Laplace [GGM93, GR97, LHL08, WZC21a].

Laplacian [GGM01]. Large
[BADG00, BSV96, BV96b, CDGS03, CDGS05, FLZB97a, FLZB97b, GF06b, GF06a, HOST95, IFM90, OFK14, SRPD06, SLC97, WLMP99, YW07a, ZQSW04, ATR+12, BAAD97, BWS95, BV96a, Car90, DYP93, EG08, Erg11, EG13, GDDC08, GLS06, GKD89, HMM19, JdR+18, KP08, LCQF18, LGQZ21, LBI+97, LCQF18, LWX15+02, PN95, PG96b, TC09, WYW05, WY05, XYW+08].

Large-Scale
[BADG00, OFK14, SRPD06, GF06b, GF06a, ATR+12, EG08, Erg11, EG13, HMM19, LCQF18, LCQZ21, LCQF18, PWX15+02, PN95, PG96b, TC09, WYW05, WY05, XYW+08].

Letters
[MBS+00]. Level [BK15, CJ05, AP03, DKG92a, HLN24, LCQF18].

library [BSvdG+94, CKB11, TYNO12]. limited [BDS07]. Line [YR99]. Linear
[CPD17, Goe99, Pie93, Pud16, WJGHG96b, WJGHG96b].
BH03, BGGC06, KLM+09, OSW05, SSF96.
lenses [JHG08], link [GDK89]. Linux
[WGL98]. Liquid [MPPA96]. Liquids
[AT87, CKS91], lithography [YB97]. Load
[SHT+95, Ten98, BAAD+97, FG96, MG05,
PGdS+15]. Loading [HL15]. Local
[RGKM12, CFR08, MCB07, RKRL21,
YS18]. Locality [SHT+95]. locally
[GH98, GORV21]. locally-corrected
[GORV21]. Loève [ST06]. logarithmic
[JP99]. Logical [Bor86]. Loki [WSB+97].
London [DKG92a]. Long
[Pie93, AO10, BAL91, BPK85, Ess95].
Long-Range [Pie93, Ess95], lossy [GSC01].
Low [GHRW98, DH04a, QCG15, TSIM16,
TPK12]. low-communication [TPK12].
low-frequency [DH04a, TSIM16]. LSS
[BCADO6]. Luther [ACM99].

M [PG96b]. M2L [KKB+21, TSIM16].
machine [HHK09, BME90, WS91, ZJ91].
Machines
[PA02, BCOY93, KP05b, LBC91, Mak93].
Macromolecular [LCE+06, Ske89].
macromolecules
[BH03, FLZB97a, FLZB97b], macroscopic
[LDB96]. Madras [IEE08]. Magnetic
[Gus98]. magneto [VOD08].
magneto-static [VOD08].
magneto-theoretical [LRJ+99].
magnetostatic [BHGR05]. malignant
[ES04]. Many [HP95, PG96a, Pie93, App85,
EIM+92, EFT+93, HFKM98, HYS21,
INS+20, LHY24, OME+92, SCM+90].
Many-Body
[HP95, Pie93, PG96a, App85, EIM+92,
EFT+93, HFKM98, OME+92, SCM+90].
many-core [HYS21, INS+20, LHY24].
map [GGM93]. MAPLE [McD97, Pie93].
Mapping [BT03, LB92a]. mappings
[OR89]. March
[An095b, An096, An097a, Fu97, HTA+97].
Martin [ACM99]. Maryland [IEE96a].
Massachusetts [K+96]. Massive [LHY24].
Massively [BP88, IFM09, JBL02, KP05b,
LO96a, LCP93, MFKN03, LCM+12, LBI+97,
MHI07, SRK+12, TMES94, WS+12].
Massively-Parallel [MFKN03, MHI07].
matched [GRO04, GKD09]. materials
[GM94, NKV94, Pta21, K+96]. Matérn
[CWA14]. Mathematical
[BCM02, CHJN03, Dar97]. Mathematics
[BGPW00, HDG+15, Ano90, RSS96,
dCGQ90]. Matrices
[Bor92, HXC21, Pan92, CG04, Dao6, XTH09]. Matrix
[HXC21, PNB94, SP01, CX21, Car06, FG96,
WCL21, XWT09]. matrix-free [Car06].
matrix-vector [XWT09]. Matter
[ZQSW94, FRE+98]. Maxwell
[DH04b, YH98, GBN06, GD07b, Hav03,
ON08b, ON09a, ON09b, ZC00]. May
[AG88, IEE04]. MD [IEE02, DK93].
means [MG05]. mechanic [SWW99].
mechanical [SGD+04, WS05, YW07a].
mechanical-electrostatic [SGD+04].
mechanics
[BCM02, BCP03, bYtWbWL10]. Media
[GA96a, GA96b, WZC19, GRO04,
WCZ+20, WZC21a, WZC21b]. medium
[ZCL+98]. MEG [KCF+05]. MEG/EEG
[KCF+05]. Memory
[MB16, YB01, BCOY93, DK93, KP05b,
LBC91, LMCP92, MCM99, RC97, Ske89].
MEMS [SGD+04]. Mesh
[BOX00, DYP93, DKPH04, KM00]. meshes
[HKS05, ZBG15]. meshless
[BLA05, YNS+09]. Message [KP08].
Message-passing [KP08]. metamatamaterials
[OMC08]. Meter [WWF02]. Method
[Alu94, AAL+10, An92, An94, BSSJ23,
BT03, BK15, BPT+14, BW96, BV96b,
BL05, BHS8, CL12, CC15, CS98b, CCFG23,
CPD17, CKB11, EMVR92, FD+W21, GP93,
GKS94, Gue97, GA24, GA96a, GA96b,
GS98b, HOST95, HAS02, HXC21, KLF+06,
LCD14, LSCM96, L96b, L96a, M96,
MB16, McK96, NT96, Ni04, PD15, RRR05,
RW94, Sch94, Sel22, SG97, SMC97, SHHG93,
SC94, SC95, Sta95a, SP01, WC94a, WZC+17,

...
Method Efficient [NT96]. Methods [Aar85, Alu94, AG88, BS93, BS97, Bör23, BR93, Dem95, Dem96a, Dem96b, FÖG+92, GHRW98, GW98, HEHG14, HJ96, LRW95, MBA97, SRPD06, SHG95, SHT+95, TDBEE11, Vtg91, WSW+95, YF05, A+97, BLA05, BCH93, BL97, BG97, BN98, BCR01, Bes00, BDS07, Car07, CNB02, CJL+97, CWD08, CK00, Eng11, Gas97, GBMN06, GY08, GCG+99, Goe99, GE13, GKM96, Gk04, GK03, GROV21, GD80, HS95, HGD11, IY16, Kro99, Kro02, KP05a, KP08, LS05, LOSZ07a, LOSZ07b, LOG12, Lin95, LX17, MC02, NN12, OSW06b, Of07, Oku96, PJY96, PG96a, RS20, RKRRL22, RS94, ST06, SK05, Sin92, SB96, TD09, YGS01, aYZ97, YNS+09, YBNY12, ZC91, MC92]. Microlithography [Fu97]. Microlocal [Ful97]. Microlocal [BDMN03a, BDMN03b, Dar02, GBMN06]. Micromagnetic [VOD08]. Microprocessors [NMH06, MSV92]. Microscopic [HB93]. Microstrip [Mi96, Mi95, ZCL+98]. Microwaves [Aaro95, ZC00]. militaires [Ano97b]. military [Ano97b]. Miller [Sel22]. million [DKG92a, DKG92c]. million-atom [DKG92c]. MIMD [FOG+92, LB92a]. mine [ESRS01]. Minimal [BF78]. Minimization [OC05]. minimize [AIS+21]. Minneapolis [HTA+97, IEE92b]. Minnesota [IEE92b]. MLFMA [SLC96]. MN [HTA+97]. mode [Sat10]. model [CAJ09, ES04, FG96, Ham11, IY16, KP08, LGQZ21, TD09]. Modeling [BCM02, NMDK99, NKV94, ZKL+07]. Models [AC94, HB93, PN95, SGG+04]. Modern [MPZ21, NMH06, SF18]. Modification [SB98]. Modified [Bar90, BADG00, CHL06, LCQF18, LGQZ21].
module [DK93]. Molecular
[AC94, BGGT90, BAL91, BHGS90, BP88, CDCD97, Gus98, HGS90, LBC91, LBI*97, LMCP92, MPPA96, OKF14, WLMP99, WS91, ATMK03, AiIS+21, BSL11, BS19, BWS*95, BSS97, BCL+92, BHE*94, BHER94, BCOY93, BCOY94, BP93, CVHMS94, DK93, EGHT97, GDK98, GKI207, KM00, LM02, LBI+97, LMBGS16, LWM02, NKV94, OYK+14, OP07, PGB05, PA14, SF18, SWW99, Win95, ZB95].

molecular-dynamics [BCL*92, BP93].
Molecule [Pie93]. molecules [Kan15].
Moment [Gus98, McD97, ZZ93, BN98, CS82].
moment-based [BN98].
Moments [PNB94, Gib08, HHKP09, Kon93].
momentum [GY08, WHG96b].
monostatic [RCWY07].
Monotonic [Bor86].
Monte [ESRS01].
Monterey [Ano95b, Ano96, Ano97a].
Montreal [IEE97]. motion [DMM03, Kro01].
Mountain [MC92]. mover [CC13]. MPI [IEE96c, AiIS+21, BCAD06, LO96b, Per99, SP99].
MPI-2 [BCAD06]. MPSim [LBI+97]. MR [BEM94].
Multi [AP03, Ang17, BAD01, HLN24, Liu08, RS20, WSH+12]. multi-disciplinary [WSH+12].
multi-domain [Lin08]. multi-grid [RS20].
Multi-level [AP03, HLN24].
multi-platform [BAD01]. Multi-scale [Ang17].
Multibody [BG1*99, JBL02, LOG12].
Multicomputers [YPB01]. Multicore [HEGH14, ZBS15]. Multidimensional
[CK95b, BCP08, BL98].
multigrid [Gas97, IHHM05, MC92, FO08].
Multilevel [CSCMxx, GS98b, MG11, SLCC96, SLCC97, TCW08, TC09, A+97, ATR+12, BDMM03b, DM12, EG08, EG09a, EG09b, Erg11, EG13, GDDC08, GKD09, HS08, HYS21, HC10, LGLQ04, LHYS24, LC94, MG07, MG09, RCWY07, Sar03, WJYO06, YRGS13].
Multiple [BS93, BSS97, FLZB97a, FLZB97b, KM00, Kro02]. multiplication
[WCLD21, XWT09]. multiply [GGM93].
multipoint [PRT92]. Multipolar [LS93].
Multipole [AAB+17, And92, BSSJ23, BT03, BK15, BPT+14, Ber95, BVW96, BV96b, BS00, BL05, BFO99, Boy92b, CDM98, CDSG03, CDSG50, CL12, CD13, CC15, CSMCxx, CKE08, CS98b, CC10, CC12, CCFG23, CJ05, CFR10, CPD17, CKB11, DDSL13, DY98, EB96, EMRRV29, FDvW21, FL13, GP93, GSS98a, GSS00, GR97, GHRW98, GW98, Gue97, GA24, GD03, GA96a, GA96b, Gus98, GS98b, HOST95, HAS02, HA17, HEGH14, JMC97, JMB98, Kon93, KLZ+06, KK95, Le 97, Lea92, Lem98, LCD14, Lin95, LSCM96, LJ96b, LJ96a, LO96a, LRC93, LRW95, MI96, MBS*00, MG11, MB16, McD97, MK96, MPPA96, NT96, Ni04, NPR93, OC05, Pan95, PNBR4, PD15, RRR05, RGKM12, RW94, SBRP06, SPS96, SL91, SL97b, Sch94, Sei22, SG97, SHMC97, SMC97, STHHG93, SHT+95].

Multipole [SC94, SC95, SLC96, SLC97, Sta95a, SP01, WC94a, WC94b, WLMP99, WZC+17, WZC19, WMOZ22, YR99, Yin15, YTK14, YRB16, YB01, ZJ91, ZZ93, AGL93, AGR88a, AGR88b, AP99, AP00, Ami00, ATMK03, AYO20, AiIS+21, ATR+12, AC17, BDMM03a, BDMM03b, BSL09, BG97, BS19, BWS*95, BV96a, BSS97, BCL+92, BHE*94, BHER94, BL98, BH03, BHHG04, BOHC04, BS096a, BSSF96b, BK96, CDJ07, CX21, CC04, CC05, Car09, CGR88, CAS95, CWHG97, CDF10, CCZ97, CKW08, CCKL09, CGG99, CCG*06b, CRG01, CPP93, CS82, CWD08, CRW93, CBR20, CRF08, CB09, CK20, Duc06, Dw09, Da10, DMC20, Dar02, DM07, DM12, Dar97, Dar00a, Dar00b, DH04a, DO4b, DC07, DRS96, DKG92a, DKG92e, ERS01, ES04, EB94, Eng11, EG08, EG90a, EG09b, Erg11, EG13, EG01, FOGB96]. multipole
[FLZB97a, FLZB97b, FPG05, FD09, Fu98,
GDDC08, Gas97, GBMN06, GF06b, GF06a, Gav11, GSC01, GIS98, GY08, GR02, GG16, GROZ04, GKD09, GE13, GB11, GR88b, GS89, GG90, GH02, GORV21, GCH+18, GD05, GD06, GD08, GODZ10, GAD13, Ham11, HHKP09, HS08, Har03, HYS21, HC10, HW10, HW11, HF92, HU97, HR98, HGD11, KKLZ23, Kan15, KM00, KSS10, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KN95, KAN96, KCF05, Lab98, LM02, LDB96, LOSZ07b, LCL+12, LBGS16, LB91, LB92a, LB92b, L98, LZL04, LOG12, Lem04, LCQF18, LGQZ21, LGG+13, LX22, LC14, Liu08, Liu09, LX17, LHYS24, LY14, LCZ07, LCM07, LCHM10, LCHM13, LWM+02, MB05, MR07, MRH14, MMB06, MSS20, NW89, NT09, NT94, NN12, NH97, OSW05, OSW06a, OF07, OF08, OKS09, OCK+03, OYK+14, QC03, OMC08, OFH+08, OP07, ON09a, PRT92, PN95, PJY96, PPS94, PSS95, PS95, PA14, PTa21, QGC15, R96, RS20, RţZ90, RRRL21, RRRL22, RBS19, RTZ+96, RO04, RIA+08, RS97, RS06, RCWY07, SC+04, SF18, Sa03, Sa10, SL97a, ST06, SWW99, SM07, SHM98, SKT94, SN97, SKP95, SP97, STa95b, SB96, SK04, SU04, SZT14, SYL03, Tak14, TSIM16, TC17, TCD20, Tan03b, Tan04, TXL19, TCW08, TC09, TG08, TD09, VOD08, WJYO06, WL96, WYW05, WY05, WY07b, WY07a, WLL+07, WXQ08, WZ+20, WZC21a, WZC21b, WLB22, WHG94, WJHG96a, WHG96a, WJHG96b, WHG96b, WVK21, XYW+08, XJM08, YS18, YB21, YRG13, hYtWbWL08, YR98, YB97.

multipole

[MB05, MR07, MRH14, MMB06, MSS20, NW89, NT09, NT94, NN12, NH97, OSW05, OSW06a, OF07, OF08, OKS09, OCK+03, OYK+14, QC03, OMC08, OFH+08, OP07, ON09a, PRT92, PN95, PJY96, PPS94, PSS95, PS95, PA14, PTa21, QGC15, R96, RS20, RţZ90, RRRL21, RRRL22, RBS19, RTZ+96, RO04, RIA+08, RS97, RS06, RCWY07, SC+04, SF18, Sa03, Sa10, SL97a, ST06, SWW99, SM07, SHM98, SKT94, SN97, SKP95, SP97, STa95b, SB96, SK04, SU04, SZT14, SYL03, Tak14, TSIM16, TC17, TCD20, Tan03b, Tan04, TXL19, TCW08, TC09, TG08, TD09, VOD08, WJYO06, WL96, WYW05, WY05, WY07b, WY07a, WLL+07, WXQ08, WZ+20, WZC21a, WZC21b, WLB22, WHG94, WJHG96a, WHG96a, WJHG96b, WHG96b, WVK21, XYW+08, XJM08, YS18, YB21, YRG13, hYtWbWL08, YR98, YB97].

multiwavelet [FBHJ04].

multipole-accelerated [BHE+94, BHER94, ZD05].

Multipole-Based [GSS98a, GSS00, YB01, LDB96].

multipole-to-local [CFR08, YS18].

Multipoles [And92, AC94, GSS98b, HLL08, HLD08, Mak99, OLL03, OLL04].

Multiprocessor [SHG95, LMCPP92, Sin92, Ske89].

Multiprocessors [BB87, HS95].

multiquadrics [CBN02].

Multiresolution [NKV94].

Multiscale [ERT12, TW03].

Multithreaded [ZBS15].

Multiwavelet [FBHJ04].

CG97, CHJN03, Dar00b, GCG^+99, Gre90b, GM94, GH98, HLN24, KSC99, Kro01, OR89, PRT92, RSS96, TYN012, Wam99, ERT12.

parabolic [JH08]. paradigms [MMC99]. Parallel [AAL^+01, Ano94b, ADB94, ADBGP99, B^+95, BADG00, BPT^+14, Bha97, BS97, BP88, CDCD97, GKS94, GCH^+18, HAS02, HTA^+97, HP95, HJ96, IFM09, IHM05, JBL02, JKCGJ08, Liu94, LO96a, LO96b, LCP93, MFKN03, Mak04, Mat95, MBS15, NPR93, OKF14, Per99, Pri94, SWW94, SP99, Sin95, SHHG93, Ten98, TDBEE11, WS93, WMOZ22, WSW^+95, Xu95, YB01, ZJ91, Bar86, BADP96, BAA^+97, BAD01, BCAD06, BJWS96, BCL^+92, BDS07, BCOY94, Car07, CRG01, CWD08, CKB11, Dub96, DKPH04, Erg11, EG13, GLS06, GKS98, GG90, GG90, Hav03, HGS90, K^+96, KK95, KP05b, LCL^+12, LB92b, L998, LBI^+97, LC14, Mak93, MHI07, MG05, NKV94, OCK^+03, RC97, SRK^+12, Sta95b, TMES94, WLL^+07, WCLD21, WS95b, WS95a, SWL95, WSH^+95, YF96, YBZL03, YBNY13, Mak93, Rod89, TL14, TDBEE11].

Particle [BOX00, DYP93, Gre87, MFK03, Pri04, VTC91, AGR88a, CGR88, CC13, CB09, CKB11, DKPH04, ECL02, FMI^+93, GY08, GR87, Gre88, KM00, KK16, Kro99, KP05a, LGQ21, LR^+99, PJY95, WY05, WS95b, YGRS01]. particle-in-cell [CC13]. Particle-Mesh [BOX00, DKPH04]. particle-particle [PJY95].

Particle-reinforced [WY05]. Particles [BP88, HE88, BP93, CPP93, DK92a, GDK89, Ich02, JDR^+18, Kon93, LDB96, YRGS13]. partition [AY02]. Partitioning [BB87, Ten98, EG09b, MG05]. passing [KP08]. PBBFMM3D [WCLD21]. PDEs [A^+97]. PEACH2 [HL15]. PEC
TWYC06, WJYO06, WY07b, WSWL95, XWY+08, XJM08, iYNK02, ZY05.

Proceedings
[ACM96, ACM97, AG88, ERT12, Hol12, HM86, IEE02, Kar95, LCK11, Rod89, Ano92, Ano95a, IEE92a, IEE98, KK88, PA02, Wel91, B+95, BGFW90, HB93, HTA+97, IEE90, IEE92b, IEE93, IEE94b, IEE94c, IEE96b].

PROGRAPE [HFKM98]. PROGRAPE-1 [HFKM98]. Progress [Ano95b, Ano96, Ano97a]. Prolate [KLZ+06]. Propagation [Ano97b, IEE94a, IEE95, IEE96a, IEE97, WC94a, WC94b, CHJN03, GLS06].

propagator [ZB95]. properties [WY05, WY07a]. Protein [NT96, Kan15, KSS10, KS11, NT94]. protein-protein [KSS10]. proteins [ZB95].

protonatable [Kan15]. Provable [Ten98]. Proxy [HXC21]. pseudo [CKS91, OFH+08]. pseudo-pairwise [CKS91]. pseudo-spectral [OFH+08]. pseudoparticle [Mak99]. Pseudospectral [Boy92b, KLZ+06]. Purpose [Ano94a, BGGT90, CKE08, FM96, FHM99, KFMT00, MTE94, MT98, MFKN03, EIM+92, EFT+93, FMI+93, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TME94].

Quadrature [WK18]. quadratures [GORV21]. Quantum [SPS96, KLM+09, SSF96]. quartic [WHG96b]. quasars [SWJ+05]. Queen [IEE97].

Revisiting [KS04]. Rigid [BT95, JBL02, CA09, HNO06, ZBG15]. rigid-inclusion [HNO06]. rigorous
[SKPP95]. Ring [BHGS90]. Rockefeller [IEE90]. Rokhlin [HM95, HS08, SB98].
Rome [MBA97]. Root [GGM01]. Rotating [WHG96b]. Rotation [GD03, Dac06].
Rotne [GCH'18, LGG'13]. Rough [JMC97, JMBC98, ERS801, JBMC98].
Round [DH86]. Round-off [DH86].
Runtime [AAB+17].

SAI [MG09]. Salt [Hol12]. sampling [LX17]. San [ACM97, B'95, Kar95]. Santa [Feb97].
Savart [Ros06]. SC'11 [LCK11].
Scalability [RS97]. Scalable [Ano94b, BHE'94, BHER94, GKS94, GKS98, HAS02, HDL11, IEE94b, MSV92, OCK'93, OKF14, YB12]. scalar [GD07b, KSC99]. Scale [BADG00, OKF14, SRPD06, WLMP99, ZQSW94]. Ang17, ATR'12, EG08, Erg11, EG13, FLZB97a, FLZB97b, GF06b, GF06a, HMM19, INS'20, KP08, LCFQ18, LQZ221, LCZ07, LWM'02, PN95, WY05, WY07a, WSH'12, WXY'08].
Scaling [CDCD97, FRE'08, YBYN12].
Goe99, KLM'09, SDF96, WJHG96b].
Scattered [HOST95].
Scattering [BVW96, EMRV92, GA96a, GA96b, HAS02, JMC97, JMBC98, L06b, L06a, SHMC97, SMC97, SL07, ZCG00, AP99, AP00, AD05, BN07, BGGC06, CC04, CC05, Car09, CWM08, DHO4a, ERS801, EG08, EG09a, Fu98, G08, G89, GD05, HC10, HW10, JBMC98, Lab98, LHYS24, LC94, MG07, Rah96, RTZ'96, Rok90, SM97, SM98, TCM08, TC09, WJYO06]. scheduling [YF08]. scheme [NMDK99, NHM06, WLL'07].
Schrödinger [ZKL'07]. Schur [MG11].
Schwarz [BT03]. Sci [BEM94]. Science [FHM99, IEE92a]. sciences [SM05].
Scientific [B'95, HTA'97, MT98, MSV92, CGL03, LKM02, MHI07, PD89, Rod89].
Screened [BF099, GH02, HZ09, ZHPS10].
Seattle [IEE94a, LCK11]. Second [IEE96c, AHL93, BSSF96b, KS11, LX22, Tau04].
Seminar [RS96]. semiseparable [CG04]. sensitivity [DH86]. Sensor [Ano97b].
separated [Eng11]. September [Ano95a].
Sequential [WSW+95]. series [CC04, CC05, ZHPS11]. set [TYON12, TYNO12].
Sets [CK95b, PD15, Eng11]. Seventh [B'95].
Sham [BSSF96b]. shape [LM02]. shaped [YRGS13]. shared [HS95, RC97, Ske89].
shared-memory [Ske89]. sharing [BADP96]. shells [CA09]. short [BG97, BP93]. short-range [BP93]. shunt [SGD'04].
SIAM [B'95, BEM94, HTA'97, RSS96, Rod89].
Sides [BT03]. signature [Ano97b].
Siloxane [MPPA96]. Siloxane-Based [MPPA96]. SIMD [TYON12, TYNO12].
simple [AB95, PJY95]. Simulated [MPZ21]. Simulating [ZBG15, ZGI'10, V21G09, ZB95].
Simulation [AT87, And99, BADG00, CJK91, FM96, HE88, KFM99, LCE'06, MI96, Ten98, WPM'02, AGR88a, App85, BCM02, BAA'97, BCL'92, DRS96, FLZB97a, FLZB97b, FMI'93, FM95, GF06b, GZK07, HN10, HYS21, HGS90, HMM19, KMT94, L02, LWM'02, M95, MKF00, MKFD02, MD12, OUK'91, OMC08, PG94, SWW99, Spr05, TYON12, TYNO12, WY05, Win95, YB07, YNS'09, YBEN13]. Simulations [Aar85, AAL'01, Ano94b, ADBGP99, Bag02, BHGS90, BHH88, GKS94, HP95, IFM09, KFMT00, LRJ'99, MT98, MFKN03, MPPA96, OKF14, SRPD06, SWJ'05, WLMP99, WN14, YF05, AGR88a, ATMK03, AB95, BAL91, BDS07, BCOY93, BCOY94, CL91, CCR88, CWD08, CB09, DKG92a,
23

EIM+92, EFT+93, EGHT97, ESRS01, FOCB96, FRE+08, GF06a, GKS98, GR87, GDR89, GCH+18, HFKM98, HNY+09, KM00, K+96, Kuo99, KP08, LBC91, LKM02, MT95, MG05, MCM+02, PA14, Sal96, Sha06, STK93, STK94, TMES94, VCM00, Wam99, WSH+12, Xue98.
simulator [BSL11]. Sinc [Boy92a]. Single [CJ05, GP08]. Singular [FBHJ04, QCG15, RTA+08]. singularities [Pel98]. sized [Sat10]. sizes [LCZ07]. Skeletons [SW94]. Slater [Gus98, ZZ93]. Slater-Type [Gus98, ZZ93]. slightly [ZD05]. smooth [RKSSL21]. SNE [MPZ21]. Society [IEE95, IEE96a, IEE97]. Software [Kan15, TDBEE11, SF18, TYNO12]. solid [Bat03, PJY96, W96, hYtWbWL08]. solids [WYW05]. Solution [ATR+12, GA96a, LJ96b, MS97, SC94, SC95, AHP93, AP03, AD05, Atk97, BH03, BHGR04, BHGR05, CJL+97, EG08, EG09a, FLZB97a, FLZB97b, GDDC08, Gas97, GLS90, Gre90b, HW10, PN95, Rok85, Rok90, Sel22, WFC08, WSWL95, YSM05, ZC00]. Solutions [Erg11, HC10, KS11]. solvation [FGM11]. Solved [MG11]. solved [LC08]. some [Sha06]. sound [CAJ09]. Source [SB98, CKB11]. Space [BT95, WMOZ22, YF98, BSL90, BKM90, CR14, GSC01, GG16, HM95, HS95, KKL23, SRK+12]. space-charge [KKL23]. Space-Time [WMOZ22, SRK+12]. Space/time [YF98]. Space/time-efficient [YF98]. Spaces [BF78]. Spanning [BF78]. Sparse [GOS99, LLD04, Rok98, Tau03a, LOSZ07a, MG09, RŠŽ09, TW03]. sparse-approximate-inverse [MG09]. Spatial [BTA95, BLA05, CVHS94, ZT07]. Special [Ano94a, BGGT90, CKE08, FM96, FHM99, KFMT00, MTES94, MT98, MFKN03, EIM+92, EFT+93, FM1+92, FM95, HFKM98, KMT94, MIES90, MT95, OMR+94, OME+92, SCM+90, TMES94, MC92]. Special-Purpose [Ano94a, CKE08, FM96, FHM99, KFMT00, MTES94, MT98, MFKN03, FM95, HFKM98, KMT94, MIES90, MT95, OMR+94, OME+92, SCM+90, TMES94]. spectra [ES04]. Spectral [RCWY07, OFH+08, PN95, TXL19]. Speeding [CK20, AO10]. sphere [BP03, CDJ07, DC07, Lin95]. spheres [GD05]. spherical [GODZ10, KSC99, PYJ96, ST02, YR98]. Spline [CS98b, DK92b]. Splines [CS98a, BL97, BCR01, BPT07]. Square [GGM01]. Stability [Nil04, Sud04]. stabilization [CX21]. stable [CX21, DH04b]. standard [BCP08]. static [VOD08]. Station [ERT12]. statistical [Kan15]. Steepest [JMC97, JMB98, ESRS01]. steepest-descent [ESRS01]. Stellar [HM86]. Step [BS93, FLZB97a, FLZB97b, KM00, RCWY07]. stepping [BSS97]. stochastic [FST05, Sal96]. Stokes [GKM96, GKO4, Sel22, Tau03a, TG08, WLL+07]. Stokesian [Ich02]. Storage [Hol12, LCK11]. strategies [CX21, WLB22]. Strategy [BB87, BCOY93, EG09b, HLN24]. stratified [ZC+98]. Stress [BS19, GG16]. Strips [GA96a]. strong [Kan15]. Structural [BP4K85]. Structure [BADG00, NT96, ZQSW94, AYO20, GF06b, GF06a, Goe99, Kat89, KS98a, NT94]. Structures [And99, CSMPxx, GGM01, MI96, RW94, WPM+02, Car09, CWK08, EG13, LCZ07, WS92, ZC+98, ZY05].
studies [RTZ+96]. Study [BGLM05, HM86, Pri94, Dar97]. studying [Kro01]. sub [LCZ07]. sub-entire-domain [LCZ07]. Subdivision [BT95]. Summation [CWA14, LS93, Ami00, BAL91, IHHM05, SF18, ZB14]. Summer [RSS96]. Sums [DNS90, BG94, DYP93, KS04, RO04, SL97b]. Sunnyvale [Wel91]. Supercomputers [FQG+92, HM86, BAD01]. Supercomputing [ACM96, Ano92, IEE90, IEE92b, IEE93, IEE94c, Kar95, Ano92, KK88]. Surface [MG11, CCZ97, ESR501, ZBG15]. Surfaces [CSMCxx, HAS02, JMC97, JMBM98, GH08, JBM98, RKRR21]. Surfaces-Wire [CSMCxx]. suspended [VGBZ09]. SW26010 [HYS21, LHYS24]. switch [SGD+04]. Switching [HL15]. Symbolic [Pie93, CB20]. symmetric [CG04, DMC20, OSW06a]. Symposium [Ano97b, HB93, IEE92a, IEE95, IEE96a, IEE96b, IEE97, PA02, K+96, Mak93]. Syracuse [IEE96b]. System [BGI+99, RGKM12, BAAD+97, LGQQ21, TMES94, ZB95, HTG02]. Systems [AAB+17, CPD17, GP93, Gre87, HEGH14, MT98, VTC91, YF05, AB05, BS19, BWS+95, GGGM00, CL91, CDF10, CFH89, DYP93, DKG92c, EIM+92, EFT+93, Gre88, Ich92, KS98a, KS98b, KN95, LM02, LBG16, LB92a, LBI+97, LCM07, LCM10, LCHM13, PGB05, PG96b, TYON12, YB12, YAO20, ZB95]. Systolic [BHGS90, DHM03].

T3D [BAAD+97]. tails [ADG96]. tangential [GH08]. Target [SB98, GSC01]. targets [Ano97b]. Task [AAB+17]. Task-Based [AAB+17]. Taylor [WZC+20]. tearing [LS05, LOSZ07a, LOSZ07b, OSW06b]. Technique [WZC+17, Gas97, KLM+09]. Techniques [CDGS03, CDGS05, PRT92, SWW99]. Telescoping [LRW95]. Template [BGLM05]. Tennessee [IEE94b]. tensor [BS19, CB14, CASA5, GCH+18, HC08, HLL+18, LGG+13, YAO18]. Tensors [PNB94]. Terabytes [IEE02]. teraFLOPS [TMES94]. Term [DNS90]. terms [JP89]. test [AB95]. Tflops [Ano94a, HNY+99, HN10, MTE594, MFK00, MKF01, MFK02]. theorem [KSC99, Lab98]. theorems [HC08]. Theoretical [CC15]. theory [AP99, BS19, BH03, CK00, GD07b, K+96, LBGS16, MESS20, PEL98, ROK85, ROK90, Tau03a]. thermodynamics [Kan15]. Thin [ZCL+98, CAJ09, ZY05]. Thin-stratified [ZCL+98]. Third [KK88, Rod89, Bha97]. Thousands [BT03]. Three [CS98a, JMC98, LO96a, Nil04, Pie93, Pri94, SL91, SC95, WSW+95, YB97, BSL09, BPT07, CWW08, CGR99, CCG+06, ESR501, ES04, ESM98, GR88a, GR97, GH02, GD06, GD09, LB92b, LCQF18, LGQQ21, MCBB07, OLLL03, PSS95, SL97a, Tak14, TSM16, TC09, TG08, WSWL95, YBZ04, YAO20]. Three-Body [Pie93]. Three-Dimensional [JMC98, Pri94, WSW+95, YB97, BSL09, CWW08, ESR501, ES04, ESM98, LCQF18, LGQQ21, OLLL03, PSS95, Tak14, TC09, TG08, WSWL95, YAO20]. tiers [WHG96a]. Time [BS93, MD98, WHG96a, OFH+08, RC97, SRK+12, VW02, Xue98]. Time-dependent [MD98, MSL20]. time-domain [VW02]. time-efficient [YF98]. time-harmonic [GD07b]. time-step [KM00]. Top [Cip00, DS00, MBS+00]. topological [BN07]. toroidal [CKS91]. Toronto [HB93]. Touchstone [FQG+92]. TPM [Xu95]. traces [HLL+18]. trained [HHKP09]. transfer [GODZ10, KMC09]. Transform [EB96, EB94, GS91, HLL08, HW11, LHL08, OLLL03, OLLL04, Sar03, ST02, SB04, Boy92b, EMT99, GS98a]. Transformation [DNS90]. transforms [DR95]. transient
Translation [GD03, ESM98, GD07b, Rah96, Rok98, TSIM16].
tuning [MKF01, NMM06]. turbulence [HNY+09, YNS+09, YBNY13].
Turkey [Ano97b]. Two [LS93, McK96, Pan95, Pie93, RRR05, BL97, Car06, CHL06, CCG+06a, CC10, CC12, ECL02, EG01, GH98, JKCJ08, Kro01, NT09, PSPS95, RRR03, Rok90, Rok98, RCW07, Sel22, SKPP95, WY07b, XJM08, YB04, YAO20].
Two-Center [Pan95]. two-component [JKCGJ08]. Two-Dimensional [LS93, BL97, CC10, CC12, ECL02, GH98, Kro01, NT09, PSPS95, RRR03, WY07b, XJM08].
two-dimensions [Sel22]. two-grid [Car06].
two-step [RCW07]. Type [Gus98, ZZ93].

Unified [JBL02]. Uniform [BB87, LX23]. uniqueness [YSM05]. unit [DKG92c, KS98b].
University [BADG00, ZGI+10, BAD01]. Transputing [Wel91]. treatment [HS08].
treatment [KS98a]. Tree [And99, ADB94, ADBGP99, BH89, Bar90, BADG00, BOX00, BH88, CDM98, CWA14, JdR+18, SWW94, WPM+02, WS93, WN14, WSW+95, AYO20, BADP96, BAAD+97, BAD01, BCA06, BJWS96, Dub96, GY08, JP89, PD89, PG94, PG96a, Pud16, Wam90, WS92, VWK21, WSWL95, WH+12, Xue98, JKCJ08]. Tree-Code [CDM98]. Treecode [KFM99, Mak04, SW94, DKPH04, WSB+97]. Treecodes [GSS98a, GSS00]. TreePM [Bag02, IFM09, YF05]. Trees [BF78]. trenches [TCW08]. Trends [MBS15, Car09, CGL03, Les96]. triangulated [RS94]. Truly [APG94, Ano94c]. truncated [TCW08]. truncating [BPK85]. Truncation [OC03, AP00, AB95, CC04, CC05]. tube [Lin95]. tumors [ES04], tuned [YB12].
tuning [MKF01, NMM06]. turbulence [HNY+09, YNS+09, YBNY13].
Turkey [Ano97b]. Two [LS93, McK96, Pan95, Pie93, RRR05, BL97, Car06, CHL06, CCG+06a, CC10, CC12, ECL02, EG01, GH98, JKCJ08, Kro01, NT09, PSPS95, RRR03, Rok90, Rok98, RCW07, Sel22, SKPP95, WY07b, XJM08, YB04, YAO20].
Two-Center [Pan95]. two-component [JKCGJ08]. Two-Dimensional [LS93, BL97, CC10, CC12, ECL02, GH98, Kro01, NT09, PSPS95, RRR03, WY07b, XJM08].
two-dimensions [Sel22]. two-grid [Car06].
two-step [RCW07]. Type [Gus98, ZZ93].

vacancies [Kon93]. value [Lin95, ON08a, ON09b, RTA+08]. values [LX17].
variable [Tao03a, Tao04]. variables [JP09, Sel22]. Variants [YTK14, BHER94].
Variational [DM12, DM07]. Vector [CS98a, TON12, HCO8, WCLD21, XWT09]. Vectorized [Bor86, GDK89, BP93].
Velocities [ZQS94]. versatile [WS95a]. Version [GS98a, NT96, SP01, CX21, GG89, GG90, GR97, GH02, LCM07].
very [BSSF96a, BSSF96b, LBI+97, PSPS94]. vesicles [VGB09]. via [AGR88b, GB11, Gue97, GD07a, GODZ10, WJGHG06].
videoscopy [Ano97b]. virial [KS11].
virtual [XJM08]. viscous [BL05, VGB09]. Vlasov [VTG91]. Vol
Bat03]. Volterra [ZX19]. Volume [MB16, NT09]. Volumetric
ZKL+07, HW10]. Vortex
REFERENCES

[BCH93, CK00, DD95, RRR05, WSW+95, aYZ97, BLA05, CWD08, ECL02, HM95, Ros06, RS94, WSWL95, AG88].

vortex-in-cell [CWD08], vorticle [Ang17], voxel [Ham11], VRP [YRB16], VRP-GMRES [YRB16].

wave [BSL09, Bes00, BGGC06, CCZ97, CCKL09, CHJN03, CRV93, ESR01, ESM98, GLS06, LC94, MD98, Tak14, TCW08, TC09].

Wavelet [HKS05, BP03, RŚŽ09, XWT09, XTH09].

wavelet-BEM [XTH09].

wavelets [A+97, CM06, Tau03a]. WAVES [CHJN03].

weak [DM07, DM12]. well [Eng11].

well-separated [Eng11]. wFMM [CC12].

Wheeler [JdR+18]. Who [Wil00]. Wide [MPZ21, KMC09]. Wide-Warp [MPZ21].

wideband [CC15, CCG+06a, CCG+06b, NT09, CC10, CC12].

Wigner [Dac06].

WINE [FMI+93]. WINE-1 [FMI+93].

Winter [ERT12]. Wire [CSMCxx].

without [ADG96, And92, HP95, Mak99, Pe98].

Wood [ON09a]. Worcester [BR93]. work [BAD96, DTG96, Rei99]. work- [BAD96].

Workshop [ERT12, HM86, AG88].

workstations [LJ98]. World [Wei91].

WOTUG [Wei91]. Would [Wil00].

X [Ful97]. X10 [MRH14]. x86 [TYON12, TYNO12]. x86_64 [NMH06]. XV [BR93]. XXVI [Bre04].

Yamakawa [GCH+18, LGG+13]. York [IEE90, IEE90, IEE96b]. Yukawa [BF099, HJZ09, ZHPS10].

zero [GG16, SF18, ZC00]. zero-multipole [SF18]. Zonal [BDS07].

References

Ainsworth:1997:WMM

Agullo:2017:BGB

Amor:2001:DPF

Aarseth:1985:MTS

Auffinger:1995:STE

Antoine:2004:APE

Angyan:1994:CAM

Askham:2017:AFM

ACM:1996:SCP

ACM:1997:SHP

ACM:1999:SOC

ACM:2003:SII

Antoine:2005:AIE

Antonuccio-Delogu:1994:PTB

Antonuccio-Delogu:1999:PTA

REFERENCES

Adamson:1996:CCT

Anandakrishnan:2011:GBA

Anderson:1988:VMP

Aluru:1998:DIH

Ambrosiano:1988:FMM

Ambrosiano:1988:GPS
Allen:1993:GIM

Andoh:2021:AMM

Aluru:1994:DIH

Aluru:1996:GBA

Amisaki:2000:PEE

Anderson:1992:IFM

Anderson:1999:TDS

<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
<th>Journal/Bibliographic Details</th>
</tr>
</thead>
</table>
REFERENCES

[AP99] S. Amini and A. T. J. Profit. Analysis of a diagonal form of

REFERENCES

Becciani:1996:WDS

Becciani:2000:MPT

Becciani:2001:YRF
Becciani:2001:YRF

Bagla:2002:TCC

Belhadj:1991:MDS

Barnes:1986:USS
REFERENCES

REFERENCES

Brown:1993:DDP

Brown:1994:DDP

Beylkin:2008:FAA

Beatson:2001:FER

Bachelot:2003:CFM

Bachelot:2003:CMF
REFERENCES

Bow[ers:2007:ZMP]

Bebendorf:2006:AIP

Brunet:1994:EHA

Berman:1995:GMC

Bespalov:2000:URG

Bentley:1978:FAC

Boschitsch:1999:FAM

Berman:1994:RME

Beatson:1997:SCF

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. In Ainsworth et al. [A+97], pages 1–37. ISBN 0-19-850190-0. LCCN QA374 .W38 1997. The Seventh EPSRC Numerical Analysis Summer School was held at the University of Leicester during the summer of 1996, from the 8th to the 19th of July.

Bunse-Gerstner:2006:PGC

Bakker:1990:SPC

Baldini:1999:HPC

Bischof:2005:DPC

REFERENCES

[BH86] Josh E. Barnes and Piet Hut. A hierarchical $O(N \log N)$ force-calculation algorithm. Nature, 324(6270):446-449, December 4, 1986. CODEN NATUAS. ISSN 0028-0836 (print), 1476-4687 (electronic). This paper appears to be the origin of fast multipole algorithms; its $O(N \log N)$ complexity was later improved to $O(N)$ [GR87]. See also [App85], which might predate this work.

Boehncke:1990:MDS

Buchau:2004:FEB

Bhanot:1996:HDP

Burkholder:1996:HFA
REFERENCES

[Beckmann:2015:PNL]

[Beylkin:2009:FCF]

[Beatson:1997:FER]

[Bokanowski:1998:FMM]
Olivier Bokanowski and Mohammed Lemou. Fast multipole method for multidi-dimensional integrals. Comptes...

[Bokanowski:2005:FMM]

[Barba:2005:AVV]

[Brunet:1999:OHD]
REFERENCES

REFERENCES

Bode:2000:TPM

Boyd:1992:FA

Boyd:1992:MEP

Boyer:1988:MDC

Buchholtz:1993:VAM

Bohme:2003:FAF

Brooks:1985:SEE

Beatson:2007:FEP

Benson:2014:PDF

Brebbia:1993:BEX

Biesiadecki:1993:DMT

Blackston:1997:HPE

Board:2000:FMA

Becker:2019:DFT

Bapat:2009:AFM

Bannerman:2011:DFG

Bishop:1997:DMT

Buran- t:1996:AEG

Buran- t:1996:KSA

J. C. Burant, M. C. Strain, G. E. Scuseria, and M. J. Frisch. Kohn–Sham analytic energy second derivatives
REFERENCES

REFERENCES

[Bindiganavale:1996:GUFa]

[Bindiganavale:1996:DNR]

[Bharadwaj:1995:FMB]

[Chadwick:2009:HSP]

[BV96b]

[BVW96]

[BWS+95]
Cruz:2009:CAF

Chaillat:2014:NFM

Coles:2020:OSA

Cherrie:2002:FER

Carayol:2004:EEF

Carayol:2005:EEF

Cho:2010:WFM
Min Hyung Cho and Wei Cai. A Wideband Fast Multipole Method for the two-

REFERENCES

Chen:2009:ADI

Chen:2017:FMM

Cecka:2013:FMB

Crowley:1997:AIS

Chartier:2010:RFM

Carpentieri:2003:CFM

B. Carpentieri, I. S. Duff, L. Giraud, and G. Sylvand. Combining fast mul-

Carpentieri:2005:CFM

Cai:2007:EFM

Capuzzo-Dolcetta:1998:CBF

Cichocki:1989:EIP

Coulaud:2008:HPB

Coulaud:2010:HPB

O. Coulaud, P. Fortin, and J. Roman. High perfor-

Cheng:1997:NEE

[CG97]

Chandrasekaran:2004:DCA

[CG04]

Chen:2003:CTS

[CGL03]

Carrier:1988:FAM

[CGR88]

Cheng:1999:FAM

[CGR99]

Cohen:2003:MNA

[CHJN03]

Cheng:2006:AFS

Hongwei Cheng, Jingfang Huang, and Terry Jo Leiterman. An adaptive fast solver

Cipra:2000:BCE

Chowdhury:2005:SLM

Chew:1997:FSM

Callahan:1995:ADC

Callahan:1995:DMP

Cottet:2000:VMT

Christopher Cecka and Pierre-David Létourneau. Fast multipole method using the Cauchy integral formula. In Engquist et al. [ERT12], pages 127–144. CODEN LNCSA6. ISBN 3-642-21942-X (print), 3-642-21943-8 (e-

Chen:1998:FEV
REFERENCES

REFERENCES

Challacombe:1997:PBC

Chen:2008:FFM

Cai:2021:SMV

Dachsel:2006:FAD

Dachsel:2009:ECF

Dachsel:2010:CAE

Darve:1997:FMM
References

REFERENCES

Demmel:1995:FHM

Demmel:1996:FHMa

Demmel:1996:FHMb

Dutt:1996:FAP

Dejonge:1986:USS

Darve:2004:EFM

Darve:2004:FMM

Dorband:2003:SHS

[DHM03] Ernst Nils Dorband, Marc Hemsendorf, and David Mer-

Debolt:1993:AMP

Ding:1992:ALSb

Ding:1992:OSC

Ding:1992:RCM

Dubinski:2004:GPH

Davis:1990:CEF

REFERENCES

ISSN 0192-8651 (print), 1096-987X (electronic).

[Darrigrand:2007:CUW]

[Darrigrand:2012:CUW]

[Dansou:2020:OFM]

[Deem:1990:TCS]

[Dutt:1995:FFT]

[Dikaiakos:1996:FAS]

[Dongarra:2000:GEI]
Jack Dongarra and Francis Sullivan. Guest Editors’ introduction: The top 10 al-
REFERENCES

Jeff D. Eldredge, Tim Colonius, and Anthony Leonard. A vortex particle method for two-dimensional compressible flow. *Journal of Compu-
REFERENCES

REFERENCES

1, 2013. CODEN JOAOD6. ISSN 1520-8532.

Eichinger:1997:FAR

Ebisuzaki:1992:GSP

Engheta:1992:FMM

Edelman:1999:FFF

Engblom:2011:WSS

Ergul:2011:SLS

Engquist:2012:NAM

Björn Engquist, Olof Runborg, and Yen-Hsi R. Tsai,

[El-Shenawee:2004:RSM]

[Klaas Esselink:1995:CAL]

[FBHJ04]

Fong:2009:BBF

Fitzpatrick:2021:CME

Franklin:1996:GMI

Fedichev:2011:CEM

Fukushige:1999:HPS

Fortin:2013:ADD

REFERENCES

Fischer:2005:AIP

Fullagar:1992:BMM

Frauenfelder:2005:FEE

Fujiwara:1998:FMM

Ful97

Gurel:1996:ESS

REFERENCES

(7) Gumerov and Ramani Duraiswami. Fast radial basis function interpolation via

Gumerov:2007:SPF

Gumerov:2008:FMM

Gumerov:2009:BFM

Garcia:2008:ISE

Grest:1989:VLC

Goude:2013:AFM

Gaul:2006:LSSb

L. Gaul and M. Fischer.

REFERENCES

REFERENCES

REFERENCES

Greengard:1990:PF

Greengard:1990:NSB

Greengard:1994:FAC

Ginste:2004:FMM

Greengard:1991:FGT

Greengard:1998:NVF

Gyure:1998:PMH

REFERENCES

Geng:2001:FMM

Graman:1998:IEB

Graman:1998:PMD

Grama:2000:IEB

Guerel:1997:FRC

Guseinov:1998:AEM

Greengard:1998:GEI

Leslie Greengard and Stephen Wandzura. Guest Editor’s introduction: Fast multipole

REFERENCES

He:2008:DVT

Hesford:2010:FIS

Higham:2015:PCA

Hockney:1988:CSU

Holm:2014:DAA

Hinsen:1992:RDE

Hamada:1998:PPS

REFERENCES

ver Spring, MD 20910, USA, 1998.

Hu:2011:SFM

Heller:1990:MDS

Handley:2009:OCF

Hu:2021:FMB

Huang:2019:ALS

Huang:2009:FYA
REFERENCES

Hendrickson:1995:PMB

Hrycak:1998:IFM

Holt:1995:HBM

Hanninen:2008:EER

Hanrahan:1991:RHR

Heath:1997:PES
REFERENCES

REFERENCES

IEEE:1990:PSN

IEEE:1992:PSM

IEEE:1992:ASF

IEEE:1992:PSM

IEEE:1992:PSM

IEEE:1992:PSM

REFERENCES

IEEE:1993:PSP

IEEE:1994:IAP

IEEE:1994:PSH

IEEE:1994:PSW

IEEE:1995:IAP

IEEE:1996:IAP

IEEE:1996:PFI

IEEE:1997:IAP

IEEE:1998:FIC

REFERENCES

Yoshida:2002:NFM

Jaramillo-Botero:2002:UFM

Jandhyala:1998:FAA

Jiang:2004:NCE

Jansen:2018:TCC

Jia:2008:KDC

REFERENCES

Kutteh:1996:RCG

Kantardjiev:2015:SNU

Karin:1995:PAI

Katzenelson:1989:CSB

Kybic:2005:FMA

Kawai:1999:MAB

[KFM99] Atsushi Kawai, Toshiyuki Fukushige, and Junichiro Makino. 7.3/Mflops astrophysical N-body simulation with treecode on GRAPE-5. In ACM [ACM99], page ???
Kawai:2000:GSP

Kartashev:1988:SPI

Krishnan:1995:PAF

Kozynchenko:2016:IAE

Kohnke:2021:CFM

Kan:2023:GPI

[KKLZ23] Yi-Kai Kan, Franz X. Kärtner, Sabine Le Borne, and Jens-Peter M. Zemke. A GPU-parallelized interpolation-based fast multipole method for the relativistic space-charge field calculation. *Com-
Korcho wiec:2009:ECT

Kovvali:2006:RPP

Kawata:2000:CEC

Kreuzer:2009:FMB

Kokubo:1994:HSP

Kutteh:1995:ICM

Ramzi Kutteh and John B. Nicholas. Implementing the
REFERENCES

Kondratyev:1993:MME

Kurzak:2005:COF

Kurzak:2005:MPI

Kropinski:1999:IEM

Kropinski:2001:ENM

Kropinski:2002:NMM
M. C. A. Kropinski. Numerical methods for multiple

[BHS2012]

[BNS2015]

[BNS2016]

[BNS2017]

[BNS2018]

[BNS2019]

[BNS2020]

[BNS2021]

[BNS2022]

[BNS2023]

[BNS2024]

[BNS2025]

[BNS2026]

[BNS2027]

[BNS2028]

[BNS2029]

[BNS2030]

[BNS2031]

[BNS2032]

[BNS2033]

[BNS2034]

[BNS2035]

[BNS2036]

[BNS2037]

[BNS2038]

[BNS2039]

[BNS2040]

[BNS2041]

[BNS2042]

[BNS2043]

[BNS2044]

[BNS2045]

[BNS2046]

[BNS2047]

[BNS2048]

[BNS2049]

[BNS2050]

[BNS2051]

[BNS2052]

[BNS2053]

[BNS2054]

[BNS2055]

[BNS2056]

[BNS2057]

[BNS2058]

[BNS2059]

[BNS2060]

[BNS2061]

[BNS2062]

[BNS2063]

[BNS2064]

[BNS2065]

[BNS2066]

[BNS2067]

[BNS2068]

[BNS2069]

[BNS2070]

[BNS2071]

[BNS2072]

[BNS2073]

[BNS2074]

[BNS2075]

[BNS2076]

[BNS2077]

[BNS2078]

[BNS2079]

[BNS2080]

[BNS2081]

[BNS2082]

[BNS2083]

[BNS2084]

[BNS2085]

[BNS2086]

[BNS2087]

[BNS2088]

[BNS2089]

[BNS2090]

[BNS2091]

[BNS2092]

[BNS2093]

[BNS2094]

[BNS2095]

[BNS2096]

[BNS2097]

[BNS2098]

[BNS2099]

[BNS2100]

[BNS2101]

[BNS2102]

[BNS2103]

[BNS2104]

[BNS2105]

[BNS2106]

[BNS2107]

[BNS2108]

[BNS2109]

[BNS2110]

[BNS2111]

[BNS2112]

[BNS2113]

[BNS2114]

[BNS2115]

[BNS2116]

[BNS2117]

[BNS2118]

[BNS2119]

[BNS2120]

[BNS2121]

[BNS2122]

[BNS2123]

[BNS2124]

[BNS2125]

[BNS2126]

[BNS2127]

[BNS2128]

[BNS2129]

[BNS2130]

[BNS2131]

[BNS2132]

[BNS2133]

[BNS2134]

[BNS2135]

[BNS2136]

[BNS2137]

[BNS2138]

[BNS2139]

[BNS2140]

[BNS2141]

[BNS2142]

[BNS2143]

[BNS2144]

[BNS2145]

[BNS2146]

[BNS2147]

[BNS2148]

[BNS2149]

[BNS2150]

[BNS2151]

[BNS2152]

[BNS2153]

[BNS2154]

[BNS2155]

[BNS2156]

[BNS2157]

[BNS2158]

[BNS2159]

[BNS2160]

[BNS2161]

[BNS2162]

[BNS2163]

[BNS2164]

[BNS2165]

[BNS2166]

[BNS2167]

[BNS2168]

[BNS2169]

[BNS2170]

[BNS2171]

[BNS2172]

[BNS2173]

[BNS2174]

[BNS2175]

[BNS2176]

[BNS2177]

[BNS2178]

[BNS2179]

[BNS2180]

[BNS2181]

[BNS2182]

[BNS2183]

[BNS2184]

[BNS2185]

[BNS2186]

[BNS2187]

[BNS2188]

[BNS2189]

[BNS2190]

[BNS2191]

[BNS2192]

[BNS2193]

[BNS2194]

[BNS2195]

[BNS2196]

[BNS2197]

[BNS2198]

[BNS2199]

[BNS2200]

[BNS2201]

[BNS2202]

[BNS2203]

[BNS2204]

[BNS2205]

[BNS2206]

[BNS2207]

[BNS2208]

[BNS2209]

[BNS2210]

[BNS2211]

[BNS2212]

[BNS2213]

[BNS2214]

[BNS2215]

[BNS2216]

[BNS2217]

[BNS2218]

[BNS2219]

[BNS2220]

[BNS2221]

[BNS2222]

[BNS2223]

[BNS2224]

[BNS2225]

[BNS2226]

[BNS2227]

[BNS2228]

[BNS2229]

[BNS2230]

[BNS2231]

[BNS2232]

[BNS2233]

[BNS2234]

[BNS2235]

[BNS2236]

[BNS2237]

[BNS2238]

[BNS2239]

[BNS2240]

[BNS2241]

[BNS2242]

[BNS2243]

[BNS2244]

[BNS2245]

[BNS2246]

[BNS2247]

[BNS2248]

[BNS2249]

[BNS2250]

[BNS2251]

[BNS2252]

[BNS2253]

[BNS2254]

[BNS2255]

[BNS2256]

[BNS2257]

[BNS2258]

[BNS2259]

[BNS2260]

[BNS2261]

[BNS2262]

[BNS2263]

[BNS2264]

[BNS2265]

[BNS2266]

[BNS2267]

[BNS2268]

[BNS2269]

[BNS2270]

[BNS2271]

[BNS2272]

[BNS2273]

[BNS2274]

[BNS2275]

[BNS2276]

[BNS2277]

[BNS2278]

[BNS2279]

[BNS2280]

[BNS2281]

[BNS2282]

[BNS2283]

[BNS2284]

[BNS2285]

[BNS2286]

[BNS2287]

[BNS2288]

[BNS2289]

[BNS2290]

[BNS2291]

[BNS2292]

[BNS2293]

[BNS2294]

[BNS2295]

[BNS2296]

[BNS2297]

[BNS2298]

[BNS2299]

[BNS2300]

[BNS2301]

REFERENCES

Lu:2013:AAF

Lathrop:2011:SPI

Lashuk:2012:MPA

Lu:2007:NVF

Lustig:1993:FMM

Li:2018:MDL

REFERENCES

Liu:2009:FMB

Lu:1996:AFMb

Lu:1996:AFMa

Lee:1998:PPS

Lienhart:2002:UFP

Lakshminarasimhulu:2002:CMB

Lin:1992:MDD

REFERENCES

Lambin:1993:ESM

Langer:2005:CBF

Lu:1996:AFA

Lupo:2002:LSM

Liu:2017:FMM

Liang:2022:FMM

Liang:2023:KIU

Jiangli Liang and Shuhuang Xiang. A kernel-independent uniform fast multipole method.

Margonari:2005:FMM

Malhotra:2016:ADM

Marchetti:1997:ICB

Makino:2000:LEF

Mehl:2015:RTC

Mandel:1992:SIM

[MC92] Jan Mandel and Graham F. Carey, editors. *Special issue on multigrid methods: from the Fifth Copper Mountain Conference on Multigrid Methods*, volume 9(9–10) of *Communications in applied numerical methods*. Wiley, New York, NY, USA,

McCorquodale:2007:LCA

McDowell:1997:CGM

McKenney:1996:AFM

Makino:1998:TDP

Makino:2000:TSB

Makino:2003:GMP

J. Makino, T. Fukushige, M. Koga, and K. Namura. GRAPE-6: Massively-parallel

MacDonald:1995:FSM

Macdonald:1996:FSM

Makino:1990:GSP

[MI95]

Makino:2001:PET

Makino:2002:TSP

REFERENCES

McCurdy:1999:ECP

Morice:2006:FMM

McKenney:1996:MDS

Meyer:2021:IBH

Martinsson:2007:AKI

Milthorpe:2014:PF1

Muller:2020:RTT

Carolin Müller, Manas Sharma, and Marek Sierka. Real-time time-dependent density func-

REFERENCES

113

(Nnak:1994:MMD)

(NN12)

(NM1999:CLE)

(NPR93)

(NT94)

(NT96)
REFERENCES

REFERENCES

Okumura:1992:GHP

Ohno:1994:DSP

Ohno:1994:DSP

Otani:2009:BPF

REFERENCES

Otani:2009:FOP

Ormseth:2007:IFM

ODonnell:1989:FAN

Of:2006:FMM

Of:2006:BET

Ohno:2014:PMD

Pocek:2002:FAI

Poursina:2014:IFM

Pouransari:2015:OAF

Pan:1992:CCM

Panas:1995:PET

Park:1989:BBT

Olga Pearce, Todd Gamblin,
REFERENCES

Piecuch:1993:MSC

Perez-Jorda:1995:SAR

Perez-Jorda:1996:CRS

Peirce:1995:SMM

Pluta:1994:DHE

Pringle:1994:NST

Pruett:2003:ABA

C. David Pruett, Joseph W. Rudmin, and Justin M. Lacy.

Petersen:1994:VFM

Petersen:1995:EEFa

Petersen:1995:EEFb

Ptaszny:2021:FMB

REFERENCES

122

Pudlák:2016:LTCC

Qu:2015:FMA

Rahola:1996:DFT

Rajamony:1997:PDS

Rui:2007:STS

Reif:1999:ACP

Raza:2012:ALS

Rejwer-Kosinska:2021:ELF

Rođrin:2004:PCP

Rodrige:1989:PPS

Rokhlin:1985:RSI

Rokhlin:1990:RSI

Rokhlin:1998:SDF

Rossi:2006:EBS

Ramachandran:2005:FMM

Russo:1994:FTV

Rokhlin:1997:SFM

REFERENCES

tosh and UNIX; no paper form published.

Ringbom:1996:FSG

Salmon:1996:GCC

Sarvas:2003:PIA

Strickland:1996:POF

Strickland:1998:MCG

James H. Strickland and Roy S. Baty. Modification of
REFERENCES

the Carrier, Greengard, and Rokhlin FMM for independent source and target fields. [SCM+98]

Song:1994:FMM

[SC94]

Song:1995:FMM

[SC95]

Schmitt:1994:CDF

[Sch94]

Sugimoto:1990:SPC

Sellountos:2022:FMB

Sakuraba:2018:PEZ

REFERENCES

REFERENCES

[Sku04] Reiji Suda and Shingo Kuriyama. Another preprocessing algorithm for generalized one-dimensional fast multipole
REFERENCES

REFERENCES

Schmidt:1997:MES

Song:1996:MFM

Song:1997:MFM

Shanker:1997:OSI

Simos:2005:ACM

Shanker:1997:SIC

Solvason:1997:EEF

Sidonio:1999:PBI

Sun:2001:MVF

Springel:2005:CSC

Scherbinin:1996:UME

Speck:2012:MST

Sagui:2006:NDM

Celeste Sagui, Christopher Roland, Lee G. Pedersen, and
Papers from the fourth edition of Algorithms for Macro-
molecular Modelling, Leicester, UK August 2004.

Mark A. Stalzer. A parallel fast multipole method for
REFERENCES

the Helmholtz equation. Parallel Processing Letters, 5(2):263–274, June 1995. CO-
DEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

[STZ14] Timothy Sun, Papoj Tham-
DEN ATGRDF. ISSN 0730-0301 (print), 1557-7368 (electronic).

cacr.caltech.edu/nbody/skeletons.ps.Z; http://www.ccsf.caltech.edu/~
S0021999184710503.

Springel:2005:SFE

nature03597.html.

Salmon:1994:STC

nbody/ijsa.ps.Z; ftp://ftp.cacr.caltech.edu/
nbody/ijsanofig.ps.Z.

Schwichtenberg:1999:AMM

H. Schwichtenberg, G. Winter, and H. Wallmeier. Acceleration of molecular mechanic simulation by parallelization and fast multipole techniques. Parallel Com-

REFERENCES

Tang:2006:HOP

Tian:2019:FCS

Tanikawa:2012:PGN

Tanikawa:2012:BSS

Vosbeek:2000:ACD

Veerapaneni:2009:BIM

REFERENCES

[Wang:2020:TEB]

[Welch:1991:TPW]

[Wang:2008:FSM]

[White:1996:FTF]

Wilson:2000:PWW

Windemuth:1995:AAM

White:1996:CGF

White:1996:LSD

Wallen:2006:BMF

Wala:2018:FAE

Wang:1996:EFM

Wang:2022:IGI

Wang:2007:PFM

Wang:1999:LSM

Zhiqiang Wang, James Lupo, Alan McKenney, and Ruth Pachter. Large scale molecular dynamics simulations with fast multipole implementations. In ACM [ACM99], page ??.

Watschinger:2022:PFM

Watanabe:2014:GAH

Waltz:2002:PCT

Windemuth:1991:MDC

REFERENCES

Winckelmans:1995:AFP

Winckelmans:1995:FST

Wilson:2021:GAF

Warren:2002:HDC

Wang:2008:FME

Wang:2005:NFM

REFERENCES

REFERENCES

110379, August 15, 2021.

Yeung:1997:TNL

Yuan:2001:PIF

Yokota:2012:TSF

Yan:2021:KAF

Yokota:2011:BEU

Yokota:2012:SFM

Yokota:2013:PTS

Ying:2003:NPK

Yang:1998:STE

Yoshikawa:2005:PTM
REFERENCES

cember 2005. CODEN PAS-JAC. ISSN 0004-6264.

Yang:2001:CPD

Ying:2006:KIF

Ying:2009:FAB

Ying:2015:BPF

Yokota:2009:FMM

Yarvin:1998:GOD

Yarvin:1999:IFM

[Norman Yarvin and Vladimir Rokhlin. An improved fast multipole algorithm for potential fields on the line. *SIAM Journal on Numerical Analy-
Yu:2016:VGM

Yang:2013:CRP

Yu:2005:EUS

Yokota:2014:CCF

Zhou:1995:NMD

Zhang:2014:PFS

Zhu:2015:SRB

Zhang:2011:OBH

Junchao Zhang, Babak Behzad, and Marc Snir. Optimizing the Barnes–Hut algorithm in UPC. In Lathrop et al. [LCK11], pages 75:1–75:11. ISBN 1-4503-0771-X. LCCN ???.

Zhang:2015:DMB

Zhao:2000:IES

Zhao:1998:TSM

Zinchenko:2005:MAA

Alexander Z. Zinchenko and Robert H. Davis. A multipole-accelerated algorithm for close

Zheng:2016:AEA

Zwart:2010:SUI

Zhao:1991:PMM

Zhao:2007:VFM

Zhiqin Zhao, Narayan Kovvali, Wenbin Lin, Chang-Hoi Ahn, Luise Couchman, and Lawrence Carin. Volumetric fast multipole method for...

Zurek:1994:LSS

Zhang:2007:ASD

Zhang:2019:FMM

Zhao:2005:FMB

Zheng:1993:EMM