Abstract

This bibliography records publications of Jörg Peters.

Title word cross-reference

(3, 5) [Pet02a]. 2 [NKP16]. 3 [NKP16, Pet90a, PS04, PSZF06]. 4 [PS04]. A [KP15d], C
1 [KP15c, NKP16, NP16b, Pet90b, NP92, PS92b, PS92a, Pet95a, Pet95d]. C
2 [KP05, KP18a, KP18b, KP19a, Pet02a, KP09b, MP09, Pet89, Pet96a, Pet95b]. C
k [GP15, Pet92b]. G [SP16]. G
1 [ASC18, KP17, Pet18, Pet92a]. G
2 [HPS12, KP11a, KP11b, KP15a, KP16]. G
k [GP15]. m [PS92a]. A
n [KP10]. T [KP19b].

-splines [SP16]. -surface [Pet95d]. -variate [PS92a].


'91 [MK91].

accurate [YBP14]. Advances [BBP+08]. affine [PR98a]. aided [DLS94, Sap94].
analogyues [NP92]. Analysis [PR98b, MP23, RP06]. animated [YBP14].
application [OPR06]. Applications [Mul96]. Approximate [Pet94c].
approximating [KP12a]. approximation [BS92]. arbitrary
[ASC18, Pet94b, Pet97a, Pet18].
Assembling [KP09a]. Atlasing [OPB+18].
augmented [KP15c].

B [Pet97a, PR98b, Pet98c, Pet98a].
B-Spline [PR98b]. B-splines [Pet98c, Pet98a].
based [KP14, Mul96, PW97b, PW03]. basic [KP11b, KP12b, KP13a, PW97a, PR04]. BB [KP09c]. BB-form [KP09c]. be [KP15d]. Bernstein [Pet94c]. better [Pet03].
Boundary [NP17, Pet90b]. bounded [PU01]. bounds [NPLxx, PU01].
Box [KEP08, PW97b, KP90c, KP10, KP11c, KP24, Pet96a, Pet95b, PW97a]. Box-spline [PW97b]. box-splines [KP90c, KP10, KP11c]. Brunel [Mul96].
built [Pet96a, Pet95b].

Centered [KEP08]. Changing [Pet12].
characterization [KP04, Pet94a, PR04]. Class [KP18a, KP15d]. classes [PR98a].
classification [Pet90c]. code [Pet97a].
Collision [WP04]. Combinatorial [SZP10].
Combining [KP18a, PS04, KP12b].
computer [DLS94, Sap94, War92]. computer-aided [Sap94].
Computing [BBP+08, GOMP98, PN97, PU01].
Concepts [BPP95, Pet95c]. Conference [GM97, Mul96]. Configuration [OPB+18].
continuity [Pet02b]. continuous [GP15, KP09a, KP16]. contracting [KP18b]. Control [PLK23, MP23, NPLxx, Pet96d].
control-net [MP23]. convex [Pet96c].
convexity [GP95]. CSG [PW97b]. Cubic [KEP08, ASC18, KP11b, KP15d, MKP08, Pet90b, Pet90e, Pet96c, Pet18, PLK23].
cubics [FP96, PS92b]. Curvature [KP12a, KP13a, Pet96b, Pet90a, PU00, PU01]. Curvature-sensitive [KP13a]. Curve [HPS12, FP96, KP12a, Pet96c]. curved [Pet04, YBP14]. Curves [DLS98, PET89, War92, KP13a, Pet91b, Sap94].

D [Pet90a, PSZF06, MKP16]. Dagstuhl [FBBD98, GHPW12, HFPW09]. data [Pet90a].
December [BBP+08]. Degree [NP17, KP14, Pet02a]. dependent [OPR06].
derived [Pet14]. Design [BPP95, DSL94, FP96, KP11b, KP13a, Sap94, Pet95c].
Designing [Sap94]. Detection [WP04].
Different [GTP98].
dimensional [GP95, NP92]. direction [NP92, Pet96a, Pet95b, PS04].
Discontinuous [NP16a, NP17, Pet15].
Discrete [PRP05]. Distance [OPB+18, WP04, NPLxx]. dominant [KP19b]. double [FP96].
double-Tschirnhaus [FP96]. Dundee [GM97].

Easy [Pet95e]. Editorial [HFPW09].
effectively [KP18b]. Efficient [OPB+18, YBP14]. elements
Elimination [PSZF06]. enclose [Pet91a]. Enclosed [PN97, GOMP98]. enclosures [LP91a, PW03]. enclosures [LP01b]. 

Enclosed [PN97, GOMP98]. enclosures [LP01b]. Envelopes [LP01b].


Facets [MNP08]. Fair [KP19a, Sap94]. Merits [KP09c, MNP08, RPR05]. Fields [WP04].


Galerkin [NP16a, NP17, Pet91]. Gaussian [PU00]. General [Pet15]. Generalized [Pet90b, Pet93, PR98b, Pet93]. generically [PSZF06].


Germany [FBBD98]. gons [KP19b]. Good [KP18a]. GPU [SJP05]. Graphics [KP18a, KOP05].

H [Pet95c]. held [Mul96]. Hermite [Pet89]. higher [GP95, NP92]. higher-dimensional [NP92]. house [GP98].


International [BBP+08, BPM22]. interpolants [KP14]. Interpolation [Pet89, Pet96c, Pet90b, Pet90c, Pet90e, Pet91b, NP92, PS92b, PS92a, YP18].

interpolatory [KP13b, KP14]. Intervals [OPB+18]. irregular [NP16b, Pet93, Pet95a, Pet96b, Pet96d].

isogeometric [GP15]. Issue [GHPW12, BPM22, HFPW09]. ISVC [BBP+08]. Iterative [PRR05].


kernel [SJP05]. knot [Pet13].


linking [Pet04]. Local [Pet89, Pet90b, Pet90c, PW06, KP14].

Localized [KP22b]. locally [KP19b].


mean [PU00]. mesh [Pet90e, Pet91b, NP92]. Meshes [MN08, KP19b, NNP07, Pet93, Pet95a, Pet96b, Pet96d, Pf10]. Messages [GTP98].

Method [Pet90d]. Methods [DLS98, BS92, DLS94]. Mid [Pet04].

objects [GOMP98]. optimality [PW03]. Optimized [LP01a, SPZ10]. organized [Mul96].


REFERENCES


Smooth
[FP96, KP15e, MNP08, Pet90c, Pet91b, Pet93, Pet01, KP19b, Pet90a, Pet90c, Pet91a, Pet92b, Pet97a, Pet98c, Pet98a, PF10].

Smoothing [Pet95e, Pet97b, Pet98b, PR97].

Smoothness [Pet03]. Solids [PN97].

Solutions [Pet15]. Solvers [PRR05].

Spaces [OPB +18]. Special [GHPW12, BMP22, HFPW09].

Spline [KPP17, KE08, Pet96d, PR98b, KP05, KP16, KP24, NP16b, Pet95a, Pet96a, Pet95b, Pet96b, PW97b, PF10, Pet15, PS15].

Splines [Gon97, Pet13, PLK23, KP11a, KP12b, KP13a, KP13b, KP15e, KP22b, KP09c, KP10, KP11c, LP01b, MP23, Pet93, Pet95d, PW97a, Pet97a, Pet98c, Pet98a, Pet14, SP16].

Stability [PS92b, PS92a]. stable [KP09c]. stitched [ASC18, Pet18].

Stokes [OPR06, PR08].

Structural [RP06]. structures [Pet04]. studies [KP04].

Subdivision
[KP18a, PN97, PR98b, PW06, PR08, WP04, GP95, KPR04, KP07, KP09b, KP12a, KP13b, KP14, KP15c, KP18b, MP09, NNP07, PR97, RU00, PU01, PS04, PR04, RP06, SJ05].

summary [RP06]. supporting [MKP08].

Surface [Gon97, KP15b, MKP08, Pet90b, Pet90c, Pet91a, Pet92a, Pet92b, Pet95d].

Surfaces [DL98, KPP17, KP18a, MNP08, Pet94b, PN97, WP04, GOMP98, GM97, KPR04, KP05, KP09a, KP09b, KP15a, KP15c, KP15d, KP16, KP18b, KP19a, KP19b, MNP96, Pet90a, Pet93, Pet95a, Pet96a, Pet96b, Pet96d, Pet97a, PR08a, PU00, Pet02a, PR04, PR08, PF10, PS15, RP06, Sap94, War92, YBP14].

surfacing [HPS12, Pet98c, Pet98a].

Symmetric [KP10, KP11c]. Symposium [BBP+08]. System [HAPR94]. Systems [SZP10, PSZF06, SPZ10].


Tool [HAPR94]. topological [GP98]. topology [ASC18, Pet94b, Pet18]. transitions [PS15]. Tri [MNP08].

Tri/Quad/Pent [MNP08]. triangular [KP09a]. triangulation [PS92b].

Triangulations [Pet01]. Trimmed [Pet98b, Pet97a, Pet97b, Pet98c, Pet98a].

trivariate [PW97a]. Tschirnhaus [FP96].

UK [GM97]. underlying [PS92b].

Uniform [OPR06, KP13b, KP14].

University [Mul96]. unsorted [Pet13].

USA [BBP+08]. Using
[Pet98b, Gon97, Pet92a, PW97a, Pet97b].

Variables [Pet12]. vary [PS92a].

Varying [Pet90b]. Vegas [BBP+08]. vertex [Pet92b, YP18]. vertices [Pet91a, PS92b].

VI [Mul96]. via
[KP13b, KP15a, KP09c, NP16a]. VII [GM97]. vision [War92]. Visual [BBP+08].

Volume [BS92]. Volumes [PN97].

W [Pet95c]. workshop [FBBD98].

XXX [Far97].

yield [GP15]. yields [KP18b].

zero [Pet96a, Pet95b].

References

Akleman:2018:RT

REFERENCES


REFERENCES


[Farin:1997:XX]


[FBBD98:GMD]


[FP96:SCD]


[Gonzalez-Ochoa:1998:CMO]


[GP95:BNC]


[Goodman:1997:MS]


[Gonzalez:1997:IMU]
REFERENCES


[KEP08] Kemiušas Karciauskas and Jörg Peters. Bicubic polar subdivision. *ACM Transactions on


REFERENCES


Karciauskas:2012:FFS


Karciauskas:2013:CSS


Karciauskas:2013:NUI


Karciauskas:2014:NUI


Karciauskas:2015:BSF


Karciauskas:2015:ISM


Karciauskas:2015:PAB

Karciauskas:2015:SMS


Karciauskas:2016:MBC


Karciauskas:2017:RFF


Karciauskas:2018:NCG


Karciauskas:2018:RCS


Karciauskas:2018:RCS


Karciauskas:2019:RFF


Karciauskas:2022:IRR

Karciauskas:2022:LRP

Kim:2024:PBS

Karciauskas:2017:JSS

Karciauskas:2004:SCS

Lutterkort:2001:ORE

Lutterkort:2001:TLE

MacKay:1991:GIC

Myles:2008:PBC
[MKP08] Ashish Myles, Kęstutis Karčiauskas, and Jörg Peters. Pairs of

Myles:2008:SSF


Myles:2009:BCP


Mishra:2023:PCN


Mullineux:1996:MS


Nguyen:2016:FEN


Ni:2007:TSQ


Peters:1992:IHD

Nguyen:2016:NDG


Nguyen:2016:RSE


Nguyen:2017:ELD


Nairn:19xx:SQB


Ozkkan:2018:AEA


Olshanskii:2006:UPP


Peters:1989:LGH


Peters:1990:FSP

REFERENCES


REFERENCES

Peters:1996:SSI

Peters:1997:CCM

Peters:1997:SPT

Peters:1998:PSF

Peters:1998:SPU


Peters:1998:APF

Peters:2001:SPR

Peters:2002:FFS

Peters:2002:GC
Peters:2003:SFN


Peters:2004:MSL


Peters:2012:CV


Peters:2013:SUK


Peters:2014:RSD


Peters:2015:GSF


Peters:2018:GBS


Peters:2010:CSS


Peters:1994:GCC


Peters:1998:PS

REFERENCES


REFERENCES


[Jörg Peters and Xiaobin Wu. On the optimality of piecewise lin-

Peters:2006:LLI


Reif:2006:SAS


Sapidis:1994:DFC


Shiue:2005:RGS


Sarov:2016:RPG


Sitharam:2010:OPS


Sitharam:2010:RCC


Warren:1992:CSC

for Optical Engineering. SPIE, International Society for Opti-
cal Engineering, Bellingham, WA,

[Wu:2004:DFC] Xiaobin Wu and Jörg Peters. Distance fields and collision detec-
FODY. ISSN 0167-7055 (print), 1467-8659 (electronic).

[YBP14] Young In Yeo, Sagar Bhandare, and Jörg Peters. Efficient pixel-

[YP18] Huogen Yang and Jörg Peters. Constraints for geodesic network interpolation at a ver-