Abstract

This bibliography records publications of Yousef Saad.

Title word cross-reference

3D [GHS10]. exp(−τA)b [SSS10]. f(A)b [CAS11]. ILU [LSC03]. ILUS [CS97c]. k [CrFS09]. LU [CS97c, LSS03b, Saa94d]. tr(f(A)) [CS18, UCS17].

'02 [AGPS03].

20th [Sv00, BW01].

5 [WS93].

Abaffy [Saa92h]. ABS [Saa92h]. Abstract [SS85c]. accelerated [LS13b]. accelerating [KKPS18]. Acceleration [BRZS18, KS87, Saa84b, BCRZS22, CS99, rFS09, HTZ+24, KS92, ZSTC06a]. acceptors [SKBS88]. acoustic [EGMS20]. Adapted [FSUS20]. ADI [MS92, MS93]. advances [GGL94]. algebra [DS91a, RRV93]. Algebraic [LS17, GHS10, LSS03a, SS02b, Saa94d]. Algebraic [LS17, GHS10, LSS03a, SS02b, Saa94d]. Algebraic [LS17, GHS10, LSS03a, SS02b, Saa94d]. Algorithm [DS91b, LXV16, Saa85a, SYEG00, XAKS23, ZS07, ESS86, GS87, Saa92b, Saa94b, Saa94c]. Algebraic [LS17, GHS10, LSS03a, SS02b, Saa94d]. Algortithms [Saa74b]. Algorithms [AGPS03, ASSS11, BDG+10, CS92, CS85a, CS86, CTJ+95, CTSZ07, CZC+09, LXES19, Saa92b, Saa94b, Saa94c]. Alternating [JSS87, SS85c]. amplitude [WGSC18]. analogue [CJ04]. Analysis [BS09, BSS10, BW01, Saa92b, Saa94b].
Saa97, Saa16, BJR+09, Saa94e, Saa00b].

analytics [KMB+18]. **Anderson**

[BRZS18, BCRZS22]. **Anderson-type**

[BCRZS22]. **angle** [LSS86, SL86, SL88].

Application [CS12, CTWS94].

Applications [AGPS03, ASSS11, BKS08, BDG+10, FSUS20, Saa06, SrFS08, BJR+09, CSS02, CS98a, CS85b, Saa83a, Saa90b, Saa90d, SAD+00, SS11, SSC04].

approach [GS90a, SLX+22]. **approximations** [KKPS18].

Approximate [BS02b, BS02c, CS94, CS97d, CS98b, Saa03a, BS02a, CrFS09, CS97f, US17a].

Approximating [LSY16]. **approximation** [CS09b, FSUS20, GS92a, XAKS23, BSS09, CCE+18, CS97a, CS08, EGMS20, GS90b, GS90a, GS92b, GSS03, IT507, Saa84a, Saa86b, Saa86e, SS11, UMS17, XAKS24].

Approximations [CAS11, Saa92b, GHS10, US19].

Architectures [IS85, IS86b, IS86a, SS86b, GS89d, SS89b].

arising [Saa84a, Saa86b, Saa86e, SMSW00].

ARMS [BS02b, SSS85].

Arnoldi [BS85, DSS91b, Saa80c, SSW98]. array [SS85].

Assignment [DS91b, Saa88d].

Associated [DS91b]. **Atom** [TZA+06].

Augmented [Saa97, CS97b]. **Automated** [KXS18]. automatic [GS94, Saa92a].

Banded [SS85e, SS87]. **Based** [BS05b, HS06, KS07, SZ99b, SrFS08, HTZ+24, JSS07, LXS16, MOKS12, SW93, SW96b].

Basic [PSWF93, Saa90a]. basis [CT93, CTS94]. **Benchmark** [SW88b, SW88a, SW90]. Beresford [Saa83c]. between [BS02c]. Beyond [KXS18]. **BILUM** [SZ99a]. BILUTM [SZ99b].

biorthogonalization [Saa80a, Saa82a]. bisection [CrFS09].

Block [LS03, LSS03b, MS93, SS80, SZ99a, SZ99b, Saa03a, ZS08, CS97d, GS87, GS88b, GS88a, GS89b, Saa80b, SZ01, Saa23, MS92].

Block-ADI [MS93, MS92].

block-partitioned [CS97d]. **Boeing** [SW89]. **Book** [Cha96, Saa83c, Saa95].

bordered [CS95b]. **Bounds** [Saa94b, Saa94e]. brief [Saa20]. **Brownian** [ACSS12]. Bulk [TZA+06].

calculation [ZSTC06b]. **Calculations** [OBSC03, CS10, AJT+07, CT93, CTS94, JKSC99, SSC+96, ZSTC06a]. Carolina [BCEP94]. Centenary [BCEP94]. century [Sv00, BW01]. CFD [CSW00, SST04]. CG [CLC24]. Chain [PS92, Saa91c]. chains [BGB+10, RGSB08]. charge [BSTC05].

charging [RGSB08]. **Chebyshev** [ESS86, Saa84b, XAKS23, XAKS24, ZSTC06a, ZSTC06b, ZS07, ZCS14].

Chebyshev-filtered [ZSTC06a, ZSTC06b, ZCS14]. class [HTZ+24]. classes [TF90]. clusters [CTJ+95, JTD+94]. CM [PSWF93, WS93].

CM-5 [WS93, PSWF93]. Coarse [MS07a].

Coarse-Grid [MS07a]. Coarsening [MS07b, CSZ22, OKLS15, US19].

codes [GS81, GS83, JKSC99, UMS17].

Communication [SS85a, Saa85a, SSS85d, Saa86c, SSS86b, SM95, SSS9a, SSS9b].

Community [CS12]. Compensation [MOKS12]. Complement [DKXS18, LS05b, SSS99a, GHS10, KLS16, LXS16, Saa07, XKL+22, ZXS21].

complement-based [LXS16].

Complements [BS05a]. Complex [PS85, PS87, Ruh94, Saa83a, Saa4a, Saa86b, Saa86e, Saa87c]. complexities [GS89d].

Complexity [ISS84, ISS86, Saa85a, Saa86c].

Component [JS97]. Component-based [JS97]. Computation [BS05a, BKS08, RRV93, Saa74a, XLS18, LLCS02, dlGGS+05]. Computational [PS20, SM95, Fit86]. Computations [BTS+89, FWPS92, PSWF93, SW88a, Saa94a, SW88b, SW90, Saa90a].

Computers [FWPS92, SMS20, AS88, AS89].
[BSTC05, CAS11, Saa92e, Saa95, SSS10, TS11, XS16, XAKS23, ACSS12, CS18, CSZ22, PS07, Saa80c, SLX, XAKS24].

concepts [Saa24]. Concurrent [Saa95]. condition [Saa84a, Saa86b, Saa86e]. Conference [BCEP94, Fit86, KR83, RRV93]. Confinned [OBSC03]. Conjugate [SS85g, SS85f, SS86a, SYEG00, Saa6e, HTZ, Saa85c]. Concurrent [LS13a]. consistent [ZSTC06a, ZSTC06b]. Constructed [BS05b]. construction [CrFS09]. continuation [CS85b]. contour [KKPS18, LXSdH20]. control [DS91a, Saa90d].

Convergence [BS94, Saa80b]. convergent [BS89]. convex [BCEP94].

dans [Saa74b]. Data [SS85a, SS85d, SS86b, SS89a, SS89b, Saa94a, SM95, CrFS09, KMB, SSZ98, Saa84a, SYEG00, Saa6e, HTZ, Saa85c].

Definite [SS80, VSS14]. Deflated [CS97b, SYEG00]. deflation [Saa88d]. Dense [CS12, ISS84, ISS86, KMB]. Dense-Linear-System [ISS86]. Densities [XLS18, BSTC05, LSY16, USS17a]. Density [BKSO8, BKSO9, RGSB08, SSS10]. dGGS [dGGS]. density-functional [RGSB08]. dependent [BKSO9, RGSB08, dGGS].

Design [Saa87b, SW95, SW96a, Saa87a, SMSW00]. Detection [CS12]. Development [Saa22]. Developments [BW01]. Diagonal [SZ99c, Saa05, TS11, BKSO7, TS12]. diagonalization [JKSC99, ZCS14]. diatomic [CTWS94]. dictionary [US17].

Dielectric [OBSC03]. difference [CTS93, CTS94, CTWS94, JTD, SSS85]. Differential [CSS85, CSS87, SS11].

Dimension [CSS85, CSS87, SS11]. dimensional [CrFS09, LXS16, XSS17, SS14]. Dimensionality [KS07, NBS10, SrFS08].

Dirac [SS11]. Direct [SS85e, SS87, SW96b].

Direction [SS85c, JSS87]. disjoint [Saa83d]. Distributed [MS94, Saa92e, Saa94a, SM95, SSS98, SSS99a, SSS99c, Saa97].

Distributions [CS14]. Divide [LS13a]. Domain [CS92, KXS81, KPKS81, LS17, Saa94a, SS98, SSS98, XSS98, XSS12, CS93, CS96, LXS16, XSS97, Saa92a]. Domain-Based [SS99b]. Domain-Decomposition-Type [TS11]. Dominance [Saa05]. d'origine [Saa74b].

DQGMRES [SW93, SW96b]. dual [Saa92d, Saa94d]. Dynamic [SS85].

dynamics [ACSS12, CJWS96, JTD].

E. [Saa92h]. Editorial [Saa00a, BGSS14]. Effective [CS90a]. Efficient [AJT07, DPS16, GS90a, GS92b, GS92a, NPS16, dGGS, LSS86].

eigendecomposition [SS14]. eigenelements [Saa80c]. Eigenfaces [SrFS08]. Eigenproblems [ZS07, KCS09, KCS11, SGSM15].

Eigensolutions [Saa85b]. Eigenvalue [BSS10, rFS12, SS98, IS86b, LXV, PSS99, Ruh94, Saa83c, Saa84b, Saa11b, Saa16, SSS93, XSS18, DPS16, EGMS20, KLS16, KKPS18, NPS16, Saa82b, Saa83e, Saa89b, Saa92g, SSS96, SSS98, SSS99b, WSS98, ZS08].

Eigenvalues [BSS10, Saa74a, LXS19]. Electronic [JKSC99, SCS10, AJT07, CTS93, CTS94, CKV03, CTSZ07, CZC, SSS96].

element [KSS03, KSSG04]. Elimination
Elliptic [CSS85, CSS87, GS87, GS88b, GS88a, GS89b, GS89d, KS92, SS81, SS85).
Engineering [PS20]. Enhanced [SS99b, SZ01]. Environments
[Saa87b, Saa92e, CS99, Saa87a]. equation
[KSS03, KSSG04, LXSdH20, SL86, SL88, ZCS14]. Equations [CSS85, GS92a, MS92, MS93, BCRZS22, BS87, BS90, BS91, CSS87, ESS86, GS88b, GS88a, GS89b, GS89c, GS89a, GS90b, GS90a, GS92b, GS81, GS83, PS07, SS81, SSS85, Saa90c, Saa20].
Eric [Saa95]. Error
[Saa94b, CS18, Saa94e, UMS17]. estimate [CS18]. Estimation
[UCS17, DFP16, NPS16, USS17a]. estimator [BKS07]. Études [Saa74b].
Evolution [TZA+06, CTSZ07]. Evolving [Saa16]. EVSL [LXES19]. Exact
[Saa03a]. examples [CLS24]. excited
[BGR+10, SKBS88]. Experimental [CS97e]. exploration [Fit86]. Exponential
[Saa92b, CS98a]. Extended [SS85c]. Extraction
[CS12]. Extreme [rFS12].
F [Saa95]. Face [KS05a]. faces [KS05a].
Factored [BS02b, BS02c, BS02a].
Factorization
[HS06, LS05a, Saa92d, Saa94d].
Factorizations
[MOKS12, XAKS23, CCS10, XAKS24]. Fast
[CrFS09, US17a, UCS17, VS14, XLS18, GS87, GS88b, GS88a, GS89b, GS89d, US19].
February [GLGL94]. feedback [Saa88d].
Fermi [SS11]. few [Saa94b, Saa94e]. field
[ZSTC06a, ZSTC06b]. Filtered
[BKSO8, rFS12, Saa06, AKS17, ZSTC06a, ZSTC06b, ZCS14]. Filtering
[KX18, LXV+16]. Filters [X16]. Finding
[Saa03a]. finite [CTS93, CT94, CTWS94, JTD+94, KSS03, KSSG04].
finité-difference [CTWS94].
finité-difference-pseudopotential
Houston [Fit86]. Hybrid
[BS87, BS90, ESS86, GHS10].

Hydrodynamic [ACSS12].
[CS85a, CS85b, CS86, CS87]. Hypercubes
[SS85a, SS85d, SS85b, Saa86a, SS88, Saa86d, SS89a].

III [Ruh94]. ILU
[CSW00, CS97e, HS06, LS05a, MS94, OKLS15, Saa92d, Saa92c, Saa96, SZ99a, SZ99c, SZ01, Saa03a, Saa05].

ILUM
[Saa92c, Saa96]. ILUs
[BS02c, BS05b]. ILUT
[Saa92d, Saa94d, SZ99b]. IMA
[GGL94]. Impact
[IS85, IS86b, IS86a]. Implementation
[LXES19, AKS17, BSK+03].

Implementations
[SS85f, SS86a, Saa91b, Saa93b]. Implicitly
[Saa91a, Saa93a]. Incoherence
[Saa83d, Saa84c, Saa87c, Saa88d, Saa88a, Saa88b]. Incomplete
[CSS85, CSS87]. Incremental
[Saa83d]. Indefinite
[DKXS18, XSI7, CS85b]. Saa92d, Saa94d, SW93. Saa94d, SW96b].

Indexing
[SrFS08, VS14]. Industrial
[SAD+00]. Inexact
[WS98]. Initio
[ÖBCO03, JTD+94]. Inner
[Saa91a, Saa93a]. Inner-Outer
[Saa91a, Saa93a]. Institute
[BTSt+99]. Integration
[KKPSt81, LXSt+92]. Interactions
[ACSS12]. Interior
[rFS12]. International
[BCEP94]. Interval
[DPS16, NPS16]. Intervals
[Saa83d]. Invariant
[BKS08, PS07]. Inverse
[BS02b, BS05b, CS89, CS89b, TS11, BS02a, CS97d, CS97f, TS12]. Inverse-Based
[BS05b]. Inverses
[BS02c]. Invert
[PS7, PS85]. Iron
[TZA+06]. Irregularly
[FRSY96]. Issue
[AASS11, BDG+10]. Iteration
[Saa16, ZSTC06b, ZCS14]. Iterations
[BKS08, CS98b, Saa00b]. Iterative
[BTS+89, CS85b, GS81, GS83, SS81, Saa83d, SM95, Sv00, Saa03b, Saa20, CSS02, GGL94, JSS07, KMB+18, LS13b, SW94, SW95, SW96a, SKL+97, Saa01, Saa24, Cha96].

J. [Saa92h]. Jacobi
[SS98b, Saa23]. January
[Fit86]. Journey
[Saa20].

Kent
[RRV93]. Kernels
[SMA95]. Key
[Saa24]. Kit
[Saa90a]. Kohn
[SCS12, ZCS14]. Krylov
[ACSS12, BSS09, BS87, BS89, BS90, BS94, Ruh94, Saa81, Saa84c, Saa89a, Saa90b, Saa90d, Saa91b, Saa92b, Saa92e, Saa92f, Saa93b, Saa97, Saa98, Saa11a, Saa22, ZS08].

Laguerre
[SS81]. Lanczos
[BCEP94, AKS17, BGS+10, BSTC05, BKS08, CrFS09, CS99a, CS99b, CS99c, CS99d, CS97b, CS14, ESS86, GS92b, GS92a, Ruh94, Saa81, Saa84c, Saa89a, Saa90b, Saa90d, Saa91b, Saa92a, Saa92e, Saa92f, Saa93b, Saa97, Saa98, Saa11a, Saa22, ZS08].

Later
[FrFS08, VS14]. Learned
[US17]. Learning
[CS22]. Least
[AS11, LS06, Saa83a, Saa87c, XS16, Saa84a, Saa86b, Saa86c]. Least-Squares
[LXES19, SW94, SW95, SW96a, SKL+97]. Least-Squares
[LS06, XS16]. Level
[SS98, SS99c, SS10].

Library
[LXES19, SW94, SW95, SW96a, SKL+97].

Like
[DS91b, SS85g]. Linear
[Cha96, DKXS18, ITS07, ISS84, ISS86, MS92, MS93, MS94, SS85g, SS85e, SS87, SS98a, SS99a, SS99c, SS02a, XS17, AS88, DS91a, ESS86, GS81, GS83, GS90, JSS07, KMB+18, LS13b, OKS10, RRV93, Saa81, Saa83d, Saa84c, SS85, SS86c, Saa87c, Saa88d, Saa88a, Saa88b, Saa88c, SSZ98, SS99c, SS99b, Sv00, ZS10, Saa01, Saa02b, Saa03b, Saa07, Saa20, Saa24].
liquid [LLCS02].

Low [CS09b, DKXS18, LS13a, LS17, UMS17, CS08, LXS16, XLS16, XKL+22, ZXS20, XZS21]. Low-Rank [LS13a, LS17, LXS16, XLS16, XKL+22, ZXS20, XZS21].

Lyapunov [Saa90c].

machine [CSZ22]. Magnetism [TZA+06].

March [GGL94, KR83, RRV93].

Markov [PSS92, Saa91c].

Massively [FWPS92].

Mathematical [Fit86, Fit86].

Matrices [CS92, CS94, LSC03, LS13a, ÖBSC03, PS87, Saa85b, SW89, Saa96, SZ99b, Saa16, BSS09, CS93, CS96, CS97d, CS97e, CS97, LS05a, LSY16, PS85, Ruh94, Saa74a, Saa80c, Saa84a, Saa86b, Saa86e, Saa92c, Saa94c, UMS17, XLS16, XKL+22].

Matrix [AGPS03, ASSS11, AEKS90, BDG+10, FSUS20, FWPS92, IS86a, OKLS15, PSWF93, SW88a, Saa92b, Saa94a, SW94, TS11, XAKS23, BJR+09, BK807, BGSS14, CCE+18, CS98a, Saa83a, Saa83b, SW88b, Saa90a, SW95, SW96a, SAD+00, TS12, USS17a, US19, VSS14, XAKS24, dIGGS+05, KR83].

Memory [Saa87b, SM95, Saa87a]. Message [Saa87b, Saa87a, WS93].

Method [SS80, Saa87d, CTS93, CTS94, CTWS94, CS18, EGMS20, JTD+94, KSS03, KSSG04, LSS86, Saa80c, Saa85c, Saa23, SCS12, TS12, ZS08, ZCS14].

Methods [BTS+89, Cha96, CCSI09, CS14, D91b, G92a, LS17, PSS92, SS81, SS85c, SS85e, SS85f, SS86a, Saa7b, SS87, Saa91b, Saa92e, Saa93b, Saa97, CSS10, Saa11a, Saa11b, Saa22, SSW98, SOS+00, TS11, ACCS12, BSS09, BS87, BS89, BS90, BS91, CCS02, C85b, rFS09, Fit86, GS90b, GS92b, GGL94, JSS87, JS07, KS92, KCS09, KCS11, Saa80a, Saa80b, Saa81, Saa82a, Saa82b, Saa83d, Saa83b, Saa83e, Saa84c, Saa87a, Saa88d, Saa89a, Saa90b, Saa90d, Saa91c, Saa92g, Saa92f, Saa98, Saa01, Saa03b, Saa20, Saa24, SS98b].

minimal [SS86c, SW93, SW96b]. minimum [Saa00b].

Minneapolis [BTS+89, GGL94].

Minnesota [BTS+89, GGL94]. MIQR [LS05].

Modeling [PSS92, Fit86]. models [Saa91c]. modern [CSS02, SSC04]. modes [SLX+22].

Modification [MOKS12].

Modified [CS99, Saa84a, Saa86b]. module [SW94, SW95, SW96a].

Molecular [CJWS96, GGB+10, JTD+94].

molecular-dynamics [JTD+94].

molecules [CTWS94]. moment [Saa84a, Saa86b].

Multi [Saa96, Saa92c, SSZ98, SZZ9c, SZZ01].

Multi-Elimination [Saa96, Saa92c].

multi-level [SSZ98, SZZ9c, SZZ01].

Multicolor [XZS20, SS99b].

Multielimation [SZ99a].

Multigrid [CS85a, CS86].

Multilevel [BS05b, KXS18, LS06, SZZ99a, SS99b, Saa05, SrFS08, LSS03a, OLS15, SS02b, SST04, SSC04, US19, XLS16, XKL+22].

multiple [KMB+18].

Multiprocessor [CS85a, CSS85, CS86, ISS84, ISS86, CSS87].

Multiprocessors [SS85c, Saa85a, SZZ87, SZZ81, Saa86c].

multisecant [rFS09].

Multistage [HS06].

Multivariate [CS14].

N [Saa83c]. nanocrystals [CTSZ07, CZC+09].

Neighborhood [KS07, KS05b].

News [Cha96, Saa95].

Newton [BS94, WS98].

nlTGCR [HTZ+24].

NN [CrFS09].

Non [SS99c, SLX+22].

non-perturbative [SLX+22].

Non-standard [SS99c].

nonlinear

[BCRZ22, BS87, BS91, BS91, BS94, EGMS20, rFS09, HTZ+24, KS92, SGSM15].

Nonsymmetric [LS03b, MS92, MS93, MS07b, Saa84b, SS85g, Saa85b, SS886, Ruh94, Saa83a, Saa84c, SSS6c, Saa87c, Saa88a, Saa88b, Saa88c, Saa89b].

normal [BSS09, SLX+22].

North [BCEP94].

null
null-space [ITS07]. number [Saa86e]. numbers [Saa84a, Saa86b].
Numerical [BW01, PSS92, RRV93, Saa83b, Saa87b, Saa89b, Saa90c, Saa92g, SCS10, Saa11b, Saa87a, Saa91c].

oblique [Saa80a, Saa82a]. Observer [DS91b]. October [BTS'89]. ODE [GS81, GS83]. Ohio [RRV93]. Operator [Saa92b, CS98a]. OPRA [KS05a].

OPRA-faces [KS05a]. Optimal [CS09b, CS08]. Optimization [NBS10, NBS12, BSS09, KCS09, KCS11]. order [CWW00, CTWS94, JTJ+94]. Origin [Saa22, Saa74c]. Orthogonal [CS09b, KS05b, KCS07, CS08, Saa83d]. orthogonalization [SW93, SW96b]. other [Saa80a, Saa82a]. outer [Saa91a, Saa93a]. Overlapping [CS92, CS93, CS96, LS05b]. overview [Saa90d].

P_SPARSLIB [SW94, SW95, SW96a, SKL+97]. Package [SW88a, SS02a, SW88b, SW90, XKL+22]. papers [GGL94]. Parabolic [GS92a, GS89c, GS89a, GS90b, GS90a, GS92b]. Parallel [BDG+10, BGSS14, BS+83, CS02, CS97f, FWPS92, FRSY96, GS90a, HS06, IS85, IS86b, IS86a, SS85e, SS85f, SS86b, SS86a, Saa87b, Saa89c, Saa01, SS02a, SO8+00, XAKS23, ZSTC06a, AS88, AS89, CS99, GS87, GS88b, GS88a, GS89b, GS89c, GS89a, GS89d, GH10, LS05a, LLCS02, SS80, Saa87a, SS89b, Saa92c, Saa94c, SW95, SW96a, SKL+97, SS99b, SSC04, XKL+22, XAKS24, AGPS03, ASS11]. parGeMSLR [XKL+22]. Parlett [Saa83c]. pARMS [LS03a, SS02a]. Partial [CSS85, DS91b, Saa85b, XS16, XAKS23, CSS87, Saa88d, XAKS24]. partially [BSTC05]. Particle [LLCS02]. partitioned [CS97d]. partitioning [GS94, LLCS02, Saa74a, VSS14]. Passing [Saa87b, Saa87a, WS93]. Pencils [KR83, XAKS23, XAKS24]. Performance [WS93]. periodic [AJT+07]. perturbative [SLX+22]. Phase [WGSC18]. physical [CS02, SSC04]. Pite [KR83]. Pivoting [BS02b, BS02a, LS05a]. plane [JKSC99, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c]. plane-wave [JKSC99]. planets [SLX+22]. PMAA [AGPS03]. PMAA'10 [ASS11]. Point [LS03, LS03b]. pole [Saa88d]. Polynomial [BK08, CAS11, FSS02, SSS10]. polynomials [Saa83d, Saa83a, Saa87c]. portable [SKL+97]. Positive [SS80, VSS14]. posteriori [CS18]. potential [CTS93, CTS94]. power [ZXZ21]. Practical [BTS'89, Saa84c, Saa85c, BTS'89].

Preconditioned [CSS98, CS14, SS85f, SS86a, Saa91b, Saa93b, Saa98, LS13b, Saa91a, Saa92f, Saa93a]. Preconditioner [BS02b, DKSX18, LS05b, LS06, Saa96, SZ99a, SZ99b, XS17, BS02a, C97c, Saa92c, XLS16, XZS20, XZS21]. Preconditioners [BS05b, CS94, CS98b, LS13a, LS17, LS03, LS03b, MS92, MS93, MS94, Saa97a, CS90, WS98, Saa94c, SZ99c, Saa97]. Preconditioning [CS98a, KSS03, GSS04, OKS10, Saa88a, Saa88b, Saa88c, SAD+00, Saa03a, SMW00, SSF93, XYS21, LXSDH20, OKLS15, SSS99b, SS10, SSF95, VSS14, WSS98, KS+97]. preconditionings [Saa85c]. Predicting [SS+00, CTJ+95]. Preserving [CSS98, KS07, KS05b]. Prewhitening [SS14]. primitives [WS93]. principles [AJT+07]. probing [TS12]. Problem [CBS80, NBS12, CKY+03, Saa23, SCS12, Saa83c]. Problems [BS10, D91b, rFSS12, GS80, IS85, LS06, LXV+16, LS03, LS03b, MS07b, PSS93, Saa84b, Saa91b, Saa16, SSF93, XLS18, C9W00, D91a, EGMS20, FRSY96, IS86b, KLS16, KPKS18, Ruh94, Saa82b, Saa83a, Saa83b, Saa88c, Saa90d, Saa92g, SSS+96, SAD+00, SST04, SSF95,
WSS98, ZS08. Procedure [rFS12, AKS17].
procedures [HTZ+24]. Proceedings
[BTS+89, KR83, Fit86, RV93, BCP94].
Process [BSS10]. Processing [FSUS20].
processors [SS85]. Projection
[BS91, KS07, Saa82b, Saa83e, Saa88d, Saa91c, Saa92h, ITS07, Saa80a, Saa82a].
Projection-Based [KS07]. Projections
[KS07, KS05b]. Properties [SS85b, SS88, SOS+00, CTJ+95, CTS07, CZC+09].
Proxy [YXS21]. Proxy-GMRES [YXS21].
 pseudo [CTS93, CTS94]. pseudo-potential
[CTS93, CTS94]. pseudopotential
[CTWS94, JTD+94]. pseudopotentials
[CKV+03]. PSPARSLIB [SS98a]. purpose
[Saa92a].

QR [LS96, Saa74b]. Quadrature [UCS17].
quantum [CJWS96]. Quasi
[S93, SW96b]. Quasi-minimal
[S93, SW96b].

Raleigh [BCEP94]. Rank [CS90b, DKXS18, LS13a, LS17, CS08, LXS16, USS17b, UMS17, XLS16, XKL+22, ZX20, ZX21]. ranks
[SS17a]. rates [Saa80b]. Ratio
[NBS10, NBS12]. Rational [GS03, KXS18, Ru94, S11, XS16, XS17, EGMS20, GS90a].
Real [PS87, CKV+03, PS85, Ru94].
recognition [KS05a]. recursive
[CrFS09, LSS03a, Ss02b, SST04, SSC04].
recycling [SGSM15]. Reduction
[CS90a, KS07, NBS10, SrFS08, GS87, GS88b, GS88a, GS90b, KCS09, KCS11].
Relations [BS02c]. reordering [OKL15].
Reorderings [Saa05]. reorthogonalized
[BSTC05]. reservoir [Fit86]. Residual
[Saa06, SS86c, SW93, SW96b, Saa00b].
Residual-type [Saa06]. residuals
[HTZ+24]. Restart [LVX+16]. Restarted
[SSW98]. Restarting [SSW98, SS98b].
Restricted [LS05b]. results [CJ04].
retrieval [WGSC18]. Review
[Saa83c, Saa92h]. Reviews [Cha96, Saa95].

Revisiting [Saa23]. reweighted [WGSC18].
Right [Saa87d, KMB+18]. Right-Hand
[Saa87d, KMB+18]. Ring [ISS84, ISS86].
Ritz [CJ04]. Robust [SSF93, SSF95, SZ99c].
rotating [SLX+22]. rotation [Saa23].

Saad [Cha96, CJ04]. Saddles
[LS03, LSS03b]. Sampling [CS14, US19].
scalable [KMB+18]. Scale [BTS+89].
Schur [BS05a, DKXS18, GHS10, KLS16, LS05b, LXS16, SS99a, Saa07, XKL+22, ZXS21, ZS08]. Schur-RAS [LS05b]. Science
[PS20]. Scientific [RVR93, Saa95, CSZ22].
seismic [Fit86, SLX+22]. Selection
[MS07a]. Self [ZSTC06b, ZSTC06a].
Self-consistent-field [ZSTC06b, ZSTC06a].
Semantic [SrFS08, VS14]. semiconductor
[KS87]. semiconductors [SKBS88].
separation [CCE+18]. Sequence [BRZ18].
sets [SS14]. Several [Saa87d]. Sham
[SCS12, ZCS14]. Shanks
[BRZ18, BCRZ22]. shaped [Saa24].
Shared [Saa87b, Saa87a]. Shift
[PS87, PS85]. Shifts [Saa74c, Ruh94].
 shrinkage [USS17b]. Si [JTD+94]. Sides
[Saa87d, KMB+18]. Signal [FSUS20].
simulation [KS87]. simulations
[ACSS12, JTD+94]. Singular [CS09a].
skyline [CS97c]. Slicing [LXES19, RCS12].
Smallest [BS05a]. SMASH [CCE+18].
SNAP [IT07]. Software
[AEKS90, LXE19, Saa92a]. solid [LLCS02].
solid-liquid [LLCS02]. Solution
[DS91a, GS92a, IS84, IS85, IS86, IS86b, SSSC+96, SS98a, SS99c, GS87, GS88b, GS88a, GS9b, GS9c, GS9a, GS9b, GS9a, GS9b, GS9c, GS91, GS83, ITS07, KSS03, KSSG04, SS81, Saa83d, Saa83h, Saa89b, Saa90c, Saa91c, SW95, SW06a, S00, SST04, Saa24, SGSM15, XKL+22]. solver
[KMB+18, LSS03a, SS02b, SSC04]. Solvers
[SM95, GS89d, GHS10, KKPS18, LS13b, SW94, SK+97, ST04]. Solving
[AS88, AS89, CSS85, CSS87, LSdH20,
Some [GS89d, SW89, Saa92b, BSS09, Saa84c, Saa86c]. SOR [MS94]. Space [YXS21, CKV03, ITS07]. SPARK [SW90]. Sparse [BKS08, PS07]. Supercomputer [BTS89, Saa91b, Saa93b]. Supercomputers [PS89, Saa89a]. SVD [CS08, Saa90b]. Sweden [KR83]. Sylvester [DS91b]. Sylvester-Like [DS91b]. Symmetric [LS13a, LS03, Saa83c, Saa87d, SS93, Saa90a, SS02a, Saa90b, Saa90d, Saa92d, SS11, dlGGS05]. theoretical [SGSM15]. thermoacoustics [SGSM15]. Thick [LXV16, SSW98]. Thick-Restart [LXV16]. three [LSS86, LXsdH20]. three-dimensional [LSS86, LXsdH20]. Threshold [MOKS12, Saa94b, Saa94d, SZ99c]. Threshold-based [MOKS12]. time
REFERENCES

[BSK+03, RGSB08, dIgGS+05].

time-dependent
[BSK+03, RGSB08, dIgGS+05]. tire
[SMSW00]. tool [Saa90a]. Tools
[SOS+00, Saa92a]. Topological
[SS85b, SS88]. Trace
[KCS09, KCS11, NBS10, NBS12].

Transformations [BRZS18], translations
[Saa74b]. trends [Saa92f]. triangular
[AS88, AS89]. Turbo [RGSB08]. Two
[rFS09, Saa83d]. Type [Saa94b, TS11,
BCRZS22, Saa94e, SSZ98, Saa06].

understanding [CLS24]. Unstructured
[MS94]. unsymmetric
[Saa80a, Saa80c, Saa81, Saa82a]. updating
[VS14]. USA [RRV93]. use
[Saa84c, Saa85c, Saa87c]. Using
[BKS09, CKV+03, SS98a, SSC04, BS05a,
CS18, JTD+94, KS05a, LXSdH20, OKLS15,
Saa83d, USS17a, UMS17, VSS14, ZSTC06b].

values [VSS14]. Variations
[Saa80c, SST04]. Vectors [CS09a, CJ04].

Velde [Saa95]. Version
[LS05b, SYEG00, LS03a]. Versions
[LSC03, SZ99a, LS05a]. versus [CS09a]. via
[BSS09, CrFS09, CAS11, CS98b, UCS17,
USS17b, WGSC18, XAKS23, XAKS24,
YXS21, ZSTC06a].

Vibrational
[CJWS96, CZC+09]. volume [BJR+09].

wave [JKSC99, LSS86, SL86, SL88]. wide
[LSS86, SL86, SL88]. without
[CTS93, CTS94, JKSC99, SS14]. Workshop
[BTs+89, GGL94].

Yousef [Cha96].

References

Ando:2012:KSM
[ACSS12] Tadashi Ando, Edmond Chow,

Ashby:1990:SSM

Arbenz:2003:PMA

Alemany:2007:EFP

Aurentz:2017:CGI
Jared L. Aurentz, Vassilis Kalantzis, and Yousef Saad.
REFERENCES

[BGB+10] Stefano Baroni, Ralph Gebauer, O. Baris Malcioglu, Yousef Saad,
REFERENCES

Brown:1990:HKM

Brown:1991:PMS

Brown:1994:CTN

Bollhofer:2001:FAI

Bollhofer:2002:FAI

Bollhofer:2002:RBI

Bekas:2005:CSE

Bollhofer:2005:MPC
Burdick:2003:PIT

Bellalij:2008:ASK

Bellalij:2010:FAA

Bekas:2005:CCD

Bolley:1989:PIM

Brezinski:2001:NAH

REFERENCES

REFERENCES

Chelikowsky:2003:URS

Carson:2024:TUC

Chen:2009:FAG

Chan:1985:MAH

Chan:1986:MAH

Cai:1992:ODD

Cai:1993:ODD

Chow:1994:AIP
[CS94] E. Chow and Yousef Saad. Approximate inverse preconditioners for

Cai:1996:ODD

Castillo:1997:TSA

Chapman:1997:DAK

Chow:1997:IPS

Chow:1997:AIT

Chow:1997:ESI

Chow:1997:PAI

REFERENCES

REFERENCES

Chelikowsky:1993:FDP

Chelikowsky:1994:FDP

Chelikowsky:2007:AEE

Dillon:2018:HLR

REFERENCES

[E. J. (Efstratios J.) Gallopoulos and Y. Saad. A parallel

Gallopoulos:1988:PBCb

Gallopoulos:1988:PBCa

Gallopoulos:1989:SFE

Gallopoulos:1990:ESP

Gallopoulos:1992:ESPb

Gallopoulos:1992:ESPa

Guillaume:2003:RAP

Henon:2006:PMI

He:2024:NCN

Ipsen:1985:IPA

REFERENCES

Kechroud:2004:PTS

Kalantzis:2018:BAM

Little:2002:PPS

Little:2003:BPSa

Li:2005:CVI

Li:2005:SR

REFERENCES

Li:2006:MMI

Li:2013:DCL

Li:2013:GAP

Li:2017:LRC

Li:2003:CVG

Lee:1986:EMS

Li:2003:PPV

Little:2003:BPSb
REFERENCES

Lin:2016:ASD

Li:2019:ESL

Li:2016:SCB

Liu:2020:STD

[LXSdH20] Xiao Liu, Yuanzhe Xi, Yousef Saad, and Maarten V. de Hoop. Solving the three-dimensional high-frequency Helmholtz equation using contour integration and polynomial preconditioning.

Li:2016:TRL

MacLachlan:2012:MCS

Ma:1992:BAP

REFERENCES

tan and R. S. Varga eds, Walter de Gruyter publications, New-

[M93] Sangback Ma and Youcef Saad. Block-ADI preconditioners for
solving sparse nonsymmetric linear systems of equations. In
L. Reichel, A. Ruttan, and R. S. Varga, editors, Numerical linear
algebra (Kent, OH, 1992), pages 165–178. Walter de Gruyter, New

Ma:1994:DIS

[MS94] S. Ma and Y. Saad. Distributed
ILU(0) and SOR precondition-
ers for unstructured sparse linear
systems. Technical Report 94—
, Army High Performance Com-
puting Research Center, University
of Minnesota, Minneapolis,

MacLachlan:2007:GSC

[MS07a] S. MacLachlan and Yousef Saad. A greedy strategy for coarse-

MacLachlan:2007:GCS

[MS07b] Scott MacLachlan and Yousef Saad. Greedy coarsening strate-

Ngo:2010:TRO

[NBS10] T. T. Ngo, M. Bellalij, and
Y. Saad. The trace ratio
optimization problem for di-
imensionality reduction. SIAM
Journal on Matrix Analysis
and Applications, 31(5):2950–
2971, 2010. CODEN SJMAEL. ISSN 0895-
4798 (print), 1095-7162 (electronic).
URL http://epubs.
siam.org/simax/resource/1/
sjmael/v31/i5/p2950_s1.

Ngo:2012:TRO

[NBS12] T. T. Ngo, M. Bellalij, and
Y. Saad. The trace ratio opti-
mization problem. SIAM Review,
54(3):545–569, 2012. CODEN
SIREADE. ISSN 0036-1445 (print), 1095-7200 (electronic).

Napoli:2016:EEE

[NPS16] Edoardo Di Napoli, Eric Polizzi,
and Yousef Saad. Efficient esti-
mation of eigenvalue counts in an
interval. Numerical Linear Alge-
bra with Applications, 23(4):674–
692, 2016. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-
1506 (electronic).

Ogut:2003:ICL

[¨OBSC03] Serdar ¨Og¨ut, Russ Burdick, Yousef Saad, and James R. Che-
likowsky. Ab initio calculations
for large dielectric matrices of
confined systems. Physical Re-
view Letters, 90(12):127401:1–
127401:7, March 28, 2003. CODEN PRLTAO. ISSN 0031-
9007 (print), 1079-7114 (elec-
REFERENCES

Osei-Kuffour:2015:MRU

Osei-Kuffour:2010:PHL

Parlett:1985:CSI

Parlett:1987:CSI

Philipp:1989:SLS

Philipp:2007:CED

Polizzi:2020:CMS

Philipp:1992:NMM

 REFERENCES

REFERENCES

Saad:1983:NMS

Saad:1983:BRB

Saad:1983:ISI

Saad:1983:PMS

Saad:1984:CNM

Saad:1984:CAT

Saad:1984:PUS

Saad:1985:CCG

Saad:1985:PEL

[Saa85b] Y. Saad. Partial eigensolutions of large nonsymmetric
REFERENCES

REFERENCES

REFERENCES

Germany / Heidelberg, Germany / London, UK / etc., 1993.

Saad:1994:DSA

Saad:1994:TEBa

REFERENCES

ISSN 0895-4798 (print), 1095-7162 (electronic).

REFERENCES

[SAD+00] Yousef Saad, Owe Axelsson, Iain Duff, Wei-Pai Tang, and Andy Wathen, editors. Pre-
conditioning techniques for large sparse matrix problems in in-
dustrial applications. Wiley, New York, NY, USA, 2000. CO-
DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (elec-
tronic). Papers from the International Conference (SPARSE ’99)
held at the University of Min-
nesota, Minneapolis, MN, June 10–12, 1999, Numer. Linear Al-
gebra Appl. 7 (2000), no. 7–8.

[Saad:2010:NME] Yousef Saad, James R. Che-
likowsky, and Suzanne M. Shontz. Numerical methods for elec-
DEN SIREAD. ISSN 0036-1445 (print), 1095-7200 (electronic).

[Schofield:2012:SSM] Grady Schofield, James R. Che-
líkowsky, and Yousef Saad. A spectrum slicing method for the
Kohn–Sham problem. Computer Physics Communications, 183
(3):497–505, March 2012. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-

[SGSM15] Pablo Salas, Luc Giraud, Yousef
Saad, and Stéphane Moreau. Spectral recycling strategies for
the solution of nonlinear eigen-
problems in thermoacoustics.
Numerical Linear Algebra with Applications, 22(6):1039–1058,
2015. CODEN NLAAEM. ISSN
1070-5325 (print), 1099-1506 (elec-
tronic).

M. Balkanski, and Y. Saad.
Higher excited states of acceptors
in cubic semiconductors. Physical
Review B: Condensed Matter and Materials Physics, 35(2):
687–695, 1988. CODEN PRB-
MDO. ISSN 1098-0121. URL
1103/PhysRevB.35.687.

[Saad:1997:PPL] Yousef Saad, Sergey Kuznetsov,
Gen-Ching Lo, Andrei Malevsky,
and Andrew Chapman. PS_PARS-
LIB: a portable library of parallel
sparse iterative solvers. In Pro-
cedings of the Eighth SIAM
Conference on Parallel Process-
ing for Scientific Computing (Minne-
polis, MN, 1997), page 8. SIAM Press, Philadel-
phia, PA, USA, 1997.

algorithm for solving the wide
angle wave equation. Technical
Report YALEU/DCS/RR-
Draft, Department of Computer
Science, Yale University, New
Haven, CT, USA, 1986.

REFERENCES

Saad:1980:PBS

Saad:1981:IMS

Saad85c

Saad:1985:TPH

Saad:1985:ADM

Saad:1985:DPM

Saad:1985:DCH

Saad:1985:PIP

Saad:1985:CGL

PAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

Saad:1986:PIP

Saad:1986:DCP

Saad:1986:GGM

Saad:1987:PDM

Saad:1988:TPH

Saad:1989:DCH

Saad:1989:DCP

Saad:1998:SDS

Stathopoulos:1998:RTJ

REFERENCES

scale eigenvalue problems (Argonne, IL, 1997).

REFERENCES

REFERENCES

239–253, September 1990. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

[XLS18] Yuanzhe Xi, Ruipeng Li, and

Zhou:2006:SCF

Zheng:2020:MLR

Zheng:2021:PSC