A Complete Bibliography of the Publications of Jonathan Michael Borwein

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

20 September 2023
Version 1.89

Abstract
This bibliography records publications of Jonathan Michael Borwein.

Title word cross-reference

#11418 [BB09l]. #13553 [Bor81a].

\((a, b) \leftrightarrow ((a + 3b)/4, (\sqrt{ab} + b)/2)\) [BBxxb]. \((a, b) \leftrightarrow (\frac{a+3b}{4}, \frac{\sqrt{ab}+b}{2})\) [BB89b].

\((G)\) [BBL99]. \(1/\pi\) [BB87b, BB88d, BB93d]. 24 [BB16o, CKM+16]. \$25

[BB93g]. \$27.95 [BB91d]. \$30.00 [Coh15]. \$44.95 [BC96]. \$45 [Zei05].

\$45.00 [Sha05]. \$49 [Zei05]. \$49.00 [Ban10, Sha05]. \$49.95 [Ber88]. 5

[Ade13, ZS12]. \$59.50 [Bor06o]. 6 [ZZ14]. \$65 [Odl11]. \$69.95 [Bai91]. 8

[BB16o, Via16]. \$99.00 [Bor99b]. \([a + b]\) [Bor91n]. \([a + \gamma]\) [BB93e].

* [BFG03]. \(b\) [BBG04b]. \(R\) [DL02]. \(C^1\) [BKW02, BFL02]. \(W\) [BL16]. \(D_4\)

[Sol95]. \(D\) [BLN94b], \(E_6\) [Sol95], \(E_6\) [Sol95], \(E_6\) [BL11], \(\ell_1\) [XWQ14], \(c\)

[LS00, YS00]. \(G\) [BBL97c], \(k\) [BBB96b, BBB96c, BBB97d], \(L\)

[BB15c, BB07c]. \(L^1\) [BZ94b, BZ97, Hon85]. \(l^\infty\) [Hon85]. \(p\) [Bor97g, Bor98g].
\(L_1 [BL93b, BV97] \). \(L_1(\Omega, \mu) [BF93d] \). \(L_{1/2} [WSL16] \). \(L_p [BTBT88, BBL10] \). \(n [BB84d] \). \(P [Alt82, BLS 16, BLS 17, BLS 18] \). \(\pi \)

\(AW97, ABBS12, Bai88, BBC^+11a, BBC^+12b, BBC^+12c, Bai16b, BBMW16, BB83, BB84b, BB84c, Bor85b, BB86b, BB86c, BB89a, BG96a, BB96d, BG97b, Borxx, BB11-31, Bor14p, Bor16n, Gan14, GG07, Gui08, Nim15, TK97, Wei15] \)

\(\pi^2 [BBMW11, BBMW13] \).

\(q [LL01, PP11, War03] \).

\(Rn [BBW96] \).

\(p 5 \log [Ade14b] \).

\(t [AX20] \).

\((z;q) [HGB93] \).

\(" [Bor82c] \).

\(W [Bor16l, Bor16m] \). Weak

\(BF95b \).

\(x_n := M(x_{n-1}, x_{n-2}, \ldots, x_{n-k}) [Bor94a] \).

\(xy + yz + zx [BC98a, BC00] \).

\((2^n + 2) [BBB05, BBB06a] \).

\((4) [BB95f] \).

\((4^n + 3) [AG99, BB97c, Bor97v, Bor97w, BB05f] \).

- analogue [PP11]. - ary [BBG04b]. - designs [AX20]. - elliptic [LL01]. - fold [BBB96b, BB96d, BB97d]. - function [BKW02]. - linear [DL02]. - regularized [XWQ14]. - Series [BB07c, BB15c]. - smooth [BFL02]. - Spheres [BB11-38, BB12-49, BB12-47, BB12-48, BBG03, Bor03z, Bor03-27, Bor03-28, Bor03-29, Bor04-27, Bor04w, Bor04y, Bor04z, Bor09r, Bor10a, HF05, Hoa05, R+05, Zei05, BB04b]. 25 [Bai17a]. 2nd [Bou06].

\(0 [BC96, Bor06o] \).

\(0-12-558630-2 [BC96] \).

\(0-19-850763-1 [Bor06o] \).

\(0-387-29570-4 [Bou06] \).

\(0-387-87820-3 [Bor11-38] \).

\(0-691-14247-5 [BO11b] \).

\(0-89871 \).

\(1 [BLN94a, Bor06o, Bor11-38, Bou06, Sha05]. 1-56881-136-5 [Sha05] \).

\(1-56881-211-6 [Sha05] \).

\(10 [Bai17e] \). 100-Digit

\([BB07c, BB15c] \).

\(11th [CGM95] \).

\(12 [BB12-49] \).

\(125th [AAB12] \).

\(14th [IEE08] \).

\(17th [IEE08] \).

\(1880-2 [Bor09b] \).

\(1983 [SBW84] \).

\(1987 [AAB+88] \).

\(19th [Hd12] \).

\(2 [BC96] \).

\(2000 [Tod03] \).

\(2000j [BZ02a] \).

\(2001 [BB12a, BB12n] \).

\(2002 [KG04] \).

\(2012 [BBL+13] \).

\(2013 [BS14a] \).

\(2014 [BBC^+14a] \).

\(2016 [BBS17] \).

\(2017 [Bai17e, BBB^+20, BE16] \).

\(20th [BB12x, IEE08] \).

\(21st [BB12p, BB12q, BB12-48, BBC^+14a, BBG03, Bor03z, Bor03-27, Bor03-28, Bor03-29, Bor04-27, Bor04w, Bor04y, Bor04z, Bor09r, Bor10a, HF05, Hoa05, R+05, Zei05, BB04b] \).

\(25 [Bai17a] \).

\(2nd [Bou06] \).

\(3/14/15 [BB15t] \).

\(38 [BZ02a, BZ02b] \).

\(4 [Bor81a]. 4N [Bor97q] \).

\(4th [HY14] \).

\(5 [Sha05] \).

\(51 [Bor81a]. 561-X [Bor05g] \).

\(5th [BF06b] \).

\(60th [BBB^+13] \).

\(6430-6435 [BSZ^+83] \).

\(7th [KG04] \).

\(8 [Zä15]. 80th [Ano15] \).

\(85h [Zä15] \).

\(90d [BBB97a]. 978 [Bor11-38, Bou06] \).

\(978-0-387-29570-1 [Bou06] \).

= [IL09].

A. [BS14b]. AAECC [CGM95]. AAECC-11 [CGM95]. AARMS [Bor05d, Bor05e, Bor07a]. Abel [BB13a, Bor03o]. ability [BB11q].

Abraham [PR92]. Absence [BS11b, BS10b, BS10d, Bor10i, Bor10j, Bor11r, Bor11s]. Absolute [BY84]. Abstract [BW79a, BW79b, BW81c, BW81b, BW82a, BW82b]. abundant [BB12-27, BB12e]. Academic [BC96]. academics [BBLZ16d].

Acceleration [BC18b]. Access [Bor04e, Bor04i, BB05e, Bor07d]. accuracy [Bor05g]. Accurate [BB14i, BB14h, BBLZ14b]. ACE [Bor05-28]. ACEnet [IEE08]. Action [BBC+07b, Bor07m, Odl11, Lor09]. Activated [BBB+96a]. Active [BL99]. Actually [Bor11g, BB12-36, BBWY11c, BBWY12c].

Acylic [BW06]. Aczel [BB15d]. adaptive [FN15, LW18, LW19, NFB17a, NFB17b, QYX14, ZH06]. add [BB11f].

Addenda [BC15b]. Addendum [BZ02a]. Addition [BG95a]. Adjoint [Bor83a, BBWY11e, Zal86]. admit [BV94a, BV96a, BV96b]. Adrian [Bou06, Tod03]. Advanced [Bai91, BL87, Ber88, BSZ+83, BB85, Bor85a, BN86, Bor03b, Bor03c, Bor03a, Bor04f, Bor04g, Bor04h, Bor04e, Bor04e, Bor04d, Bor04a, Bor04b, Bor04i, Bor06d, Bor06b, Bor06c]. Advances [AHL17a, AHL17b, BBC10]. Advancing [KAA+15].

Advantages [BB04-30, BBLZ15d]. Advising [Bor03-30]. Aesthetics [Bor01a, Bor01b, Bor01c, Bor01d, Bor06e]. Affine [BGMS21, BW81a]. Affleck [SZ14]. AG [Bor10z, Bor10-27, Bor11-32]. Again [BB15-31, BB13y, BB14c, BB14w]. Age [Hol20, PR92, BB12-51, BB12-52, BB13-35, BB13-36]. ages [BB10g]. AGM [Ber88, Win88, BB87d, BB88c, BB91c, Bor95c, BB98b, Bor03d, Bor03e, Bor03f, Bor04-0, Bor04-29, Bor04-28, BC04, BC04a, Bre17, Bre20a, Lor08, Sol95, Ask88, Cas99]. Agreed [bVP21]. agree [BB15m]. AI [BBLZ16a]. Aided [BB92b]. al [Gan17]. Alarm [BB12o]. Alexandria [SV14]. Alf [BSZ13].

Algebra [BB12p, BB12q, BB12-48, Bor11-29, CGM95]. Algebraic [BK05, Bor09-27, LY18, SV20, BBCP04, BB84d, BB87b, BLY13, CGM95].

algebras [KMY00]. Algorithm [AC18, Bai88, BB09j, Bor09c, BS11b, CZ21, Fin95, SV20, WSL16, Bai16b, Bor09a, BB94a, BBL97a, BNCB99, BCW13, BS10b, BLY13, BLY14, YJ12, K0m00, Kom02, Kom04, MP18, Pos13, QYX14, TK97, XSW12, XWQ14, ZL22]. Algorithms [BB95c, BB96b, Bor99w, Bor99p, Bor10c, Bor10d, Bor10r, BBC03, BBC+11b, BB84b, BB86c, BL97, Bor98n, BB00b, Bor09-29, Bor11l, CGM95, Gui08, Gui16, Gui17, TK97]. Alignment [HMM20]. Alliance [BB13-44, BB13-43]. Almost [Moo18]. along [BB13-47]. Also [BB16r, BB16q]. Alternating
Arctan [Nim15].

Arguments [BV93b, BV94d].

Arctan [Nim15].

Arcline [BB08c].

Arclines [BB08c].
Gui16, Gui17, HNP10, HYG09, Hir17, HC09, HD07, HLZ14, HL15a, HLZ15b, HL15b, HLY16, HLY16, HLY16, HL15b, HL15b, HLY16, HDL21, IP17, IP18, JY12, JD13, JN03, KMY00, Koh01, KJR16, KPS16, KPS17, La 09, LS00, LLS11, LZ14]. Borwein [Li15, LW18, LW19, LY21, Liu01, LL13, MW12, MR96, MP18, MPB16, MR11, NWY09, NWY10, NFB17a, NFB17b, Osb05, PT14, Pos13, PD18, QR07, QYX14, RP09, Ray93, Ray97, RS02, Rei02, SZ14, SI16, SD15, TK97, Tha02, Vir14, WM07, WsdSY15, War01, War03, WSL16, XH08, XSW12, XWQ14, XC11, Yan94, YS00, YW12, Zhao06, Zal86, ZH06, ZSQ10, ZL22, Zha10, Zho12, ZSZ16, Zhu91]. Borwein-based [JY12]. Borwein-Like [WSL16, DABY15, GDT15, Gui17, JD13]. Borwein-type [Gui16]. Borweins [AB15, AAW06, Bai88, Bai16b, Kom00, Kom02, Kom04, LL01, Liu00, XY12].

Commemorative [Bai17a]. Common [BLT17]. Communicating [BMPR02, BRR08, Ban10]. communications [Bor92c]. Community [Bor03p, BS05]. compact [BRLZ99, BLZ99, BRLZ00, BLZ01]. Compactly [BLM99, BLM00]. compactness [BF93c, BF95b]. Companion [HDG+15, Bor09b]. Comparing [DLR20]. comparison [BGL93]. compendium [BBB96b, BBB96c, BBB97d]. Competition [Bor77d]. Complementarity [AI18, BD86, AR13, Bor84a, Bor85c, Bor87e, BD89, HLZ14, HYL16, KJR16, LLS11, LZ14, Li15]. complementary [BC09]. complete [BZ92]. completed [BB14j]. completely [SZ14]. Completeness [Bor83b, QR07]. Completion [ABT13a, ABT14a, CZX21, Bor13j, Bor14f, Bor14g, Bor15g, Bor16p]. Complex [BC04a, BMN98, BMN00, Bor04-29, Bor10-27]. Complex-Parameter [BC04a]. Complexity [BB84e, BB87d, BB88e, Bxxa, BB17, BB98b, Ber88, Wim88]. complicated [Bor14z, Bor16-27]. component [LY21]. composite [HL15a]. Composition [KMZ+03]. compositions [BM97d]. Compound [BB93f]. Comprehensive [BS14a, BS14b]. Compressed [BB13g, BL17a, BL17b, Bor09c, Bor10b, Bor11p, QYX14]. compression [LY21]. compressive [XWQ14]. Computation [Bai88, BB08a, BBM11, BB12y, BC14b, BBC+14a, BB15b, BB15a, BB16a, BB16b, BBM17, BB18, BB84a, BB97b, Bor99g, Bor99h, Bor99i, Bor99j, Bor99k, Bor99l, Bor99v, BB00b, Bor00h, Bor00i, Bor00j, Bor00k, Bor00l, Bor00m, Bor00n, Bor00o, Bor00p, Bor00q, Bor00r, Bor00s, Bor00t, Bor01i, Bor01j, Bor01k, Bor01l, Bor01m, Bor01n, Bor01o, Bor01p, Bor01q, Bor01r, Bor01s, Bor01t, Bor01u, Bor01v, Bor01w, Bor01x, Bor01y, Bor01z, Bor01aa, Bor01bb, Bor01cc, Bor01dd, Bor01ee, Bor01ff, Bor01gg, Bor01hh, Bor01ii, Bor01jj, Bor01kk, Bor01ll, Bor01mm, Bor01nn, Bor01oo, Bor01pp, Bor01qq, Bor01rr, Bor01ss, Bor01tt, Bor01uu, Bor01vv, Bor01ww, Bor01xx, Bor01yy, Bor01zz, Bor01a, Bor01b, Bor01c, Bor01d, Bor01e, Bor01f, Bor01g, Bor01h, Bor01i, Bor01j, Bor01k, Bor01l, Bor01m, Bor01n, Bor01o, Bor01p, Bor01q, Bor01r, Bor01s, Bor01t, Bor01u, Bor01v, Bor01w, Bor01x, Bor01y, Bor01z, Bor01aa, Bor01ab, Bor01ac, Bor01ad, Bor01ae, Bor01af, Bor01ag, Bor01ah, Bor01ai, Bor01aj, Bor01ak, Bor01al, Bor01am, Bor01an, Bor01ao, Bor01ap, Bor01aq, Bor01ar, Bor01as, Bor01at, Bor01au, Bor01av, Bor01aw, Bor01ax, Bor01ay, Bor01az, Bor01ba, Bor01bb, Bor01cc, Bor01cd, Bor01ce, Bor01cf, Bor01cg, Bor01ch, Bor01ci, Bor01cj, Bor01ck, Bor01cl, Bor01cm, Bor01cn, Bor01co, Bor01cp, Bor01cq, Bor01cr, Bor01cs, Bor01ct, Bor01cu, Bor01cv, Bor01cw, Bor01cx, Bor01cy, Bor01cz, Bor01da, Bor01db, Bor01dc, Bor01dd, Bor01de, Bor01df, Bor01dg, Bor01dh, Bor01di, Bor01dj, Bor01dk, Bor01dl, Bor01dm, Bor01dn, Bor01do, Bor01dp, Bor01dq, Bor01dr, Bor01ds, Bor01dt, Bor01du, Bor01dv, Bor01dw, Bor01dx, Bor01dy, Bor01dz, Bor01ea, Bor01eb, Bor01ec, Bor01ed, Bor01ee, Bor01ef, Bor01eg, Bor01eh, Bor01ei, Bor01ej, Bor01ek, Bor01el, Bor01em, Bor01en, Bor01eo, Bor01ep, Bor01eq, Bor01er, Bor01es, Bor01et, Bor01eu, Bor01ev, Bor01ew, Bor01ex, Bor01ey, Bor01ez, Bor01fa, Bor01fb, Bor01fc, Bor01fd, Bor01fe, Bor01ff, Bor01fg, Bor01fh, Bor01fi, Bor01fj, Bor01fk, Bor01fl, Bor01fm, Bor01fn, Bor01fo, Bor01fp, Bor01fq, Bor01fr, Bor01fs, Bor01ft, Bor01fu, Bor01fv, Bor01fw, Bor01fx, Bor01fy, Bor01fz, Bor01ga, Bor01gb, Bor01gc, Bor01gd, Bor01ge, Bor01gf, Bor01gg, Bor01gh, Bor01gi, Bor01gj, Bor01gk, Bor01gl, Bor01gm, Bor01gn, Bor01go, Bor01gp, Bor01gq, Bor01gr, Bor01gs, Bor01gt, Bor01gu, Bor01gv, Bor01gw, Bor01gx, Bor01gy, Bor01gz, Bor01ha, Bor01hb, Bor01hc, Bor01hd, Bor01he, Bor01hf, Bor01hg, Bor01hh, Bor01hi, Bor01hj, Bor01hk, Bor01hl, Bor01hm, Bor01hn, Bor01ho, Bor01hp, Bor01hq, Bor01hr, Bor01hs, Bor01ht, Bor01hu, Bor01hv, Bor01hw, Bor01hx, Bor01hy, Bor01hz, Bor01ia, Bor01ib, Bor01ic, Bor01id, Bor01ie, Bor01if, Bor01ig, Bor01ih, Bor01ij, Bor01ik, Bor01il, Bor01im, Bor01in, Bor01io, Bor01ip, Bor01iq, Bor01ir, Bor01is, Bor01it, Bor01iu, Bor01iv, Bor01iw, Bor01ix, Bor01i,
Bor91m, Bor92e, Bor92f, Bor08c, BD09]. **Computer-assisted**
[BB05a, BB08c, Bor06h, Bor07g, Bor08d, Bor08e, Bor08f]. **computers**
[BB12s, BB12m, BB16c, BB16s]. **Computing**
[BBLZ13a, BBS16b, Bor98h, Bor01e, BB01c, Bor02s, Bor02t, Bor03a, Bor04f, Bor04h, Bor05-28, Cal16, IEE08, JWD+14, Bor92k, Bor92l, Bor92m, Bor98q, Bor03x, Bor03y, Bor06-28, BS11c, BS12a, Bor05g]. **Conant**
[Bai16a, BE16]. **concave** [Bor86b]. **Concavity** [SZ81, Bor90b].
Conditions
[BTZ95, BBY12, LY18, Bor82b, BZ88, BL91d, BTZ98]. **Cone**
[BW81a, BW05a, BW81d, BS89, BBL04, BG09]. **Cone-convex**
[BW81a, BW81d]. **Cone-monotone** [BW05a, BBL04, BG09]. **Cones**
[Bor77c, Bor86d, Bor87c, Bor87b, EB08, B076, Bor78c, Bor80a, BM09, BM10, Zhu91]. **Conference**
[Ano15, Bai17a, Bea13, HY14, IL09, AAB+88, ABD03, BF06b, KG04, RZ15]. **Confidence**
[BBLZ14g, confirm [BB14m], conflicted [BBLZ15d]. **conformation** [BT14b, BT14a, BT17], confusing [BB10b], confusion
[BR89c, BR14a]. **Congress** [Bor05i]. **congruence** [Cos17]. **Conical**
[BBB98a, BB99b, BBL97c, BBL99]. **Conjecture**
[DP18, Osb05, BB14q, BB14s, BBBBB, BBBBB, BBW95b, BBBBB, BW97b, BMS13, BSM13, Cvi10, HC09, RP09, Tha02, War01, War03, Zah06, Zha10]. **conjectured** [ABBS12, BB11-31]. **Conjugate**
[BB87, SI16, BB96, BB99c, BBWY11d, BBWY13, BB09, DK16, MP18, WSdSY15, XSW12]. **Conjugates**
[BH06]. **conjugation** [BH09]. **Consequence** [Bor79b, Bor81e]. **Consequences** [Bor87c, Bor86d, Bor87b]. **conspiracy** [BB16g, BB16h].
Constant
[BCM20, BB09, BBM11, Bor95q, Bor95r, Bor10x, Bor11-30, PT20, BB09, BBC09, BBM13, BB85, BVW01, BBGW11, Cra12]. **Constant-Length** [BCM20]. **constants**
[AI18, BCPZ20, AK22, BTZ98, DF05, XH08, XC11, ZH06]. **constraint** [BW79b, BW82a, BW82b, BW86]. **constraints**
[Bor77a, BW81a, PD18, ZL22]. **constructed** [BB11i, BB12-34, BB12-35]. **Constructible** [BV04]. **Construction**
[BBWY11b, BBWY12b, GG07, AX20, BGWW97, BW98]. **Constructions**
[BV12, Com18, How14, BV10b]. **Constructive** [BK04]. **contained**
[Ara07, Ara08]. **containing** [BV97]. **Continuations** [Di21]. **continue**
[BB15z, BB15v]. **Continued** [Bor03d, Bor03e, Bor03f, Bor04-30, Bor04-29, Bor04-28, BCP05, BVdPSZ14, BCLM16, BHL16b, BHL16a, BCLM17, BBGPxx, BL05, Bor05j, Bor06i, BL08, Bor10z, Bor10-27, Bor11-32, BHL17]. **continues** [BBxxc, Bor15c]. **Continuity**
[BGM18, Bor82a, Bor87a, BV00a, BV02, BW05a, BY12e, BY13c].
Continuous
[BBC09, BTZ95, BB96a, BB99c, BBW07, BTZ98, BW99, BW01]. **continuously** [BFKL00, BFKL01]. **contraction** [Bor83b]. **Contractive**
[RZ18]. **Control** [ANR18, BB151, BZ94a, LY18, BZ94b, BZ97, NFB17b].
controls [BB15w]. conundrums [Tre13]. converge [Bor98d]. Convergence [BB93b, BBT85, BL91a, BL93a, BL93c, BV95a, BBP95, BBP98, BV9x, BY06, BST13, BLT15, BLT16, BLT17, Gil18, Lor08, Mar91, AB12, AB13, AK22, BB93a, BB90a, Bor88j, BF99c, BL91c, BV93a, BV93b, BV94c, BV94d, BH94a, BH94b, BV95b, BV95c, BV95d, BV96c, Bor09-29, BLY13, BLY14, BST15, DL02, HL15b]. Convergent [Bai88, AL10, Bai16b, BB83, Bor94a, TK97]. converges [Bor94a]. converging [BB86c]. converse [BW98a]. Convex [ABMMY13, BB95c, BB96b, BBL97a, BW79a, Bor80b, Bor81b, BT84, Bor87c, Bor90e, Bor90f, Bor90c, Bor90d, Bor91b, Bor91c, Bor93e, BV94b, BV94d, Bor95a, Bor95b, Bor96a, BV97, Bor99a, BRLZ99, BLZ99, BV9x, BL00a, BV00h, BRLZ00, BV01, BLZ01, Bor01o, Bor02b, BL06, Bor06s, Bor08u, Bor09-28, Bor09-32, BV10b, Bor10k, Bor10-33, Bor11q, BV12, Bor13p, BG15a, Bor15f, BL15, Bor16i, Bor16j, Bor16k, BG16c, Bor16u, Bor16v, Bor16w, Bor16x, Bor16y, BG18a, BML18, CFG+18, Moo18, Roc20, AB12, AB13, ABMMY14, BBS10, BBL94, BBL97b, BBL97c, BBL99, Bor79e, BW79b, Bor79a, Bor80e, BW81a, BW81c, Bor81c, BW81d, Bor81d, BW81b, Bor82a, BW82a, BW82d, BPT84, Bor84e, BT85, Bor86e, Bor86a, Bor86b, Bor87a, Bor87k, BP87, Bor88l, Bor89j]. convex [Bor90g, Bor90h, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91d, Bor91h, BFK91, Bor91r, Bor91s, Bor91t, Bor91u, BZ91, Bor92d, Bor92g, Bor92h, BL92c, BL92d, Bor92a, BBT92, BL93a, BB93a, Bor93f, BV94c, BFV94a, Bor94g, BLN94a, Bor94l, BN94, BL94a, BFV95c, BV95a, BV95b, Bor95m, Bor95n, Bor95s, BV96c, BL96, BFV97, BMN98, BZ98, BLM99, BV00a, BMN00, BLM00, Bor00r, Bor01p, Bor01q, Bor01r, BV02, BV04, Bor05-33, Bor05-34, Bor05-35, Bor05-36, Bor05-37, BMV06, Bor06-33, Bor06-34, Bor06-35, BZ06, BM09, BGV99, BM10, BY12, BY12a, Bor12p, BLY13, BLY14, BY14, Bor14o, BY14a, Bor15i, BGL5b, BGL5c, Bor15r, BG16b, Gll18, NWY09, PD18, YW12, ZL22, Zhu91, CFG+18, Bor06, How14, Tod03]. convex-concave [Bor86b]. Convexity [BBFG00, Bor07-28, Bor07-29, Bor07-30, Bor07-31, BS11b, BS15a, BB11a, BBC00a, BB00a, BBC01, BB01b, BO76, Bor77a, BO78, Bor78c, BBFG01, Bor07-27, BS10b, BS10c, BS10d, Bor10i, Bor10j, Bor11r, Bor11s, BY12d, BY14b]. convolutions [BBEM10]. Copulas [Bor13k, PHB12, BH19, PHB14]. copyright [BB10b]. correcting [CGM95]. correlation [BR14c, BR14a]. cosmic [BB09d, BB11d]. could [BB12]. Counter [Bor17b]. Counter-examples [Bor17b]. counterexamples [BV10b, How14]. Counterpart [BB88c, BB91c]. Counterparts [BB15s, BBLZ15b]. counting [BB11e, BB93g]. country [Bor13d, Bor13a]. courses [BB12-44]. crackers [Bor11o, Bor11a]. Crandall [BB12-38, BB15c]. Crash [BB15x, BBLZ15f]. creation [BB09h, BB13-41]. Creationism [BB10c]. creationists [BB13c]. Creativity [Bor090, Bor12n, Coh15]. Crime [BB15i, BB15w]. Criminology [BB13h]. crisis [BB12-41, BB12-53]. critical [BKW02]. cross [DS20]. Crossing [Goo20]. Crucible [Bor09d, Bor08c, BD09]. Cubic [BB84b, BB88c, HGB93, Hiri17, AB15, BB86b, BB90b, BB91c, BBG94c, Bor95c, LL01, Liu00, MP18, XY12]. cultures [Sel16]. Cup [BR14b].
Curiosity [BB12g]. curve [Bor90e, Bor90f]. CUSCOS [Bor89c, Bor89d, Bor90y, Bor90z, Bor90-27, Bor90-28, Bor91a]. Cusps [Bor04i, Bor04m, Bor06c]. Cutters [DLR20]. Cyclic [BT13a, BT13b, BBL94, BBL97a, BBL97b, BLO8, BLY13, BLY14, BT14c, BT15, DHSZ06, HLY16, XSW12, ZH06]. cyclotomic [HC09].

D [BB09g, BB93g, How14, Od11, Bor05-46]. D-DRIVE [Bor05-46]. DALKBAR [BBLZ14j]. Damping [BC18b]. Dangerous [BB12]. Dark [BBLZ14m]. Data [BB14i, BB15h, BB15i, BTZ95, Bor09c, CZX21, BB12-50, BB14h, BBLZ14b, BTZ98, LY21, PHBH13]. dating [BB12d]. David [Hoa05, Sha05, Zei05, Bor03-32, Bor04n, BE16]. Days [Bor11d, Bor16n, Bor11h]. DC [Coh15, AMM10]. Decafening [Sol15]. death [BB11e]. December [Bea13, BB13-35, BB13-36, Bor13-30, Bor15m]. Decadence [BBB06a, Las18, BBB05, BM97f, BM00, BT14b, BT14a, BT17].

Dedekind [BG96a, BG97b, BG97a, BB98c, BB98d]. Dedekind-zeta [BB98c, BB98d]. Default [BBL+13, SBB13, BBS13a, BB13-35, BB13-36, Bor13-30, Bor15m]. Denominators [BZ87]. dense [BB06a, BB99c, BBFY11c, BBFY12c, BY12f]. Densities [BSWZ21, BSWZ22, BSV15, BSV16, Bor14t]. Density [Hou85, BS16b]. Department [Bor03i]. Derivative [BBLN94, Bor94g, BLN94a, BLN95, Bor95m, Bor95n, BBLN95, BLN96]. Derivatives [BB18, BFV93a, BD16a, BD18, AL10, BB16a, BFV93b, BF93c, Bor94m, BM95, BF95b, Bor95v, BMW97]. Deriving [BB14-32]. Descent [Bor99c, SD15, RS02]. design [BBL16a, BBL16c]. designs [AX20]. Desperately [BB15], BB15k. detected [BB16f]. Determination [BB06a, Las18, BB05, BM97f, BM00, BT14b, BT14a, BT17]. Determinations [BB98c, BB98d]. determined [BB97c, BB05f]. developed [BB11q]. Developments [BB99a, BB01a]. devices [Bor00w]. dictionary [BB95e]. Dictionary [Bai91, BB88b, BB99d, BB99e, BS14a, Bor90, BB91a, BB02, BB90d, BBW97, BS14b]. Did [BB13j, BB09f, BB12g]. didn’t [BBW97]. Diego [BC96]. dies [An016, BB12-38, Bai16c, Bai20]. Died [Bor90b]. Difference [Bor11q, BB11a]. different [PHBH13, Zha13]. Differentiability [BB010, Bor90g, Bor90h, Bor90i, Bor90k, Bor90j, Bor91l, Bor91d, Bor92a, Bor92d, Bor02e, BB04, BV09, Bor76a, Bor82a, Bor86c, Bor86b, BFG87, BP94, Bor90a, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91r, Bor91s, Bor91u, Bor92g, Bor92h, BB93a, BB93f, BB93g, BB93h, BN94, BW05a, BM06]. Differentiable
Differential
[BM97b, LY18, MR96]. Digit [Bor05g, Ade10, BB12-29, BBG04b, Bor11j].
digit-extraction [Bor11i]. Digital [Bor02f, BS03, Bor03-35, Bor05i, BRR08, BB09k, BB11z, Ban10, BM06, Bor06-36]. Digitally
[BBB+96a, Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor12-33, Bor09u]. Digitally-assisted
[Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor09u]. Digitized
[BB05e]. Digitizing [Bor02g]. Digits [Bai88, BBMW11, BBC+96a, BFKL00, BFKL01, Bor05g, Ade10, BB12-29, BBG04b, Bor11j].
Dilemmas [GS08]. dilogarithmic [Cvi10]. Dimension [ANR18, BCC10, HDL21, AAW06, BW81c, BW86, Bor91h, Bor92d, Bor92n, Bor92j, BF94a, Bor94b, Bor94g, BF95a, Bor95m, Bor95n, Bor97f, Bor97m, DS20]. Dimensions [BB86a, WB87, BB16o, Bej94, BL91d, BFL02, Bor14t, BS16b, Bor14x, Bai16b, Bor08g, Bor09a, Bor09e, Bor09f, Bor09g, Bor12-33, Bor09u].
discipline [Bor05g]. Disciplined [Bor16h]. Discourse [BS03]. Disclose [BB09j]. Disclosed [BB11r, BB11-29, Bor95c, Bor97q, Bor97v, Bor97w].
Discover [BB09j]. Discovers [BB11r, BB11-29, Bor95c, Bor97q, Bor97v, Bor97w]. Discovery [BB11l, BB11m, BBKL16, BBKL17, Bor02i, Bor02m, Bor03j, Bor03l, BBG03, Bor04p, Bor05i, Bor05m, Bor05n, Bor05o, Bor05p, Bor05a, Bor06l, Bor07g, Bor07k, Bor08g, Bor12-33, Bor16f, R+05, Ade12, BB08c, BB10f, BBG04a, Bor06a, Bor08d, Bor08e, Bor08f, Bor09a, Bor09e, Bor09f, Bor09g, Bor09u, Zei05]. Discussion [BBGP95a]. disease [BB13-28]. distance [BB00a, BB01b, BB02c, BB09j].
Distances [BBG94a, BBG94b]. Distinct [BW95a, BW97a, BB95d].
distributed [Bor99d, BB95d]. Distribution [BB95d]. Distor [BO11a, GN16, Mil90, Mil89, MW12]. divergence [Lor08]. Dizionario
[BB95d]. DNA [BB12-50]. Do [BB12-50].
[BB12-50]. dodgy [BB12a]. Does [BB12b, BB12c, BB12d, BB12e, BB12f, BB12g, BB12h, BB12i, BB12j, BB12k, BB12l, BB12m, BB12n, BB12o, BB12p, BB12q, BB12r, BB12s, BB12t, BB12u, BB12v, BB12w, BB12x, BB12y, BB12z]. doesn’t [BB12a]. Doing [BB12a].
[BB12a].
15

[PL20, BBC⁺11b]. engines [BWB97]. Engines [Bor04p, Bor05l, Bor05m, Bor05n, Bor05p, Bor06l, R⁺05].
enhancement [BM07a]. ENIAC [Bor12o, Bor14p, Bor14s, Bor16o].
Enlargements [BBY11, BBY13]. enough [BB14-28]. entire
[Bor02g, BS10a]. Entropy [BL11]. entropies [BGL93, BH94a, BH94b].
Entropy [BL93c, BL94, BLN94b, BLN94, Bor97l, Bor01o, Bor05-33, Bor06-33, Bor08p, Bor09v, Bor10k, Bor10v, Bor12q, Bor13k, Bor13l, Bor13p, BHP14, BZ20b, Bor90c, Bor90d, BL91a, Bor91b, Bor91c, BL91b, Bor91h, Bor92d, Bor92n, Bor92j, Bor93e, Bor93k, BL93b, Bor94g, BLN94a, BH95, Bor95m, Bor95n, BLN95, BLN96, BCM03, Bor12r, BH19, PHB12, PHBH12, PHB14, BCM02]. entropy-like [BL91b]. Entropy-Type [Bor01o].
Entry [BS16a]. Environment [IEE08]. Environments [Bor04e, Bor04d, Bor04i, Bor06d, Bor06b, Bor06c, Bor06g]. Epi [Bor87m, BLM99, BLM00]. Epi-Lipschitz-like [Bor87m], epi-Lipschitzian [BLM99, BLM00]. Epigraphical [BV95b, BV96c]. episode [BBLZ15g].
equality [Bor77a]. equation [BB13g, BBCZ13, NFB17b]. Equations [AI18, BM97b, BBB97c, BBB00b, BBB04b, BBB16, LY18, BBB97a, Bor86f, Bor87g, Bor87f, BB89a, BBL97c, Bor90e, Bor90f, Bor90c, Bor90d, Bor90e, Bor90f, Bor90d, Bor90c, Bor91c, BTB92]. eta
[BBG96a, BG97b, BG97a]. ETFs [BBLZ14a]. Euclidean [Bor84b, La 09]. Euler [BBB93a, BBG94a, BB06a, BB08d, BBD89, Bor89f, Bor90-29, Bor90-30, Bor90-31, Bor90-32, Bor90-33, Bor90-34, Bor90-35, Bor90-36, Bor90-37, Bor90-38, Bor90-39, Bor91j, Bor91k, Bor91i, Bor91l, Bor91m, Bor92e, Bor92f, BBG94b, BBG95c, Bor95e, BG95b, BBB96b, BBB96c, BG96b, Bor96f, Bor96g, Bor96h, BBB97d, Bor97f, BBD97, Bor98f, BBD00, BB05g, Bor06j, Bor06k, BBB06b, BZB08, BCM09, BBD16, Dl20]. Euler/Zagier [BBB96b, BBG05, BG05, BS11a, BBSW11, BS12b, BBSW12]. every [BKWO2]. ever [Mic03].
Every [BBWY11c, BBWY12c]. everybody [BB11a, BB11d, BB12-30, BB11g]. Everything [SW21, BB09g].
everywhere [Bor12]. evolution [BB12w, BB12-50, BB13b]. Ewing [Jac09].
Exact [BB99g, Bor99h, Bor00b, Bor00c, Bor00d, Bor00e, Bor00f, Bor00g, Bor00h, Bor00i, Bor01i, Bor01j, Bor01k]. example [Bor92c, BD11].
example-oriented [BD11]. Examples
[BFV94b, BFV94c, BFV94a, Bor17b, Com18, DLR20, BB05b, Bor87m, Bor93p, Bor94l, Bor95s, BZ98, Bor06, Tod03]. Excel [BB13-31], excluding [BBG04b].
Excel [BB13-31].

Existence

[BF89b, CG18, Bor82d, Bor83e, Bor84c, Bor88k, BL93b].

Expansion

[Can14, BB83].

Expand

[BBD97, BBD04, BB07c, BBCP04, BBD89, BG95a, BBGPxx, BBD16].

Expansive

[BBC08a].

Expansion

[Gan14, BB83].

Expansions

[BBD97, BBD00, BBD04, BB07c, BBCP04, BBD89, BG95a, BBGPxx, BBD16].

expansive

[BS10a].

Expectations

[BBCR13, Bor12g, Bor12h, BR16].

Experience

[Bor07d]. experiences [Bor08q, Bor12t].

experiencing

[KMT16].

Experiment

[BBG03, Bor03z, Bor03-27, Bor03-28, Bor03-29, Bor04u, BB04b, Bor05-31, Bor05-29, Bor05-30, BB08h, Bor10a, HF05, Zei05, Hoo05, Sha05].

Experimental

[BBG93a, BBG94a, BB99a, BB01a, BB05b, BB06a, BB09e, BB09a, BB10d, BBBBBZ10b, BBBBBZ10a, BBL+13, BB14a, BB15n, BB15o, BB16c, Bai17b, Bai17c, BB18, Bor94c, Bor94d, Bor94e, Bor94p, Bor94r, Bor94q, Bor95e, BBGPxx, Bor95a, Bor95f, Bor95g, Bor95h, Bor95i, Bor95j, Bor95k, Bor95l, Bor96w, Bor96c, Bor99g, Bor99h, Bor99i, Bor99j, Bor99k, Bor99l, BBGPxx, Bor00b, Bor00c, Bor00d, Bor00e, Bor00f, Bor00g, Bor00h, Bor00i, Bor00j, Bor00k, Bor01h, Bor01i, Bor01j, Bor01k, Bor02j, Bor02k, Bor02a, Bor02b, Bor02c, Bor02d, Bor02e, Bor02f, Bor02g, Bor02h, Bor02i, Bor02j, Bor02k, Bor02l, Bor02m, Bor02n, Bor02o, Bor02p, Bor02q, Bor02r, Bor02s, Bor02t, Bor02u, Bor02v, Bor02w, Bor02x, Bor02y, Bor02z, Bor02A, Bor02B, Bor02C, Bor02D, Bor02E, Bor02F, Bor02G, Bor02H, Bor02I, Bor02J, Bor02K, Bor02L, Bor02M, Bor02N, Bor02O, Bor02P, Bor02Q, Bor02R, Bor02S, Bor02T, Bor02U, Bor02V, Bor02W, Bor02X, Bor02Y, Bor02Z, Bor03-29, Bor05-41, Bor06m, Bor06n, Bor07l, Bor07m, Bor07n, Bor07o, Bor07p, Bor07q, Bor07r, Bor07s, Bor07t, Bor07u, BB08g, BB10l, BaO12, Bor14h, Bor16g, Bor16f, CDH+21, CC20b, JB21, dPB21, AMM10, BBKW06, BB14t].

experimental

[BB16a, Bor93p, Bor93q, BBGPxx, BB05h, BC98b, BC99, Bor08c, Bor08b, BD09, BD11, Bor09, Od11].

Experimentally

[BB12y, Bor93i, BB11-31].

Experimentation

[BB12y, Bor92i, BBGPxx, Bor03k, Bor03l, Bor03m, Bor03n, BB04a, Bor04q, Bor04r, Bor04s, Bor09h, Bor09i, Bor10l, Bor10m, Bor11t, Bor12-33, Bor12i, Bor13m, Bor13n, BB11j, BB12z, Bor09u, Zei05].

Experimentelle

[BD11].

Experiments

[BBG03, BBG06, CS21].

Explainer

[BR12, BR13b, BR14a, Tre13].

Explicit

[BB06b, BB84d, BB87a, BL92d, BBGPxx, BB95c, BB86b, BS10a].

Exploration

[BB12y, BB16n, BB16m].

Exploratory

[BB11j, BB12z, Bor09h, Bor09i, Bor09u, Bor10l, Bor10m, Bor11t, Bor12-33, Bor12i, Bor13m, Bor13n, Bor14i, Bor14j, Bor14k, Bor14m, Bor14n, Bor15h].

Exploring

[BB12k, KMT16].

Exponential

[BB94b, BB03b].

exposes

[BBLZ15g].

exposing

[Bor78b].

Expressions

[BSW82, BBK14].

Extended

[NWY09, NWY10, BBC14b].

Extending

[SV20].

Extension

[CS17, La 09, Bor82e, DABY15, Mil90].

Extensions

[Bor10x, Bor11-30, Bor88g, Bor88h, Bor88i, Bor94b, BGV02, BMV06, BBGW11].

extraction

[Ad10, Bor11].

Extraordinary

[Bai6d].

extraterrestrial

[BB11g].

Extremal

[PR92].

Extreme

[BoR06m, BoR06n, GDT15, JD13].

F

[Ban10].

FAA

[BBS17].

FAAAS

[BBS17].

Face

[Cal16, Bor96k, Bor97x].

Facial

[BW81d].

Facilitating

[BBS16b].

facilities [JY12].

fact

[BB12f, BB15m].

factor

[BBLZ14h].

Factorial

[BC18a].

factorization
[BB12-27, BB12e]. Gateway [Bor04j, Bor04k]. Gauss
[Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Borxx, Cos17, TK97].
Gaussian [Cha03]. Gems [AMM10]. General
[BB06b, AB15, BBWY12a, BBWY12a, Bor85c, BV00b, BV01, Bor07x]. Generalisation [BLS+16]. Generalisations [Bor17b]. Generalization
[Mil89, YS00, AB15, Bor97g, Bor98g, LS00]. Generalizations [TB80].
Generalized [Bor84a, Bor99m, Bor99n, BMW99a, BMW99b, BMW99c, Bor00l, Bor00m, BMV01, Bor10x, Bor11-30, BS11d, BS11e, BHL16b, BHL16a, BHL17, LPB01, RP09, S281, BFG87, Bor94b, BBGW11, Cha03, War01, War03, ZS16, Bor90b]. generated [SZ14]. Generating
[Bor07g, Bor07k, Bor91n, BB93e, Bor06h, PHBH12]. Generation
[PHBH13, BB16l, BJCW13]. generator [BCJW13]. generators [BB13x].
Generic [Bor86e, Bor99m, Bor99n, Bor00l, Bor00m, Bor86b, BF93b, BW98b, BW00, BK01]. generically [BW98a]. genius
[Bor91p, Bor91q, BB91d, Bor11e]. geologic [BB10g]. Geometric
[BB84a, BLM96, BB97b, BLM97, BB00b, BB04a, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89e, BBG93b, BB16t, IP17, IP18].
Geometry [Bor99m, Bor99n, Bor11-30]. German [BB96d, BD11]. get
[BB09f, BB14-28]. Getting [BB13m]. Girgensohn
[Odl11, Sha05, Rei02, SZ14]. Giuga
[BB13n]. Global
[AB12, AB13, ABT15, ABT16, BB12-28, BB10c, BB12c, NFB17a].
globalization [GS02]. Glum [BB13n]. glummer [BB13n]. go [Bor15a].
goals [BB10h, Bor13c]. God [BB12-32, BB12-33]. goes [BB11u, Bor05k].
Going [BB12x]. Goldbach [Bor05c, BB05d, BB06c, Bor10b, Bor10-31].
Golden [Ade14a]. Good [Bor00j, Bor00k]. googol [Cra12]. googol-th
[Cra12]. Got [Bor15t]. Gowers [Bor09b]. Gradient
[BB88a, CZX21, SI16, SD15, BFKL00, BFKL01, BFL02, DLL05, DK16, G02, Li15, LL13, Mar91, MP18, NFB17a, NFB17b, QYX14, Ray93, Ray97, WSISY15, X08, XSW12, XWQ14, YW12]. Gradients
[Bor99m, Bor99n, Bor00l, Bor00m]. Grading [Swe17]. Graph
[AC18]. graphics [BJCW13]. Graphs [BB93b, Ber88, BFG03]. Graves
[BD03]. Gravitational
[BB14m, BB16f]. great [BB11k, Bor13d, Bor13a]. Greatest
[BB11l, BB11m, BB10f]. greco [Bor08a]. Greek
[BS14b, BS14a, Bor90o, Bor90p, Bor94f, Bor08a, SV14]. Green
[Bor09b, BB12-27, BB12e]. Grid [Bor03b, Bor03c, Bor03a, Bor04e, Bor04a, Bor04b, Bor04c, Bor04i, Bor05-28, Bor07d]. ground
[BB12-30]. Groups
[Bor16l, Bor16k, BG16c, BG15a, Bor15f, BG15c, Bor16i, Bor18a]. Grove
[Bai91]. guarantee [Cam16]. Guessing [Sei01]. Guide
[Bor02j, Bor02k, Bor06o]. Guided [Bor92i]. Gun
[BB15l, BB15w]. guru
[BBLZ14q]. Gurus [BBSL20].

H [Bor92b, Hoa05, Odl11]. H. [MR11]. Haar [BF95c, Bor95a, Bor95b].
Hadamard [BF93d]. Hahn [Bor82e]. Haifa [IMR92, RZ15]. Half [WSL16].
Halloween [BBLZ13e]. Hand
[BB12-29]. Hand-to-hand
[BB12-29].
Handbook [Sch15]. handheld [Bor00w]. Handling [Bor03p]. happen [BB13-33]. Hard [Bor01e, Bor02s, Bor02t, BB14d, BBL+16b, XCl11]. hard-wired [BB14d]. Hardback [Ban10]. hardcover [BC96, Bor09b]. HarperCollins [BB91a]. hating [BO11b]. Hausdorff [BK80]. having [BF93a]. Hard [Bor01e, Bor02s, Bor02t, BB14d, +16b, XC11]. hard-wired [BB14d]. Hardback [Ban10]. hardcover [BC96, Bor09b]. HarperCollins [BB91a]. hating [BO11b]. Hausdorff [BK80]. having [BF93a]. Hard [Bor01e, Bor02s, Bor02t, BB14d, +16b, XC11]. hard-wired [BB14d]. Hardback [Ban10]. hardcover [BC96, Bor09b]. HarperCollins [BB91a].
interpolation [Bor98o, DS20]. intersection [BBL97c, BBL99]. Interview [Ano15, BB15n, BB16i, Bor12w]. intriguing [Bor93o, BB95f]. Intrinsich [Kru18]. Introduction [BZ20a, BC21, Bor97I, Bor02o, Bor07r, Bor07s, Bor07t, Bor07u, Bor09s, Bor09q, BR10, Bor11k, Bor11i, Bor13g, BvdPSZ14, Bor20, Bre20b, BL20, Bor08c, BD09, Bor10s, BD11, BS11c, BS12a]. invariance [BLZ99, BLZ01]. invariants [BB98c, BB98d]. invented [BB11r]. inventor [BB12-38]. Inverse [Bor97h, Bor08p, Bor09t, Bor09v, Bor10k, Bor10v, Bor12q, Bor13f, Bor13p, AL10, BBC+11b, Bor92k, Bor92l, Bor92m, Bor12p, BT14b, BT14a, BT17]. investigation [BBGPxx]. Investing [BB14n, BBLZ13c, BBLZ13h, BBLZ14g]. Investment [BBLZ13a]. investments [BBLZ15g]. Investor [Bor14c]. investors [BBLZ13b, BBLZ14j, BBLZ15b, BBLZ15d]. involving [BSW82, Bor93o, Mer15, XY12]. ISBN [Ban10, BC96, Bor05g, Bor06o, Bor09b, Bor11-38, BO11b, Bou06, Coh15, Odl11, Sha05]. ISBN-10 [BO11b, Bou06]. ISBN-13 [BO11b, Bou06]. Ising [BB06b, BBC06, BBBC07]. Ising-Class [BBBC07]. Islamic [SV14]. Isometry [BGMS21]. Israel [Bor90b, RZ15]. Issue [AHLC+17b, BC21, AAB12]. Issues [BL99, Bor00t, Bor03p]. Italian [Bor09a]. Italy [ABD03]. iterated [BR16]. Iteration [BB89b, BBxxb, BT13a, Gil18, AB12, AB13, BB86b, BB90b, BB93b, Bor94a, BT14c]. Iterations [Bor89g, Bor89h, BB93f, BLT17, BB91b, BR92, Bor93j, BS10c, BS10d, Bor10k, Bor10j, Bor11r, Bor11s, Bor13r, BLT15, BLT16]. Iterative [Bor92k, Bor92l, Bor92m, WSL16, XC11]. IV [Bor06u].
Mathematics/Ouvrages [Bou06]. Mathematik [BD11, Fal96].
Mathématicques [Bor00o]. Mathématiques [Bou06]. MathResource
[BWB97, Bor97k]. Maths
[Bor09u, Bor12m, BB11g, BB11f, BB12i, BB12k, BB13p, BB14e, Bor11e].
matrices [Bor84c, BR84]. Matrix [ABT13a, ABT14a, BRxx, Bor13j, Bor14f,
Bor14g, Bor15g, Bor16p, HNP10, HLZ15a, HLZ15b, IP17, IP18, LL13].
Matter [BB09c, BB12-30, Bor10f, Bor10g]. Matters
[Bor09u, BB14-31, BB14-32, Bor97v, Bor97w]. Mattingly [Bai16a, BE16].
mature [Bor94n]. Max
[Bor94g, Bor04-32, Bor13-32, BZ20b, BBM99, BBM00].
Maximization [Bor94g, Bor04-32, Bor13-32, BZ20b, BBM99, BBM00].
Maximization [Bor94g, Bor04-32, Bor13-32, BZ20b, BBM99, BBM00].
Maximizations [Bor77c]. maximize [Bor09u]. Maximizing
[Bor99q, Bor99r, Bor00p, Bor00q, Bor04v, Bor05-32]. Maximum
[BL93c, BL94a, BL94b, Bor95m, Bor95n, BLLN95, BLN96, Bor97l,
Bor01o, BCM02, Bor05-33, Bor06-33, Bor08p, Bor09v, Bor10v, Bor10w,
Bor12p, Bor12q, Bor13p, BHP14, PHBH12, Bor92n, Bor93k, BL93b, BCM03,
BH19, PH12, PH14]. May
[BW95a, BBS17, IEE08, KG04, RZ15, BW97a, BW98a, Bor15d]. Maybe
[BB12-37]. Me [Bor04n, Bor11j, Bor11k, Bor11l, Bor11m, Bor11n, Bor14d,
Bor14c, Bor12d, Bor15e]. Mean [BB84a, BB89b, Bor89h, BB93f,
BB97b, BB99y, Bor99z, Bor99-27, BBxxb, BB00b, Bor00u, BB04a, BB11-28,
BB13o, Bor87d, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89e,
BB90b, BB93b, Bor94a, BW98a, Bor98p, BBS1a, BB16t, IP17, IP18].
Mean-Value [Bor99-27, Bor00u]. Meaning [DD15]. Means
[BB87c, Bor93j, BLM96, BLM97]. Measures
[BCM20, Bor11f, Bor11-27, Bor11-28, Bor11-34, Bor11-35, Bor12-32, BS11a,
BSW11, BS12b, BBS12, BS13]. median [Bor99a, Bor14b]. media
[BB12f, BB15-27, Bor12-28]. medical [Bor14a, HYG09]. Medicine [Sel16].
Medieval [SV14]. Meet [Bor14b]. meeting [Bai17c]. Meetings
[Bor11-29, BL16]. meets [Bor05k]. Melbourne [BR14b]. Memorial
[IEE08, SBW84, Bor06a]. Memoriam [SB13]. memory [BSZ13].
Merchants [BB11t]. Merseenne [Cha03]. mesh [AK22].
mesh-independent [AK22]. mess [BB13-29, BB13-30]. Meters
[BB13-38, Bor12-27, BB12i, BB12-46, BB13-37]. Method
[ABT13a, BL17a, BL17b, BT13b, BLS+17, BLS+18, HDL21, AR13, AX20,
ABT16, AP16, AK22, BBL94, BB95b, BB97a, BBL97b, BS17, BH95, BT15,
BLS+16, DL02, DLL05, DHSZ06, DK16, FN15, Fle05, GS02, HYG09, HD07,
HLZ14, HLZ15a, HLZ15b, HLY16, IP17, IP18, KJR16, La 09, LLS11,
LI14, LI15, LI13, Mar91, MR96, MPB16, NWY09, NWY10, NFB17a,
NFB17b, PT14, PH18, Ray93, Ray97, RS02, WM07, WSdSY15, XH08,
YW12, ZH06, ZSQ10, ZSZ16]. Methodology [BBGP95b]. Methods
[ABT13a, ABT13b, ABT14a, ABT14b, BB88a, BL93c, Bor97l, Bor00t,
Bor01o, BZ02a, Bor05-33, Bor06-33, Bor08p, Bor09q, Bor09v, Bor09-27, Bor10k, Bor10v, Bor12q, Bor13k, Bor13l, Bor13p, BST13, DLR92, PR92, Sch15, ABT13c, BB05b, BB10g, Bor92k, Bor92l, Bor92m, Bor94g, BLN95, Bor95m, Bor95n, Bor98k, BZ06, Bor12p, Bor13j, BZ13, Bor14f, Bor14g, BT14b, BT14a, Bor15g, BST15, Bor15r, Bor16p, BT17, DF05, GDT15, HNP10, HL15b, JD13, PHBH12]. Metric [BBT98, BGM18, BK80, BZ95, BZ96]. Metrical [HMM20]. Michel [Bor17b]. mid [BBLZ14i]. mid-term [BBLZ14i]. Might [CDH+21, Bor07-27]. million [BB14e]. millions [BB15q]. mine [BB12h]. ming [L09]. Minimal [Bor99c, Bor99d, Bor00y, Bor00z, Bor00-27, Bor00-28, Bor01a, BFK91, Bor95o, Bor95p, BF99a, BM97e, BK04]. Minimality [Bor87c, Bor82b, Bor86d, Bor87b, BM97f, BM00]. minimax [BZ86, Bor14z, Bor16-27]. Minimization [BL94, BLN94b, Bor09-30, Bor09-28, Bor09-29, Bor09-27, BL91b, Bor92j, BV09, NY10, Ray97, XWQ14]. minimizing [HL15a, NY10]. minimum [Bor79c, Bor80e]. Miraculous [Fin95]. miscalculate [BB11c]. Missing [Bor99c, BB15e]. Misuse [BB09h]. mixed [BH19]. MKM [ABD03, BF06b]. modal [Bor96e]. model [Bor16h, Cam16, ZSZ16]. Modelling [Bor13q, BHP14, PHB14, Beal3]. Models [JL20, BL92d, Cam16]. Modern [Bor99z, BB12-34, BB12-35, BB15b, BB15o, BS11c, BS12a]. Moderne [Fal96]. Modified [LL13, BS17, XSW12]. MODSIM [Beal3]. Modular [BBB97c, BBBO0b, BBBO4b, BBBO6, BBBO9a, BB85b, BB86f, BB87g, BB87f, BB89a, BB89b, BB94c, Liu00]. moduli [Zhal3]. modulo [ZS12, ZZ14]. Moll [Odl11]. moment [Bor90e, Bor90f, BL91c, BGL93, BH94a, BH94b, BL94a, BH95]. Moments [BS07, BS08, Bor10x, BBGW11, Bor11-30, Bor14t, BS16a, TB00, BBGG08, BH19]. Mono [Ber88]. Mono- [Ber88]. Monochrome [Ber79h]. monoids [Bor15f, Bor16i]. Monotone [AHLC+17a, AHLC+17b, BBWY11d, BBWY13, Bor72, Bor02b, Bor04a, Bor05-34, Bor05-35, Bor05-36, BB06, Bor06s, Bor06t, Bor06-34, Bor06-35, Bor06-31, Bor09-29, BBY11, BEY11, BY12c, BBY13, BD15, BML18, EB08, LLT18, Sim18, BB95a, BB03, BBW07, BBW10, BBW11b, BBW11c, BBW11e, BBW11c, BBW12b, BBW12c, BBW12e, BB89a, BFK91, Bor98n, Bor02d, Bor02e, BB04, BB05a, BB06-32, BB07, Bor07b, Bor07x, BE08, BG09, Bor12j, Bor12k, BY12f, BY12h, BY12d, BY12e, BY13b, BY13a, BY13d, BY14b, BY14c, BY15, BD16b, HLZ15a, SZ14]. Monotonicity [Bor09j, Bor09k, Bor12y, BBS15b, BBS20, BB07+07, BB96a, BB99c, BBWY11e, Bor82c, Bor06-30, Bor10n, BRS11, Bor12j, Bor12k]. Mouth [bVP21]. Monthly [BB07a, BB12-47, BB09, BB09m, BB10k, BC15a, BC16, BC18a, bVP21]. Montreal [KG04]. Moore [BB12-39, BB12h, BB15z, BB15y, Bor15j]. morass [BB10b]. Mordecai [Bor90b]. Mordell [BBC14b, BB15a, BB16a, BB16b, BB18, Bor12e, Bor12f, Bor12r]. Morozov [BMCL18]. Mosco [BB90a, BB93b, Bor88j, BB89c, BB93a, BB94c]. most [Bor16b]. Motivation [Bor09-30]. motive [BB09d]. Movements
movies [Bor15b]. MR [Bor81a]. MR0716121 [Zål86]. MR0991866 [BBB97a]. much [BBLZ15d]. Multi [Bor96e, Bor97m, BBM01, BBM02, Bor97f, Bor16h]. Multi-dimensional [Bor97m, Bor97f]. multi-disciplinary [Bor16h]. multi-institutional [Bor16h]. Multi-modal [Bor96e]. Multi-variable [BBM01, BBM02]. Multidimensional [Bor96f, Bor96g, Bor96h, BH06, BTBT88, Bor97q]. Multifunctional [Bor98k, BZ99a, BZ99b]. Multifunctions [Sim18, BF94a, Bor94b, BF95a, Bor95o, Bor95p, BMS97, BMS99a]. Multimedia [BMPR02]. Multimodal [Bor97a]. multiobjective [MPB16]. Multi [BBBL97, BBBL98a, BBBL98b, BBK00a, Bor10y, BZ11, BBBL01, BC10, BDT16, JY12]. multiple-zeta [BC10]. Multiplier [Bor80b, Bor81d]. multipliers [Bor80c, BZ16]. Multivalued [Bor77a, Bor79d]. Multivariable [Bor00r, Bor01p, Bor01q, Bor01r]. Multivariate [Bor16h]. My [Bor08q, Bor12t, Bor07-28, Bor07-29, Bor07-30, Bor08u, Bor12a]. Mysteries [Bor11-31]. mysterious [BB11-27]. myth [BBLZ13e].

Neverending [BvdPSZ14]. Newcastle [Bai17a]. Newfoundland [IEE08, SBW84]. Newly [BB12i]. news [BB12t, BB12a]. Newton [BBW97, CDH+21]. Next [Bor02c, Bor02q, BB16l]. NI [BE08]. Nielsen [BS15b]. Nikodym [GLR18]. NJ [Bor09b]. NMR [BMN98, BMN00]. No [BB13r, BB13s, BM97a, BB13i, BKW02, Cam16, Zål86, BB12-34, BB12-35].

no. [BZ02a]. Nobel [Bor14b]. Noether [BB12x]. Non [ANR18, Bor72, Bor05-33, Bor06-33, Bor13p, Bor16u, Bor16v, Bor16w, Bor16x, Bor16y, Gil18, AB12, AB13, BBWY11b, BBWY12b, BZ94a, BE08, BS10a, Bor15r, LL13, Sel16, BM07c]. Non- [Bor05-33, Bor06-33]. Non-Convex [Bor16u, Bor16v, Bor16w, Bor16x, Bor16y, Bor13p, Gil18, AB12, AB13].

non-expansive [BS10a]. Non-Linear [Bor72]. non-negative [LL13]. non-reflexive [BBWY11b, BBWY12b, BZ94a, BE08]. Non-Smooth [ANR18, RM07c]. non-Western [Sel16]. nonattaining [BK01]. Nonconvex [ABT15, BC18b, Bor10k, Bor13r, ABT16, BJ97, BZ98, BJ98, BB12p].

nondifferentiability [BG09]. Nonexpansive [BS83, BS84b, Bor09-29, BR511]. Nonisolated [AI18]. Nonlinear [BBC09, Bor99a, BL00a, BZ02a, BZ02b, Bout06, Dil20, Tod03, BL06, IMR92, ZL22].

nonlocal [PT14]. Nonmonotone [BL17a, BL17b, GS02, QYX14, XWQ14, AP16, IP17, IP18, Li15, NFB17a, NFB17b, YW12, ZSQ10]. nonnegative [HNP10, HLZ15a, HLZ15b, WM07]. Nonnormality [BB12-40].
nonreflexive [BL93a, BV93b, BV94d, BZ94b, BZ97]. nonsense
[BB12-42, BB12-43, BB13d, BB13-34]. Nonsmooth
[BC18b, Bor94h, Bor94i, Bor94j, Bor94k, BM07d, CFG+18, WB87, Bor98k,
BZ99a, BZ99b, XWQ14, YW12]. noon [BBLZ15c]. Norm
[Bor86a, BST13, BST15, Ara07, Ara08, BFG03]. Normal
[BB13x, BB13y, BB14c, BB14w, BCJW13, BG87]. Normality
[BB+11a, BB+12b, BB+12c, BB+12a, BN84]. Normed
[BFV94b, BFV94c, BR94a, Bor94l, Bor95s, BLM99, BLM00]. norms
[BY84, BV93a, BV94c, BJSM00, BJSM02, BGV02, BBL10]. notation
[BB11e]. Note [BMCL18, BB86a, BM97a, Bor76b, Bor80d, Bor82d, Bor82c,
Bor83d, BF94b, Rei02, Tha02]. Notes [Bor06-36, HC09]. notion [JN03].
Notions [Bor87c, BG01, BG03a, Bor86d, Bor87b]. novel [Ade12]. NSW
[Bai17a]. Nuclear [BB14q, BB14p]. Null
[BM96b, BM98b, BF95c, Bor95a, Bor95b]. Number
[Ber88, BB87d, KG04, Wim88, BB11-27, BB13-42, BB13-47, BB16p,
BJCW13, BCJW13, BB93d, BB96d, BB98b, BSZ13]. Numbered
[Bor11d, Bor11h]. Numbers [Ade14a, ABBB13, BB88e, BB97, BBxa,
BB00, BB04, Bor90t, Bor13-28, Bor13-29, Bor16-29, Bor16-30, Bor16-31,
BBCP04, BB11e, BB12t, BB12a, BB13x, BB14d, BB14x, BCJW13, BB90d,
Bor11i, Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor13-27,
Bor14x, Bor14y, BB16d, Bor16q, Bor16r, Bor16s, RP09, Bai91, Bor90].
Numeracy [BB09i, BB12-41, BB12-53]. Numerical
[AX20, BB08e, BB08b, BB12-42, BB12-43, BS99d, BS99b, BS00, Bor00s,
Bor09z, BB11b, Bor05g, MR96]. numerique [Bor00o]. Nurturing
[Bor03-30].

O [BB13-45, BB13-46]. Obituary [BBS17]. objectives [Bor91h, Bor92d].
Objects
[Bor06s, Bor91e, Bor91f, Bor91g, Bor91j, Bor91k, Bor91i, Bor91m,
Bor92e, Bor92f, Bor05-34, Bor05-35, Bor05-36, Bor05-37, Bor06-34, Bor06-35].
Observations [BB92b]. odd [BS16b], odds [BR14b]. Odyssey
[BB12u, BB12n]. OEIS [Bor15d, Bor16a, Bor17a]. Official [Bor15a]. often
[Bor15a]. oil [BB12-27, BB12e]. Old
[BB14-32, BB12-31, BB12d, BB15q, BB15z, BB15y, Bor15l]. Olver [BB13k].
once [BB13-47, BB15-28]. One [BBB97c, BB00b, Bor03-33, BB04b,
BB16, BB97a, BB89, BF94a, Bor94b, BF95a, BF95a]. Online
[BS+15a, BS+16b, Bor97o, BBLZ14i, Bor01f]. only [BB13-39]. ontological
[BB15b, BB15o]. Ontology [DD15, BB15b, BB15o]. Open
[BB08k, Bor03-34, Pea07, BBS13a, BB13-35, BB98a, BB99b]. openness [Bor78a, BZ88]. Oper. [Zal86]. Operator [BY12c, BBWY11c,
BBWY12c, BY12b, BY12d, BY13b, BY14b, BY15, BG16a, BG18b, KMY00].
Operators [AHLC+17a, AHLC+17b, Bor72, Bor04o, BF95, Bor06t,
Bor06-31, BY11, BML18, EBO8, LIT18, BB96a, BB99c, BBW07,
BBWY11b, BBWY11d, BBWY12b, BBWY13, Bor82a, BPT84, Bor84e,
Bor86e, Bor86b, BF89a, BF9K1, Bor92n, BT92, Bor98n, BRLZ99, BLZ99,
BRLZ00, BLZ01, Bor05-34, Bor05-35, Bor05-36, Bor05-37, Bor06-34, Bor06-35, Bor06-32, BW07, Bor07b, Bor07x, BE08, BRS11, BEY11, Bor12j, Bor12k, BY12f, BY12e, BBY13, BY13a, BY13c, BY14c, RZ15. **Opinion** [BBS13a, BB15m]. **Opportunities** [BW79a, LY18, BW79b, BW81c, BW82a, BW82b]. **Optimisation** [Bor17b, BM07c, JN03]. **Optimization** [Ano15, ANR18, ABT13b, ABT14b, AHLC+17a, AHLC+17b, BBLZ13a, BC18b, Bor74, Bor78a, BTZ95, Bor99a, BL00a, Bor02b, Bor12-30, Bor12-31, Bor16l, Bor16m, Bou06, CFG+18, CPRZ20, DGLV20, IMR92, SZ81, SI16, Tod03, AP16, AK22, BBL97c, BBL99, BBC03, Bor77a, Bor81b, BN84, BZ91, BZ93, BL94b, BTZ98, BL06, BL16, DHSZ06, LW18, LW19, MP18, MPB16, NFB17a, WSdSY15, XH08, XSW12, ZH06, ZSQ10, Zhao12, ZZS16, IMR92]. **Options** [BCM02, BCM03]. **Order** [BC18b, BD86, Bor87e, EB08, BB84b, BB84d, Bor86e, BB87a, BD89, Bor92g, Bor93f, Bor93g, BF93b, BN94]. **order-bounded** [Bor86e]. **orderings** [Bor74]. **Organic** [Bor96i, BBJC97, BJ12, BBC+96, Bor97e, BBC+97b, BBJC97]. **oriented** [BD11]. **Origami** [AD20]. **origin** [BDT16, BG16a, BG18b]. **originating** [Bor05], Bor06i]. **Origins** [BSS14b, BS14a]. OSCAR [IEE08]. **oscillatory** [BB10d]. **out-of-sample** [BBLZ14s]. **Outlook** [BB99a, BB01a]. **outperform** [BBLZ14a]. **Ouvrages** [Bou06]. **Over-Fitting** [BBLZ13a]. **Overfitting** [BBS+16a, BBLZ17, BBLZ14c, BBLZ14k, BBLZ14s, BBS+15a, BBL+16b, BBL16a, BBL16c]. **overlords** [BB11o]. **Overseas** [BB15a, BBZL15b]. **Overview** [Bor09-30]. **Oxford** [BB93g, Bor06o, BO11b, Bor06]. **Oz** [Bor11m, Bor11n].

P [Bor92b]. **PA** [Bor05g]. **PACBB** [ZH06]. **Pacific** [Bai91]. **packing** [BB14j, BB16o, CKM+16, Via16]. **pages** [Bou06, Sha05]. **pain** [BB12v, BB12]. **Pairs** [Kru18]. **Paleo** [BB12r, BB16d]. **Paleo-Mathematics** [BB12r, BB16d]. **Pamphlet** [BB03]. **Paper** [Bor14v, Bor14w, Bor81a, Zal86]. **Papers** [BB14p, BB14q, Bor11b, Bor11c, Cam16, KG04]. **Paradox** [Bor04-32, BB15], BB15-29, BB10e, BB15k, BB15-30]. **Parallel** [BB08e, Bor09t, DS20, BB09b, BJCW13]. **Parameter** [BCF04, BCS0a, ZSZ16]. **parameters** [LLC+95]. **Parametric** [BBS06b, Geo05]. **Parabolas** [CD20]. **Pareto** [AR13, Bor80a, Bor83c]. **Pari** [Bor92c]. **Paris** [CGM95, BFL97]. **Part** [BSS17a, BSS17b, BSS17c, Bor93e, Bor16b, BB15, BB15k, BL92d, BNN94a, BLZ99, Bor03m, Bor03n, Bor08c, Bor08f, Bor12e, Bor12f, Bor12-30, Bor12-31, Bor13-34, Bor13-35]. **Partial** [DP18, Bor74, MR96]. **Partially** [Bor86b, Bor88i, BL92c, BR92d, BR93b, Bor97p, Bor981, Bor98m, BTZ99, Bor99t, Bor99u, Bor00v]. **Partially-finite** [Bor81, BL93b]. **partitions** [RP09]. **Parts** [Bor15h]. **pass** [BB12j, BB12-36]. **Past** [Bor07a, Cam16, Bor08r]. **Patents** [BB14q, BB14p]. **pathological** [BWWY11b, BWWY12b]. **Paths** [Bor03l, BBG03, Zei05, BBG04a]. **pattern**
[BB09i]. Political [BB10i]. politicians [BB12-51, BB12-52]. politics
[BB12b, BB12-45, BB13u, Bor13c]. polyhedra
[Bor00r, Bor01p, Bor01q, Bor01r, BBM01, BBM02]. polylogarithm [Ade12].
polylogarithmic [BBP97, Bor97m, GG07]. Polylogarithms
[BBBL98c, BBBL99, Bor14e, BB16b, Bor97q, BBBL01, BS15b]. polynomial
[BBH05]. Polynomials [BCM20, BBKL16, BBKL17, Dil20, HC09]. Pools
[BBLZ14m]. Poor [BB12-44, BBLZ14j]. Poor-quality [BB12-44]. Poorten
[BS13]. Popper [BBLZ14d]. Portfolio
[Bor09o, Bor12n, BBLZ13d, BBL16a, BBL16c]. positive [DABY15].
Possible [Bor07w, Bor07-32, Bor08n, Bor08o, BBxxc]. Possibly [AI18].
postcards [Bor10o]. powers [BC07]. Pp [Ban10, Bai91, Ber88, BB91d, BB93g, BC96, Bor05g, Bor06o, Bor09b, BO11b, Coh15, Odl11, Zei05].
Practical [BL91d]. Practice [BBS16b, BJL+08]. precedent [BB14b].
Precision [BB08a, BB08e, BB08h, BB13q, BB90c, BL92e, BB92a, BB09b, BB09b, BB11b, BB12, BB15p, Bor10q, DS20]. Preconditioned [MR96].
predict [BBLZ16a]. predicted [BB16f]. prediction [BB14m]. Preface
[AAB12, AHLC+17a, AHLC+17b, BMST18a, BMST18b]. Prefer
[BB13t, Bor15k, BC15b, BC15a, BC16]. Preiss
[Bej94, Dev9x, Fab89, Geo05, KPS16, KPS17, LS00, QR07, YS00]. Preisses’
[BWM95, BMW97, BW03, BH19]. Presence [Bor99e, Bor99f, Bor99d, Bor16z, Bor13-34, Bor13-35, BZ13, BLT15, BLT16]. Present
[Bor07a]. Presentation [Bor05e, Bor89a]. President [Ano16]. presidential
[BB12-42, BB12-43]. Press [BB93g, BC96, Bor06o, Bor09b, BO11b, BS14a].
Previously [BBMW11, BBMW13, BBMW16]. Price [Bai91, Ber88]. prices
[BCM02, BCM03]. primality
[BBBG94, BBBBB95, BW95b, BBBBB96, BW97b, BMS13, BSM13]. prime
[BB14s, BB16p]. primes [Cha03]. Princeton [Bor09b, BO11b, HDG+15].
principal [LY21]. Principle [BMCL18, Bor03-33, Bor04-31, BHP14, Geo05, YS00, Bor83b, BB84f, Bor86g, BP87, Bor87h, Bor87i, Bor87j, Bor90m, Bor90n, BCM03, BCFR04, Fab89, KPS16, KPS17, LS00, QR07, BCM02].
Principles [BBS16b, BMS99b, Bor06r, Bor06s, Bor06t, Bor06u, Bor09-31, Bej94, BTZ99, BV09]. Prize [BB14e, Bor3o, BB13a, Bai16a, Bor14b, BE16].
Prizes [Bor03o]. Probability
[BBLZ13a, BBLZ17, BCM02, BCM03, BB09h, BB12w]. Problem
[AB15, BB07b, BB07a, BB08f, BB09i, BB12-47, BD86, Bor13e, Bor13f, Bor13i, WSL16, ABT16, BB16o, BW81d, BD89, BGL93, CKM+16, GDT15, LLS11, PT14, Pos13, Ray97, Via16, Vir14, Zho12]. Problems
[AJB86, ABT13a, ABT13b, ABT14a, ABT14b, AC18, AI18, ANO+83, AJ86, BB09m, BB95c, BB96b, BL87, BC18b, BSZ+83, BB85, Bor85a, BN86, BB87c, Bor93l, BB93c, BLN94b, BTZ95, Bor96j, BDT96, BBS+97, BPB99, Bor05b, Bor08p, Bor09c, Bor09v, Bor09-30, Bor09-28, Bor09-31, Bor09-29, Bor09-27, Bor10k, Bor10v, Bor10w, Bor10q, BT13b, Bor13i, Bor13p, Bor16u, Bor16v, Bor16w, Bor16x, BLT17, BLK+93, CJK92, CG18, CPRZ20, DAK88, DNG+86, DBCB88, DGLV20, EWM86, GRM+97, GC88, KJ86, KC89, KWK+90a, KWK+90b, KWK+90c, LPB01, Mon89, NJS88, NOL86,
problems

[BL94a, BZ94b, BH95, BZ97, BTZ98, Bor12p, Bor13j, Bor14f, Bor14g, BT14b, BT14a, BT15, Bor15g, Bor15r, BT17, HD07, HLZ14, HLY16, JD13, KJR16, LZ14, Li15, LW18, LW19, MPB16, NYW10, Pea07, PD18, WSdSY15, YW12].

Proceedings [Bor96i, IL09, AAB88, BBJC97, IMR92, HY14, ABD03, BF06b, CGM95, RZ15].

process [Bor83a, Zal86].

processes [Bor86a, MTCB98].

processing [BJCW13].

Produce [BBBL20].

Product [BPB99, BB83].

productive [Mic03].

products [RZ15].

Professor [MW16].

Program [BW79a, BW79b, BW81c, BW82a, BW82b, BW97].

programmed [BB11c].

Programmes [Goo20].

Programming [Bor01o, Bor05-33, Bor06-33, BL15, TB80, Bor76a, Bor79a, Bor81c, BW81d, Bor83c, Bor83f, BW86, Bor87k, Bor88l, Bor90e, Bor90f, Bor90c, Bor91d, Bor91e, BL92c, BL92d, BTB92, Bor93e, BL93b, Bor94g, Bor95m, Bor95n, BBY12, BBY14, DF05, ZL22].

Programs [CFG+18, Bor79c, Bor80e, BK83, Bor91h, Bor92d].

Progress [BB08b, BB11b, Bor12y, BY12c, BY15].

progressions [Zah06].

Projected [BL17a, BL17b, DF05, LZ14, WM07, HNP10, HLZ15a, HLZ15b, HL15b, HLY16, PD18, ZH06].

Projection [BB95c, BB96b, Bor98n, Bor99w, Bor90v, Bor10c, Bor10d, Bor10k, Bor10v, Bor10w, Bor12q, Bor13p, BST13, DLR20, BB93a, BB94a, BBL97a, BLY13, BLY14, BST15].

projections [BBL94, BB95b, BB97a, BBL97b].

promises [Bor94c, Bor94d, Bor94e, Bor95f, Bor95g, Bor95i, Bor95j, Bor95k, Bor95l, Bor96c].

Promoting [BB12-27].

Proof [Bor02, Bor02m, Bor05a, Bor07g, Bor71, Bor77k, BS07, Bor08g, BS08, BB11-31, Bor12-33, Bor16f, Cvi10, GS08, Hl12, Ara07, Ara08, BB08c, BB14j, BB15v, Bor94a, Bor06h, Bor08d, Bor08e, Bor08f, Bor09a, Bor09e, Bor09f, Bor09g, BY12f, Bor14z, Bor16-27, IL09].

Proofs [CS21, Ade13, Gui08, Gui16].

Proper [Bor77c, JN03, Yan94, Zhu91].

properly [Zho12].

Properties [Bor00m, Com18, CPRZ20, BEM10, BTT98, BBT00, Bor82a, Bor90g, Bor90h, Bor90i, Bor90j, Bor90k, Bor90l, Bor90m, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91d, Bor91r, Bor91t, Bor91u, Bor92a, BB01c, BNSW11, Mar91].

Property [GLR18, HDL21, Las18, AK22, BBL97c, BBL99, Bor82e, Bor88j, BF89c, B97, B98].

Prophets [BB15r, BBLZ14f, BBLZ15c].

propose [BBLZ14o].

Proposed [BB08f, BB11w].

Prospects [BB05a, Bor09w, Bor09x].

protein [BT14b, BT14a, BT17].

Prototype [BMP05].

Proving [IL09, HD12].

prox [BEM10].

prox-regular [BEM10].

Proximal [BS06, BS87, BI95, BI96, BG87, BGW97, BGW98].

Proximity [Bor06u, Bor07y, Bor08t].

Pseudo [BBLZ14l, BBLZ14s, BCJW13].

Pseudo-mathematics [BBLZ14l, BBLZ14s].

pseudo-random [BCJW13].

pseudoconvex [QR07].

psorandom [BB13x].

PSLQ [BB09j, SV20].

psychology [BB13d, Bor09y].

Public [BB14a, Bor03g, BB09i, BB11p, BB15m, Bor12-28].

Publication [Bor97i, Bor98a, BS97b].

Publishing [Bor99x, Bor96d, Bor97j, Bor97o].
pursue [BB10h].

Putnam [Bor77d].

puzzles [Bor15a].
QC [KG04], QCQP [PD18], QPQC [Pos13]. Quadratic
[Bor89g, Bor89h, BY06, HLZ15b, HDL21, Bor82b, DF05, La 09, NYW09].

Quadratically [BR86c]. Quadrature
[BB06a, BB08d, Bor06j, Bor06k, Bor06m, Bor06n, BY06]. qualification
[BW79b, BW82a, BW82b, BW86]. quality [BB12-44]. Quantitative
[Ano15, BBLZ14p, Koh01]. Quantum [CC20a, Cvi10]. Quartically
[Bai88, Bai16b, TK97]. Quasi [BL92c]. quasiconvex [BBP03]. Quasidense
[Sim18]. quest [BBBP96, BBBP97, BBxxc]. question
[BB14z, BB14-27, MR11]. Questions [Bor03-34]. Quick [BB11x]. Quinn
[BBC09].

R [Bor11-38, Odl11, TSB13]. Rachford
[AB12, ABT13a, AB13, ABT13b, ABT13c, ABT14a, ABT14b, ABT15,
ABT16, AC18, BS10b, BS10c, BS10d, Bor10i, Bor10j, BS11b, Bor11r, Bor11s,
BT13a, BT13b, Bor13j, Bor13r, BT14c, Bor14f, Bor14g, BT15, Bor15g,
Bor15r, BG16a, BLS\(^+\)16, BLS\(^+\)17, BLS\(^+\)18, BG18b, Gill18].

Rachford
[AB12, ABT13a, AB13, ABT13b, ABT13c, ABT14a, ABT14b, ABT15,
ABT16, AC18, BS10b, BS10c, BS10d, Bor10i, Bor10j, BS11b, Bor11r, Bor11s,
BT13a, BT13b, Bor13j, Bor13r, BT14c, Bor14f, Bor14g, BT15, Bor15g,
Bor15r, BG16a, BLS\(^+\)16, BLS\(^+\)17, BLS\(^+\)18, BG18b, Gill18].

Radiometric [BB10g]. Radon [GLR18]. **Rainfall**
[Bor13k, BHP14, Bor13q, PHBH13, PHB13, PHB14]. Ramanujan
[BB96d, AB15, AAB\(^+\)88, BBB97a, BBG95b, BR01, Bor85b, Bor86f,
BB87a, Bor87g, Bor87f, BB87b, Bor87i, BB88d, BB88f, BB89a, Bor89f,
BB89b, Bor90-29, Bor90-30, Bor90-31, Bor90-32, Bor90-33, Bor90-34,
Bor90-35, Bor90-36, Bor90-37, Bor90-38, Bor90-39, Bor91j, Bor91k, Bor91l,
Bor91l, Bor91m, Bor91o, Bor91p, Bor91q, Bor92e, Bor92f, Bor92i, BB93d,
Bor93m, BBG94c, BB96d, BBB97c, BB00b, BB01f, Bor03d, Bor03e, Bor03f,
Bor04-30, Bor04-29, Bor04-28, BC04, BC04a, BB04b, BL05, Bor05j,
Bor06l, BL08, Bor10x, Bor10z, Bor10-27, Bor11-29, BBGW11, Bor11-30,
Bor11-32, Bor12x, BB16, Bor16d, BB16u, Liu00, Mor08, BB91d].

Ramanujan-type [BB87a, BB88d, BL08]. Ramble
[Bor10-28, Bor10-29, Bor11-33]. Rand [BBC09]. **Random**
[BB13c, BN910, Bor10-28, Bor10-29, Bor11-33, BS13, CC20b, Gan14,
BB13b, BB13-40, BB05b, BB97a, BCW13, BCW13, BL05, Bor10e,
BSWZ11, BN911, Bor12b, BSWZ12, BR13a, BS15, BS16b, BS16].

Randomness [BBBR16, BBBR17, Gan17]. Range
[Bor04-28, Bor05l, Bor05m, Bor05n, Bor05o, Bor05p, Bor06l, R\(^+\)05, BW81c,
BFKL00, BFKL01, BFL02, Bor03x, Bor03y, Bor06-28]. **Ranking**
[BB04b, BB14-27, BB14-30, Bor10z, Bor14x, Bor14y, Bor16q, Bor16r, Bor16s].

Rate [BT17, PLY13, PLY14, BLT15, BLT16, HL15b]. rating [BB11w].
Ratio [Ade14a]. Rational [BZ87, BB87b, BZ92, BB98c, BB98d]. Reactions
[BB14q, BB14p]. Real
[ABBB13, Bai91, BCF04, Bor13-28, Bor13-29, Bor90, BB13j, BFG07, BB90d,
BB91b, Bor04-30, Bor10z, Bor14x, Bor14y, Bor16q, Bor16r, Bor16s].

Real-Parameter [BCF04]. Realistic [BST13, BST15]. Reality
[Bor05-40, BB12u, BB12n, BB13p]. Really
[BB14i, BB11-28, BB14h, BBLZ14b]. rearrangement [BLZ99, BLZ01].
Reasoning [Bor93c, Bor93d, BBG03, Bor03z, Bor03-27, Bor03-28, Bor03-29,
BB04b, Bor04-27, Bor04w, Bor04x, Bor04y, Bor04z, Bor06-29, Bor10a, HF05,
Hoa05, Zei05. Receive [BE16, Bia16a]. recipients [BB14e].
Reconstruction [Bor09-27, Bor92n, Bor93k, BLN94a, BLN95, BLLN95, BLN96, LLC+95, MTCB98]. reconstructions [MTCB99]. Recurrence [BS08, BCM07b]. recurrences [BS15a]. Recursion [BS07]. Reconstructions [BB06b]. Reduced [BB84e]. reduction [BW81d]. Refined [BBFG00, BBFG01, War03]. Reflection
[BST13, BT14b, BT14a, Bor16p, BT17, BST15, Bor15r]. Reflections
[BB09c]. Reflexive [BV94b, BWY11b, BWY12b, Bor93a, BZ94a, BTZ97, BE08, BV10a, Bor13g, Bor13h, Bor13i]. reflexivity [BB90a]. refute [BB12w]. region [SZ16]. regional [YJ12]. registration [HYG09]. Regular
[Bor84d, BBEM10, Bor86c]. regularity [BBL97c, BB98a, BBT98, BB99b, BBL99, BB15s, BBZ96, BLT15, BLT16]. Regularization
[BL11, HLZ15b, ZL22]. regularizations [BV95a]. Regularized
[WSL16, MTCB99, XWQ14]. Regularizing [BW81b]. Regulatory
[Bor02b, BHL16b, BHL16a, BS84b, BB95f, BB01c, BSZ13, BHL17]. relating
[BW97b]. Relation
[Bor09p, Bor09q, Bor10r, BL97, BL00b, BY12b, BY13b]. Relations
[BB90j, Bor80b, Bor02a, BS15b, SV20, BWY10, BWY11e, Bor18b, Bor18d, Bor78a, BCM07b]. relationships [BL91b, BV93a, BV94c]. relative
[BB09i, BB13i, BB13-34, BL92c, BG01, BG03a]. Relaxed
[DLR20, RS02]. Reliability [BB13-32]. Reliable [BBSL20, BB10g, BB14x]. religious
[BB09d]. Remark [Gil18, Osb05]. remarkable [BB11y, BB90b, BB01c]. Remarks
[BG16c, BEO77, Bor81a, BG15c]. remembrance [Bai17e]. Remote
[BLM107, BM07b, Bor09w, Bor09x, BBJ12]. Renaissance [Bai21]. renorming [BF93d, BV95c, BV95d]. replace [BB16s]. replication [Gui17]. Reply [Gan17]. Report [BBC14a, BBL16e, JWDS+14, BBLZ14j, BBL+13]. reported [BB14x]. reporting [BB12f]. reports [Mic03]. representation
[BMS97, BMS99a]. representations [BC98a, BC00]. Representative
[EB08]. Reproducibility [BBL+13, BBS16b, BBR16, BBR17, Gan17, JWDS+14, BB13-32, JWDS+14]. Reproducible
[BB13-35, BB13-36, BBL+13, SBB13, BBLZ15e, Bor13-30, Bor15m]. Res
[Za186]. Research [BB13s, Bor99e, Bor21n, Cam16, PR92, SBB13, BB09d, BB10h, BB13i, BB13r, BBLZ15e, Bor95t, Bor95u, Bor97x, Bor07q, Bor13d, Bor13a, Bor13c, Bor14a, Bor16h, RZ15]. researchers [BW97]. Researching [Bor11g, Bor11-37]. Relaciones [Bou06]. Resolution [BBC09]. Resources [Bor08a]. Respect [Bor77c, Bor74]. Response [Ba012]. restoration [WM07]. Result [Mil89, BBL11x, FK00, Mil90]. Results
[ABT13b, ABT14b, BL93c, BBLN94, Bor96f, Bor96g, Bor96h, Bor07-28, Bor07-29, Bor07-30, Bor07-31, CU14-32, CG18, ABT13c, BB13n, BB13-42, BB13-47, BB14a, BLLN95, BW95b, BB95b, BB96b, BB96c, BB97d, BW97b, BK01, Bor07-27, Bor12r, Bor12k, BY12d, BY14b, Hon85]. Retires [Jac09]. retraction [Bor15c]. Retro [BM07a]. Retro-enhancement [BM07a]. Retrospective [Bor08s]. Reuben [BO11b]. Review
[Abb00, Ask88, Bai91, BB90c, BBLZ14m, Ban10, Ber88, Bor90b, Bor92b, BB93g, BC96, Bor05g, Bor06o, Bor11-38, BS14a, Cas99, Col85]. Hoa05,
Bor13z, Bor13-27, Bor14x, Bor14y, Bor16q, Bor16r, Bor16s. Seeking [BB15k, BB15j]. select [BBGPxx]. selected [BB12z, BB10l]. Selection [Bor12-30, Bor12-31]. Self [Gui17, Ara07, Ara08]. self-contained [Ara07, Ara08]. Self-replication [Gui17]. sell [BB12c]. Semi [Bor83f, Bor89i, Bor79a, Bor81c, Bor83c, BLY13]. semi-algebraic [BLY13]. Semi-finite [Bor89i]. Semi-infinite [Bor83f, Bor79a, Bor81c, Bor83c]. Semialgebraic [CFG +18, BLY14]. semicontinuity [BLZ99, BLZ01]. Semicontinuous [BTZ95, Bor90g, Bor90h, Bor90k, Bor90l, Bor90-40, Bor90-41, Bor90-42, Bor90-43, Bor91d, Bor91r, Bor91s, Bor91t, Bor91u, Bor92a, BT92, BTZ98]. Semigroups [Bor16j, Bor16k, BG15a, BG18a]. Seminar [BBLZ14p, BLM +07, Bor07d, BM07b, BJL +08, BBJ12]. Semiotic [BB09k, BB11z]. Semismooth [Las18]. sense [BBGP95c, BBGP96, JN03]. Sensing [BL17a, BL17b, Bor09c, Bor10h, Bor11p, QYX14, XWQ14]. Sensitivity [BTZ97]. Seoul [HY14]. Separable [BM97f, BM00, Bor95a, Bor95b, Bor02d, Bor02e, BBL04, PD18]. separably [BK83]. separably-finite [BK83]. separate [BB00a, BB01b]. separation [BB84f, BJ97, B998]. September [Bai17a, BB +20, SBW84]. Sequence [BSxx, BL92a]. sequences [BL93a, Bor98d, Bor15d, BC96]. Sequential [BV99x, BF93c, BF95b]. Sequentially [BV94b, Bor93a]. Ser. [BZ02a]. Series [Ber89, BB86a, BB90c, BB92a, Bor01g, Bor05f, BB07c, BB12, BB15c, BB87b, BB88d, BB93d, Bor93o, BB95f, Bor02h, Bor02i, BC02, BC03, BC04b, BCP05, BG05, Bor07e, Liu01, Nim15, XY12]. Serious [Bor07c, BB13]. Serving [Zei05, BBB03]. Session [AMM10, Bea13]. Set [BBS13a, BB13-35, BB13-36, Bor13-30, Bor15m, BZ88, BV95c, BV95d, Zho12, Bor92b]. set-valued [BZ88, Zho12, Bor92b]. Sets [BB14a, BB93b, BT84, Bor06u, Kru18, Moe018, RZ18, BBCR13, BB93a, BB94a, BBL94, BBL97a, BBL97b, Bor81a, BT85, BS86, Bor87m, BS87, BFK91, BL93a, BV94a, BF94b, BF95c, Bor95a, Bor95b, BV96a, BV96b, BM96b, BM98b, BLM99, BLM00, BV04, Bor07y, Bor08t, Bor12g, Bor12h, BLY13, BLY14]. Setting [BBL +13, Bor07z, Gil18, SBB13]. Seven [Bor13-31]. Several [BB86a, Wei15]. Shafrir [Koh01]. Shannon [BH95]. shape [SZ14]. Share [BW95a, BW97a]. Short [BM97b, Bor10-29, Bor11f, Bor11-34, Bor11-35, Bor11-33, Bor150, Bor15p, Bor15q, SQ20, BSWZ11, BNSW11, Bor12b, BSWZ12, BS13, Bor14t, BSV15, Bor15n, BSV16, Bor16e]. show [BB13-27]. Shrum [Bor93a]. Shu [BB95e, IL09]. SIAM [Bor05g, Bor08f, Bor09z]. Siegfried [Bor90b]. signal [Bor90e, Bor90f]. significance [BB14x]. Significance* [Alt20]. Silence [Sol15]. Silicon [F05]. Simon [BC96, BBJ97, Bor06a]. Simple [AW97, BW86, BLS +16, ZSZ16]. simplification [BBK14]. Simpsons [BB13z]. Simulate [Bor13k]. simulated [PHBH12, PHBH13]. Simulation [BHP14, Bor13q, PHB13, PHB14]. Sine [Bor11-36, BB14-32, BB08, Bor00r, Bor01p, Bor01q, Bor01r, BBM01, BBM02, BBL10, BBS12]. sine [BS11a, BBSW11, Bor11f, BS11d, BS11e, BS12b, BBSW12, BS13]. Single [Bor04-31, BZ88]. single-valued [BZ88]. Singly [CPZ20]. singular [BB91d]. Sinh [BY06]. Six [BJJ12]. Size
[BB88a, SI16, KJR16, LW18, LW19, XC11]. Skepticism [BB13-44, BB13-43]. skews [BR14b]. sky [BB93g, Tre13]. Slice [BB93b, BV93a, BV93b, BV94c, BV94d]. Slices [Bor04l, Bor04m, Bor06r]. Sloane [BC96]. sloppy [BB13-33]. Small [BZ87, HMM20, BFK91, BZ92]. Smart [BB12i, BB12-46, BB13-37, BB13-38, Bor12-27]. SMC [Bou06]. smell [BB13-40, BR13a]. Smoothing [HLY16, Li15]. smoothness [BBC00a, BBC01]. soaring [BB15w]. sobering [BBLZ14q]. Social [BB15s, Bor15c, BBLZ15b]. socially [BB11i, BB12-34, BB12-35]. Society [BB16c, Bor88, BB11k, CW16]. softcover [Bor05g, Bor06a]. Software [Bai91, HY14, Bor08q]. Sokal [BB13d]. Solution [BB07b, BB07a, BB09l, BB10k, BB12-47, Bor11-38, BB12-53, BBS14a, MR96, Zho12]. Solutions [AJB86, AI18, ANO^+83, AJ86, BB09m, BL87, BSW82, BSZ^+83, BB85, Bor85a, BN86, Bor93l, BB93c, Bor96j, BDT96, BBS^+97, BMB99, BKL^+93, CJKB92, DAK88, DNG^+86, DBCB88, EWM86, GRM^+97, GC88, KJ86, KC89, KWK^+90a, KWK^+90b, KWK^+90c, LPB01, Mon89, NJS88, NOL86, RSP^+93, Rud89, Sch85, SB87, SH87, SZUM86, Stu90, TB00, UVW^+21, BZ95, BZ96, Yan94]. solved [BB16a]. Solving [AC18, BB95c, BB96b, CPRZ20, AR13, AP16, Bor92k, Bor92l, Bor92m, LW18, LW19]. Some [BEO77, Bor81a, BSW82, Bor85b, BB92b, Bor93o, BBG94c, BB94b, Bor98p, BM99b, Bor99y, Bor99-27, Bor00u, BK01, B01c, Bor03-30, Bor07-27, Bor07-28, Bor07-30, Bor08u, BNSW11, BY12d, BY14b, BG15c, BG16c, Liu01, Lup02, TB80, BB95f, Bor96f, Bor96h, Bor05j, Bor06i, BB11-31, Gui08, Liu00]. sorry [BB13i]. SOS [CFG^+18]. SOS-Convex [CFG^+18]. Soul [BB15i, BB15h]. sound [BB12o]. Source [Ab000, BBB03, Rob06, BB97b, BBS00a, BB04a]. sourcebook [BB16l]. sources [Cam16]. South [HY14]. Space [BB12u, BB12n, BB16m, BB16n, BGM18, Bor78a, BM07d, Bor10c, Bor10d, Bor13e, Bor13f, W17, BB17, BBL94, BB95a, BBL97b, BBW11a, BBW12a, Bor84b, BS86, BFG87, Bor87m, BS87, BG87, BZ94a, BF94b, Bor02d, Bor02e, BBL04, BM07c, Bor07x, Bor13g, Bor13h, Bor13i]. Spaces [BB94b, BFF94b, B95, BBS10, BBEM10, BBC00a, BBC01, BBW11b, BBW12b, Bor81a, BS84a, BF89b, Bor91d, Bor92g, BRS92, Bor92a, Bor93a, BL93a, BB93b, Bor93f, Bor93g, BV94a, BFV94a, BFV94d, Bor94h, Bor94i, Bor94j, Bor94k, BN94, BZ94b, BN94, BZ94b, BB95a, Bor95b, Bor95c, BZ95, BV96a, BV96b, B196, BZ96, BFV97, BV97, B197, BTZ97, BZ97, BJ98, BBL99, BJS00, BLM00, BV00b, BV01, BB01, BJS02, BG03a, BE08, BG09, BGGV09, BV10a, BG15b, BG16b, La 09, QR07]. Sparsity [XC11]. Spatio [CZX21]. Spatio-Temporal [CZX21]. Special [AMM10, AHEL^+17b, BC21, BBBL98c, BBBL99, BBFG00, BBBL01, Bor1-11-29, BS11d, BS11e, AAB12, Bor83c, Bor83f, BBFG01, Bor12t, BL16]. SPECT [BNCB99, BS95, BS97a, Bor02r, LLC^+95]. spectra
Spectral [BMN98, BMN00]. Spectral [BMN98, BMN00].

Spherical [BB16o, BB14j, BKW02, CMK+16, Via16]. Spheres

Spectra [BB12r, BB16d, BB11h, BRxx]. Spheres

Spheres [BLS+17, BLS+18, BLS+16]. Spherical [AX20]. Spline

SBW84]. Sports [BB13h]. Springer [Bor11-38, Tod03]. Square

BB12r, BB16d, BB11h, BRxx]. Spheres

BLS+17, BLS+18, BLS+16]. Spherical [AX20]. Spline

SBW84]. Sports [BB13h]. Springer [Bor11-38, Tod03]. Square

BB12r, BB16d, BB11h, BRxx]. Spheres

BB12r, BB16d, BB11h, BRxx]. Spheres
BBK00b, BBK01, Bor02h, Bor02i, BC02, BC03, BC04b, Bor06-32, Bor07x, BZB08, Bor12e, Bor12f, BBS13b, BBS14b, BBS15b, GG07. **sunlight** [BB13-40, BR13a]. **Super** [BZ91, BZ93]. **supercomputers** [BBG95a]. **superrelaxation** [Pos13]. **Supplement** [BBB03]. **support** [BV94a, BV96a, BV96b]. **supportability** [Bor79g]. **Supportless** [BT84, BT85]. **Supremacy** [CC20a]. **Surmise** [DD15, Bor02g]. **Surprise** [Bor99q, Bor99r, Bor99s, BBM99, Bor00p, Bor00q, BBM00, Bor04v, Bor04-32, Bor05-32, Bor09-27, Bor13-32, Bor09i]. **Surprising** [BBB08]. **Surveys** [SV14, BR01]. **SVM** [SD15]. **Swedroe** [Swe17]. **Swiss** [BBLZ15g]. **Sylvester** [Bor79f]. **Symbolic** [Ade11, Bor98h, Bor00t, Bor05-41, BH06, Bor09t, BH09, LLT18, BBK14, Bor97h, Bor98q]. **Symbolically** [BB96c, Bor97q, Bor97v, Bor97w, BB05c]. **Symbols** [Bor09t]. **symmetric** [DABY15, JD13]. **Symmetry** [Bor16c, BBS20, Bor13-34, Bor13-35, Bor13-33, BZ13]. **Symposium** [IEE08, CGM95]. **symptom** [BB13-28]. **system** [BB11w]. **Systems** [ANR18, BC18b, Bor84d, LY18, PR92, Bea13, Bor93b, Bor93k, BS95, BS97a, BR16, DABY15].

tails [BCP05, BC10]. **tales** [BBLZ13f]. **Talk** [Bor93u, Bor07v, Bor08l, Bor08m, Bor10u, Bor11x, Bor11y, Bor11z, Bor11-29, Bor16n, Bor16t, Bor89a]. **Talking** [BB12-48, Bor97r, Bor97s, Bor97t, Bor97u, Bor98b, Bor99-28, Bor10-30, Bor12-28]. **talks** [BB14e]. **Tangency** [Bor99w]. **Tangent** [BO76, Bor78, Bor8a, AL10, BB84f]. **Tangential** [BSS85]. **Tanh** [BY06]. **Taylor** [Nim15]. **teaching** [BB10a, BBLZ13h]. **Teacher** [Goo20, Mic03]. **teachers** [BB12-49, BW97]. **Teaching** [AD20, Bor11g, Bor11-37]. **Technical** [Bor16t]. **Technion** [MR92]. **Techniques** [BZ05, Bor94n, BZ99a, GS02]. **technological** [BB12-44]. **Technologies** [J20, PL20]. **Technology** [Bor98e, Bor99f, Bor99d, BS99c, Bor00n, Bor07f, Sc116, BS99a]. **Tegmark** [BB14r]. **Telco** [Bor10-30]. **telelearning** [Bor00w]. **Telstra** [Bor10-30]. **Temporal** [CZX21]. **Ten** [BBKW06, Bor05b, Bor09-30, Bor09-28, Bor09-31, Bor09-29, Bor09-27]. **Tensor** [CZX21]. **tentative** [BB12-34, BB12-35]. **term** [BBLZ14j, BBLZ14i]. **Termination** [HDL21]. **Terms** [BC18b]. **ternary** [Ade10]. **Terry** [A15]. **Tertiary** [Bor11g, Bor11-37]. **test** [BB12o, BB12-36, BB13-27, BB12j]. **Testing** [Alt20, BBLZ13a, BBLZ14r, BB13h]. **tests** [BB11x]. **Texas** [BB13-29, BB13-30]. **textbook** [BB13-29, BB13-30]. **Texts** [Bor88]. **th** [BB84d, Cra12]. **their** [BB13a, Bor88m, Bor89d, Bor95o, Bor95p, Bor14e, RZ15]. **themselves** [BB10a]. **Theorem** [BBWY11a, Bor80b, GN16, TB80, dPB21, Ara07, Ara08, BB13c, BBWY12a, BO11a, Bor79f, Bor80e, Bor81e, Bor81d, BZ86, Bor88g, Bor88h, Bor88i, Bor89c, Bor90m, Bor90n, BW98a, BD03, Bor14z, Bor16-27, Dev9x, Koh01, MW12, OBB+96, Rei02, BB13f, Bor79b, Bor13h]. **théorème** [Dev9x].
Theorems
[Bor99-27, Bor00u, Bor12-31, Bor14j, Bor14k, Bor14l, Bor14m, Bor77b, Bor79a, Bor81c, Bor85c, Bor87m, BT92, BG95a, Bor98o, BY13a, BY14c]
Theoretical [BaO12]. Theories [BB09g, BBG95b]. Theory [AHLC +17a, AHLC +17b, BB15i, Ber88, BB87d, BZ02a, BM07d, Bor09d, Bor12e, Bor12f, BR12, BY12c, Bor12-30, BR13b, Bor16u, Bor16v, Bor16w, Bor16x, Bor16y, Bor16z, BZ02a, DLR20, HMM20, SBW84, Tod03, Wim88, BBC10, BB13-42, BB13-47, BBC14b, BB15a, BB15h, Bor84a, BL92c, Bor94o, Bor09d, Bor12z, Bor13u, Bor13v, Bor13w, Bor13y, Bor13z, Bor13-27, Bor14x, Bor14y, Bor16q, Bor07-31, BB14e, BB93d]

Ther [Bor17b]. there [BB15e, BB12-53, Bor14a]. Theta [Hir17, AB15, AAW06, Bor87l, HGB93, LL01, Liu00, XY12]. Theta-Function [Hir17]. Things [Bor13-28, Bor13-29, BB11f, Bor12z, Bor13u, Bor13v, Bor13w, Bor13x, Bor13y, Bor13z, Bor13-27, Bor14x, Bor14y, Bor16q, Bor16r, Bor16s]. think [BB12-51]. Thinking [BaO12, BB12-52, BB93g, Bor94o]. Third [BBB03]. Thirty [BB05d, BB06c, Bor10-31]. Thirty-two [BB05d, BB06c]. Thompson [Bor07-27]. thousand [BB12-29]. thousand-digit [BB12-29]. threaten [BB12-44]. threatens [BB12-41, BB13-29, BB13-30]. threats [BB10i]. think [BB12-51]. Thinking [BaO12, BB12-52, BB93g, Bor94o]. Third [BBB03]. Thirty [BB05d, BB06c, Bor10-31]. Thirty-two [BB05d, BB06c]. Thompson [Bor07-27]. thousand [BB12-29]. thousand-digit [BB12-29]. threaten [BB12-44]. threatens [BB12-41, BB13-29, BB13-30]. threats [BB10i]. think [BB12-51]. Thinking [BaO12, BB12-52, BB93g, Bor94o]. Third [BBB03]. Thirty [BB05d, BB06c, Bor10-31]. Thirty-two [BB05d, BB06c].
BBWY12c, BB87a, BB88d, Bor91h, Bor92d, BB93d, BH94a, BH94b, BV00b, BV01, BBG04b, Bor05f, BE08, BL08, BEY11, BY12a, BY12f, BY13a, BY14a, BY14c, Gui16, HLZ14, HL15a, Nim15, Wei15, ZS12, Zha13, ZZ14].

typical [BW99, BW01]. Tyrrell [Bor11-38].

ultraproducts [BS15a]. Unbounded [RZ18]. Uncertain [DGLV20, BB12c].

unconsciously [BB10h]. Unconstrained [SI16, AP16, DHSZ06, MP18, NY10, NFB17a, Ray97, WSdSY15, XSW12].

uncovers [Cam16]. Underdetermined [BL94a, BGL93]. Undergraduate [BS99d, Bor00s, BS99b, BS00].

underscores [BB12c]. Understanding [WG17].

Unexpected [BB16p]. Unholy [BB13-44, BB13-43]. unified [Bor77a].

Uniform [BGM18, BH94a, BH94b, BC09, Bor10-29, Bor11-33, BV95b, BV96c, BSWZ11, BSV15, BSV16]. Uniformly [BGHV09, BV12].

Union [Bor01n, Bor01m, Bor02n]. units [BCW13]. Universe [Bor11-31, BB14-29, BB14r]. University [AA+88, BB39g, BBJC97, Bor06o, Bor09b, BO11b, BS14a, EEO8, KG04, SBW84, BWW97].

Unknown [Bor02j, Bor02k]. Unleashed [AH01]. unlimited [ES01]. Unscientific [BB09a]. Unsolvable [BB87c]. unsymmetric [DLL05].

untitled [BB08v, Bor10-32, Bor12-29, Bor15s]. Update [BB15g, BB15f, SD15]. upon [BB13y, BB14c, BB14w]. Upper [CPRZ20, Las18]. Urbana [AA+88].

Urbana-Champaign [AA+88]. US$29.95 [BO11b]. US$57.00 [Bor05g].

USA [Bor05g, BB13-27]. uscos [BFK91, BK04]. Use [BB12-30, Bor12-31, Bor00w]. used [BB10g]. useful [Bor85b]. User [BB06o]. uses [BWB97]. Using [Bai88, BLNN94, BH14, Bai16b, BFG87, Bor91h, Bor92d, BZ92, Bor94g, BLN94a, BLN95, Bor95m, Bor95n, BLNN95, BLN96, BRS11, LY21, PH14].

Utility [Roc20].

V [BSW82, Odl11]. Value [Bor99-27, Bor00u, BW98a, Bor98p, Bor99y, Bor99z]. valued [BBP03, BZ88, Zho12, Bor29b]. Values [BZ87, BB96c, BBBL98c, BBBL99, BBK00a, BKL05, Bor10y, BZ11, BS11d, BS11e, BS17, BBBL97, BBBL98a, BBBL98b, BKK00a, BBBL01, BB05c, BC10]. Vanderwerff [How14].

variable [BBM01, BBM02, KJR16]. Variant [YS00, LS00]. variants [Bor79].

Variational [A015, BZ94h, BZ97, BMS99b, Bor99u, Bor00v, Bor03-33, Bor04-31, BZ05, Bor06r, Bor06s, Bor06t, Bor06u, BZ06, Bor07a, Bor08j, Bor09-30, Bor09-28, Bor09-31, Bor09-29, Bor09-27, Bor13-34, Bor13-35, BZ13, Bor16z, Geo05, YS00, Bor86g, BP87, Bor87h, Bor87i, Bor87j, Bor90m, Bor90n, Bor97p, Bor98l, Bor98m, BTZ99, Bor99t, BCFR04, Bor09l, Bor10p, Bor13-31, BZ16, Fab89, KPS16, KPS17, LS00, QR07]. Variations [Bor05c, BB05d, Bor10b, Bor10-31, BB06c]. various [BBP97, Bor92g, Bor92h, Bor93f, Bor93g].

vector-valued [BBP03].
Vectors [BSxx, BL92a]. Vera [BO11b]. Verifiable [BZ88]. version [BWB97, Koh01]. versus [BB12a, BB12n]. vertex [KMY00]. very [BB83, Bor14z, Bor16-27]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFW97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victory [BB11-28]. view [BB17]. Views [DD15, BS97b, Bor97o, Bor98c]. viii [Bai91]. violence [BB11y].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].

victory [BB11-28]. view [BB17].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].

victory [BB11-28]. via [BMCL18, Bor87k, BBT92, BG96a, BG97b, BFV97, BCM02, BCM03, Bor06-30, BBC08a, CZX21, EB08, NFB17b, TB80].

victorious [BB11o]. victorious [BB11o].
Wittgenstein [BBLZ13b]. Wokingham [BF06b]. Wonderful
[Bor93m, Bor91p, Bor91q]. word [BB12d]. Words [BS14a, BS14b]. work
[BBLZ16b, Bor02o, Bor04-33, Bor06-36]. Working
[Bor01a, Bor01b, Bor01c, Bor01d, Bor06e]. works
[BB12a, Bor07q, Bor07p, BR14b]. Workshop
[BBL+13, BBC+14a, BBJC97, IMR92, RZ15, BB14a]. Workspaces [Bor98j].
World [Bor03-35, BMP05, Fer91, BB12-41, BBB14a]. Worthing
[BB12-36]. wreck [Bor15c]. writings [BB10]. wrong
[BB09f, BB13m, BB13-45, BB13-46]. WSN [LY21]. WWII [BB13t].
X [Bor05g, BB91d, Zei05]. xii [BB93g, BC96, Bol06, Od11]. xii [Bor05g].
XSEDE [JWDS+14], xue [BB95e, IL09, IL09]. xv [Ber88], xvii [Coh15].
xxii [Bor06o, Bor09b].

year [BBLZ13d, BB15-28, BBxxc]. Years
[Bor02c, Bor02q, Bor07d, Bor09j, Bor09k, BB12, bVP21, BBLZ14i, BB15q,
BB15z, BB15y, BD95, Bor08r, Bor10m, Bor12j, Bor12k, Bor15j]. Yes
[BB12-53, BB13-33]. York [Ber88, BB91d, BB93g, Tod03]. Young
[Bor97g, Bor98g]. you’re [BB13i]. yourself [BB12-31]. you [IL09].

Zagier [BBB96b, BB96c, BB97d, Bor97f]. Zahl [BB96d]. Zang [Bor90b].
Zeidler [Bor06o]. zero [BR11-27, BBY12, BBY14, BB15d]. ZETA [Bor97q,
BB96c, BBC98, BBK00a, BBC00b, Bor05x, Bor07g, Bor08k, Bor09m, Bor10y,
BZ11, BD16a, Dil21, BB15c, BB15, BS17, BBBL97, BBBL98a, BBBL98b,
BB98c, BB98d, BBK00b, BBK01, BB05c, Bor06h, BC10, BDT16, BD18]. Zeta-
Function [Bor08k, BS17]. Zhai [Coh15]. zheng [IL09].

References

Andrews:1988:RRP

visited: proceedings of the centenary conference, University of Illi-
nois at Urbana-Champaign, June 1–5, 1987. Academic Press, New
1987.

Alladi:2012:PRA

[AAB12] Krishnaswami Alladi, George E. Andrews, and Jonathan M. Borwein. Preface to Ramanujan’s 125th anniversary special is-
CODEN RAJOF9. ISSN 1382-4090 (print), 1572-9303 (elec-
s11139-012-9448-9.
Alaca:2006:TDT

AragonArtacho:2012:GCN

AragonArtacho:2013:GCN

Adiga:2015:RGT

Abbott:2000:BRP

AragonArtacho:2013:WRN

Amdeberhan:2012:FEC

[ABBS12] Tewodros Amdeberhan, David Borwein, Jonathan M. Borwein, and Armin Straub. On formulas for π experimen-

REFERENCES

REFERENCES

49

Abstracts/52-4/adegoke.pdf;http://www.fq.math.ca/Papers/
52-4/adegoke4282014.pdf.

[AG99] Gert Almkvist and Andrew Granville. Borwein and Bradley’s
Apéry-like formulae for \(\zeta(4n + 3)\). *Experimental Mathematics*, 8
(2):197–203, 1999. CODEN ????? ISSN 1058-6458 (print), 1944-
em/1047477060.

[AH01] Jörg Arndt and Christoph Haenel. *Pi — Unleashed*. Springer-
Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2001. ISBN 3-540-66572-2 (paperback), 3-642-56735-5 (e-
CD-ROM. Translated from the German by Catriona and David
Lischka.

[AHLC+17a] Francisco Javier Aragón Artacho, Rene Henrion, Marco Antonio
Lopez-Cerda, Claudia Sagastizabal, and Jonathan M. Borwein.
Advances in monotone operators theory and optimization (part
2) preface. *Set-Valued and Variational Analysis*, 25(4, 2):637–638,
December 2017. ISSN 1877-0533 (print), 1877-0541 (electronic).

[AHLC+17b] Francisco Javier Aragón Artacho, Rene Henrion, Marco Anto-
nio Lopez-Cerda, Claudia Sagastizabal, and Jonathan M. Bor-
wein. Special issue: Advances in monotone operators theory and
optimization preface. *Set-Valued and Variational Analysis*, 25(3
(SI)):463–465, September 2017. ISSN 1877-0533 (print), 1877-
0541 (electronic).

[AI18] A. V. Arutyunov and A. F. Izmailov. Stability of possibly non-
isolated solutions of constrained equations, with applications to
complementarity and equilibrium problems. *Set-Valued and Vari-
atational Analysis*, 26(2):327–352, June 2018. CODEN ????? ISSN
springer.com/article/10.1007/s11228-017-0459-y.

[AJ86] Miroslav D. Asic and A. A. Jagers. Problems and solutions: So-
lutions of elementary problems: E2995. *American Mathematical
REFERENCES

Adler:1986:PSS

Azmi:2022:CMI

Adegoke:2010:HDI

Altman:2020:HAE

Amdeberhan:2010:GEM

Asic:1983:PSE

REFERENCES

MYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). See also [AJB86, AJ86, EWM86, KJ86, NOL86, SZUM86].

Anonymous:2015:IJB

Anonymous:2016:JMB

Apkarian:2018:NSO

Arzani:2016:NNF

Adly:2013:NMS

AragonArtacho:2007:NSC

REFERENCES

AragonArtacho:2008:NSC

Askey:1988:BRP

Adamchik:1997:SF

Victor Adamchik and Stan Wagon. A simple formula for π. *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein, and Plouffe, [BBP97], done in 1995, but only just published, that discovered an amazing formula for π as a power series in 16^{-k}, enabling any base-16 digit of π to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of 4^{-k}. They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of 10^{-k}.

An:2020:NCS

Borwein:2020:ELJ

Bailey:1988:CDD

David H. Bailey. The computation of π to 29,360,000 decimal digits using Borweins’ quartically convergent algorithm. *Mathe-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Borwein:1987:RRA

Borwein:1987:RRA

Borwein:1987:UPW

Borwein:1987:PiAS

Barzilai:1988:TPS

Borowski:1988:DM

Borwein:1988:CCJ

REFERENCES

REFERENCES

REFERENCES

Computational complex analysis.

Borwein:1993:GFI

Borwein:1993:ICM

Borwein:1993:MMB

Bauschke:1994:DAP

Borwein:1994:STE

REFERENCES

[BaB95f] David Borwein and Jonathan M. Borwein. On an intriguing integral and some series related to $\zeta(4)$. Proceedings of the American

Borwein:1997:AGMa

Borwein:1997:EDA

Borwein:1997:MMS

Bauschke:1998:COM

Borwein:1998:PAS

Borwein:1998:DRDa

REFERENCES

REFERENCES

[BBxxb] J. M. Borwein and P. B. Borwein. On the mean iteration \((a, b) \leftarrow ((a + 3b)/4, (\sqrt{a b} + b)/2)\). Report, Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, NS B3H 3J5, Canada, 19xx. 39 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BB09h] David H. Bailey and Jonathan M. Borwein. Misuse of probability by ‘creation scientists’. Math Drudge, August 13,

Bailey:2009:NRR

Bailey:2009:PAD

Bailey:2009:SFW

Bailey:2009:SMP

Bailey:2009:SMPb

Bailey:2009:UA

REFERENCES

[BB10g] David H. Bailey and Jonathan M. Borwein. How reliable are the radiometric methods used for geologic ages. Math Drudge, May

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bailey:2012:DPR

Bailey:2012:ENP

Bailey:2012:EEC

Bailey:2012:EEM

Bailey:2012:FFP

Bailey:2012:GWD

Bailey:2012:HHC

REFERENCES

[BB12-37] David H. Bailey and Jonathan M. Borwein. Life on Mars!? Maybe we are all Martians. Math Drudge, December 3,
REFERENCES

[Bailey:2012:PQM] David H. Bailey and Jonathan M. Borwein. Poor-quality math and computer science courses threaten technological lead-
experimentalmath.info/blog/2012/01/poor-quality-math-and-computer-science-courses/

REFERENCES

REFERENCES

REFERENCES

[BB13t] David H. Bailey and Jonathan M. Borwein. The last Japanese WWII holdout: A lesson for creationists. Math Drudge, April 1,
REFERENCES 90

[BB13-27] David H. Bailey and Jonathan M. Borwein. PISA international test scores show Australia, Canada, UK, USA lagging. Math
REFERENCES

[BB13-42] David H. Bailey and Jonathan M. Borwein. Two breakthrough results in number theory. Math Drudge, May 24,
REFERENCES

REFERENCES

Bailey:2014:FPC

Bailey:2014:FEHa

Bailey:2014:FEHb

Bailey:2014:GW

Bailey:2014:HFLb

Bailey:2014:PNM

Bailey:2014:LENa
REFERENCES

Bailey:2014:LENb

Bailey:2014:MTO

Bailey:2014:NRP

Bailey:2014:OCEe

Bailey:2014:PDa

Bailey:2014:PDb

Bailey:2014:PDUb

Bailey:2014:SDJ

[BB14x] David H. Bailey and Jonathan M. Borwein. The significance of digits: just how reliable are reported numbers? *The Conversation*,
REFERENCES

[[Bailey:2014:TW]]

[[Bailey:2014:FFQ]]

[[Bailey:2014:FFT]]

[[Bailey:2014:WCG]]

[[Bailey:2014:WSP]]

[[Bailey:2014:WMBa]]

[[Bailey:2014:WMBb]]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

huffingtonpost.com/david-h-bailey/how-well-do-individuals-u_b_7664706.html.

Bailey:2015:MMP

Bailey:2015:PPD

Bailey:2015:WFPa

Bailey:2015:WFPb

See also Part II [?].

Borwein:2015:ANK

Bailey:2016:CEE

Bailey:2016:CSC
REFERENCES

Bailey:2016:EMS

Bailey:2016:AIS

Bailey:2016:HCB

[BB16e] David H. Bailey and Jonathan M. Borwein. Are humans or computers better at mathematics? Blog posting, November 27, 2016. This article was co-authored with Jonathan M. Borwein before his death on 2 August 2016. A condensed version of this article appeared in [BB16s].

Bailey:2016:GWD

Bailey:2016:HLIa

REFERENCES

REFERENCES

REFERENCES

[Borwein:2006:PES]

[Bailey:2012:HPC]

REFERENCES

REFERENCES

David H. Bailey, Jonathan M. Borwein, Peter B. Borwein, and Simon Plouffe. The quest for pi. *The Mathematical Intelli-
REFERENCES

Bailey:2016:RCS

Bailey:2017:RCS

Bailey:2010:EMMb

Bailey:2010:EMMa

Borwein:1996:WOM
REFERENCES

[BBC9x] David H. Bailey, Jonathan M. Borwein, and Richard E. Crandall. On the Khintchine constant. Report, Centre for Experimental and Constructive Mathematics (CECM) at Simon Fraser University (SFU), Burnaby, BC V5A 1S6, Canada, 199x. 19 pp. Published in [BBC97a].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BBFG00] David Borwein, Jonathan Borwein, Greg Fee, and Roland Girgensohn. Refined convexity and special cases of the Blaschke–Santalo
REFERENCES

[Borwein:2001:RCS]

[Bailey:1993:EEE]

[Borwein:1993:HAA]

[Bailey:1994:EEEb]

[Borwein:1994:EEEa]
J. Borwein, P. B. Borwein, and F. G. Garvan. Some cubic modular identities of Ramanujan. Transactions of the
REFERENCES

REFERENCES

REFERENCES

[BBK00b] Jonathan Michael Borwein, David J. Broadhurst, and Joel Kamnitzer. Central binomial sums, multiple Clausen values, and zeta
values. Report, Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada, November 4, 2000. 17 pp. Published in [BBK01].

REFERENCES

REFERENCES

REFERENCES

Bailey:2014:DNB

Bailey:2014:DDDb

Bailey:2014:FBO

Bailey:2014:FKP

Bailey:2014:HFLa

Bailey:2014:HMP

Bailey:2014:IIC

REFERENCES

[BBLZ14n] David H. Bailey, Jonathan M. Borwein, Marcos López de Prado, and Jim Zhu. The ‘scary chart’ fallacy. Mathematical Investor,

REFERENCES

REFERENCES

[BBM01] David Borwein, Jonathan M. Borwein, and Bernard A. Mares, Jr. Multi-variable sinc integrals and volumes of polyhedra. Re-

[BBM02] David H. Bailey, Jonathan M. Borwein, and Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of \(\pi^2 \) and Catalan’s constant. Report, Lawrence Berkeley National Laboratory; Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle; IBM Australia, Berkeley, CA, USA; Callaghan, NSW 2308, Australia; St. Leonards, NSW 2065, Australia; Pyrmont, NSW 2009, Australia, April 11, 2011. 18 pp. URL http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-bluegene.pdf.

[BBMW17] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick. Computation and analysis of arbitrary digits of \(\Pi \) and other mathematical constants. Slides for Levi Conant Prize lecture at Worcester Polytechnic Institute, Worces-
REFERENCES

REFERENCES

[BBS14b] David Borwein, Jonathan M. Borwein, and Armin Straub. On lattice sums and Wigner limits. *Journal of Mathematici-
REFERENCES

REFERENCES

[Bauschke:2000:BLR]

[Bauschke:2007:FFC]

[Bauschke:2011:BBT]

[Bauschke:2011:CPM]

[Bauschke:2011:EMM]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Borwein:2015:PPA]
Jonathan M. Borwein and Scott T. Chapman. I prefer pi: Ad-
denda. American Mathematical Monthly, 122(8):800, October
2015. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972
amer.math.monthly.122.8.800. See [BC15a]. The addenda cor-
rect formulas (4) and (12), references [34] and [74], and add a new
reference.

[Borwein:2016:PPB]
Jonathan M. Borwein and Scott T. Chapman. I prefer pi: a brief
history and anthology of articles in the American Mathematical
Monthly. In Bailey and Borwein [BB16l], pages 475–499. ISBN 3-
319-32375-X, 3-319-32377-6 (e-book). LCCN QA251. URL http:
//docserver.carma.newcastle.edu.au/1615/.

[Borwein:2018:GFM]
Jonathan M. Borwein and Robert M. Corless. Gamma and fac-
400–424, May 2018. CODEN AMMYAE. ISSN 0002-9890 (print),
1930-0972 (electronic).

[BoAa:2018:ANN]
Radu Ioan Boţ and Ernő Robert Csetnek. Approaching non-
smooth nonconvex optimization problems through first or-
der dynamical systems with hidden acceleration and Hessian
driven damping terms. Set-Valued and Variational Analy-
sis, 26(2):227–245, June 2018. CODEN ????? ISSN 1877-
springer.com/article/10.1007/s11228-017-0411-1;https:
//link.springer.com/content/pdf/10.1007/s11228-017-0411-
1.pdf.

[Bailey:2021:ISI]
David H. Bailey and Scott Chapman. Introduction to the special
issue. American Mathematical Monthly, 128(9):772, 2021. CO-
DEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

[Borwein:2010:HDB]
Jonathan M. Borwein, O-Yeat Chan, and R. E. Crandall.
Higher-dimensional box integrals. Experimental Mathemat-
ics, 19(4):431–446, 2010. CODEN ????? ISSN 1058-6458
euclid.em/1317758103.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BF89a] Jon Borwein and Simon Fitzpatrick. Local boundedness of monotone operators under minimal hypotheses. *Bulletin of the*
REFERENCES

[BF93d] Jonathan M. Borwein and Simon Fitzpatrick. A weak Hadamard smooth renorming of $L_1(\Omega, \mu)$. Canadian mathematical bulletin
REFERENCES

152

REFERENCES

Borwein:2004:CMU

Byerly:1993:PSP

Borwein:2002:FES

Beck:1987:PSS

REFERENCES

REFERENCES

[BL97] Jonathan M. Borwein and Petr Lisoněk. Applications of integer relation algorithms. Report, Centre for Experimental and Constructive Mathematics (CECM) at Simon Fraser University (SFU), Burnaby, BC V5A 1S6, Canada, November 18, 1997. URL http://docserver.carma.newcastle.edu.au/198. Published in [BL00b].

Borwein:2006:CAN

Borwein:2008:DRT

Borwein:2011:ERF

Borwein:2015:DCP

Borwein:2016:MLO

Bao:2017:NPBa
Yanyan Bao and Hongwei Liu. Nonmonotone projected Barzilai–Borwein method for compressed sensing. In 2017 2nd Interna-
REFERENCES

Jonathan A. Borwein, Petr Lisoněk, and John A. Macdonald. Arithmetic–geometric means revisited. Report, Centre for Experimental and Constructive Mathematics (CECM) at Simon Fraser

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Borwein:2010:SCC

Bonnefond:2018:NMP

Burachik:2018:BTD

Borwein:1998:CDA

Borwein:2000:CDA

Borwein:2005:PFW

Jonathan M. Borwein, Mason Macklem, and Jaehyun Paek. A prototype for the federated world directory of mathematicians.

[BMS13] Jonathan Borwein, Christopher Maitland, and Matthew Skerritt. Computation of an improved lower bound to Giuga’s primal-

Bauschke:2018:Pa

Bauschke:2018:Pb

Borwein:2006:BDE

Borwein:1995:LFP

Borwein:1997:LFP

REFERENCES

REFERENCES

Bauschk:1999:EAD

Borwein:2010:RWP

Borwein:2011:SAP

Borwein:1976:TCC

Borwein:1978:CCC

Bingham:2011:HKB

REFERENCES

CODEN CMBUA3. ISSN 0008-4395 (print), 1496-4287 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bor87k] Jonathan M. Borwein. Spectral analysis via convex programming. Charnes' 70th birthday conference, IC2, University of Texas at Austin, Austin, TX, USA., October 15, 1987.
REFERENCES

Borwein:1988:ETEa

Borwein:1988:ETEb

Borwein:1988:ETEc

Borwein:1988:MCK

Borwein:1988:OPE

Borwein:1988:PFC

Borwein:1988:STAAa

Borwein:1988:STAb

Borwein:1989:AFM

[Bor89g] Jonathan M. Borwein. Quadratic mean iterations. Carleton University/Université d’Ottawa joint Colloquium, Carleton University, Ottawa, ON, Canada., March 4, 1989.

Jonathan M. Borwein. Differentiability properties of convex, Lipschitz and semicontinuous functions. Ontario Math Meetings #88, Brock University, St. Catharines, ON, Canada., April 21, 1990.
Borwein:1990:DPLa

Borwein:1990:DPLb

Borwein:1990:ETSa

Borwein:1990:GMSa

Borwein:1990:HCPa

[Bor90s] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John’s, NL, Canada., March 31, 1990.

[Bor90t] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

[Bor90w] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Memorial University, St John’s, NL, Canada., March 31, 1990.

[Bor90x] Jonathan M. Borwein. The history of the computation of pi. APICS Lecture, Université de Moncton, Moncton, NB, Canada., April 5, 1990.

Borwein:1990:MCAc

Borwein:1990:MCAd

Borwein:1990:PERa

Borwein:1990:PERb

Borwein:1990:PERc

Borwein:1990:PERd

Borwein:1990:PERe

Borwein:1990:PERf

Borwein:1990:PERg

REFERENCES

[Bor91g] Jonathan M. Borwein. Discovering analytic objects by computer. Colloquium, Department of Mathematics, Guelph University, Guelph, ON, Canada., November 12, 1991.

[Bor91h] Jonathan M. Borwein. Estimation and approximation using infinite dimensional convex programs with entropy type objectives. Special session on Constrained Approximation, AMS Regional
Jonathan M. Borwein. Euler, Mahler, Ramanujan and a little pi: Discovering analytic objects by computer. One of two invited talks at the Festkolloquium for Dr. A. Peyerimhoff’s 65th birthday, Ulm, Germany., April 25, 1991.

REFERENCES

REFERENCES

[Bor92j] Jonathan M. Borwein. Infinite dimensional entropy minimization: a tutorial. 14th Symposium on Mathematical Programming with
REFERENCES

[Bor93a] J. M. Borwein. Asplund spaces are sequentially reflexive. Accepted for publication in the Canadian Journal of Mathematics, but withdrawn and merged with another paper. Jon Borwein recorded that as publication number 121, but because the article numbers changed with each update of his CV, that number has long been incorrect., 1993.

[Bor93c] Jonathan M. Borwein. Computer assisted ‘mathematics and plausible reasoning’. Kempner Colloquium, Department of Mathe-
REFERENCES

[Bor94g] Jonathan M. Borwein. Maximization entropy methods (using derivative information) and infinite dimensional convex programming. XV International Mathematical Programming Symposium, Ann Arbor, MI, USA., August 18, 1994.

REFERENCES

[Bor95n] Jonathan M. Borwein. Maximum entropy methods (using derivative information) and infinite dimensional convex programming. Pure Mathematics Seminar, University of Western Australia, Crawley, WA 6009, Australia., August 1, 1995.

REFERENCES

Borwein:1997:GYI

Borwein:1997:ISC

Borwein:1997:MPWa

Borwein:1997:MPWb

Borwein:1997:MMa

Borwein:1997:MEM

Borwein:1997:MDP

Borwein:1997:MMb

Jonathan M. Borwein. Partially smooth variational analysis. AMS Special Session on Optimization and Variational Analysis, Wayne State University, Detroit, MI, USA, May 2–4., May 2, 1997.

Jonathan M. Borwein. Talking about \(\pi\). Colloquium, School of Mathematical Sciences, Lakehead University, Thunder Bay, ON P7B 5E1, Canada., September 22, 1997.

REFERENCES

[Bor97w] Jonathan M. Borwein. Three adventures: Symbolically discovered identities for $\zeta(4n + 3)$ and like matters. Joint CS/C&O Colloquium, University of Waterloo, Waterloo, ON, Canada., October 9, 1997.

[Bor98e] Jonathan M. Borwein. Collaborative networking technology in the mathematical sciences. MITACS/Canada–China Opening, Asia–

REFERENCES

[Bor99e] Jonathan M. Borwein. The doing of mathematics in the presence of technology. Canadian Mathematics Education Study Group (CMESG), First Plenary, Brock University, St. Catharines, ON, Canada, June 4–8., June 4, 1999.

Jonathan M. Borwein. Experimental mathematics: Insight from computation. 2 hour Invited Address, MAA Pacific Northwest Section Meeting, Willamette University, Salem, OR, USA, March 12–13, 1999., February 8, 1999.

Jonathan M. Borwein. Generic behaviour of generalized gradients. Special Session on Nonlinear Analysis, Canadian Mathematical Society Summer Meeting, Memorial University, St John’s, NL, Canada., May 29, 1999.

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bor00c</td>
<td>Jonathan M. Borwein. Experimental mathematics and exact computation. Colloquium, University of Western Australia, Crawley, WA 6009, Australia., April 19, 2000.</td>
</tr>
<tr>
<td>Bor00f</td>
<td>Jonathan M. Borwein. Experimental mathematics and exact computation. Colloquium at GSF-Forschungszentrum Inst. für Biomathematik und Biometriei, University of Munich, München, Germany., October 4, 2000.</td>
</tr>
<tr>
<td>Bor00g</td>
<td>Jonathan M. Borwein. Experimental mathematics and exact computation. Ernst Schrödinger Lecture, Schrödinger Institute, University of Vienna, Vienna, Austria., October 5, 2000.</td>
</tr>
<tr>
<td>Bor00k</td>
<td>Jonathan M. Borwein. Experimental mathematics and other good stuff. Science One Presentation, University of British Columbia, Vancouver, BC, Canada., October 17, 2000.</td>
</tr>
</tbody>
</table>

REFERENCES

[Bor01e] Jonathan M. Borwein. Challenges in mathematical computing — why math is still hard. MAA Seaway Sectional Meeting, after
dinner lecture, Brock University, St. Catharines, ON, Canada, November 2–3, 2001., November 2, 2001.

Jonathan M. Borwein. The CEIC: The next four years. West Coast Optimization Fall Meeting, University of Washington, Seattle, WA, USA., November 2, 2002.
REFERENCES

REFERENCES

[Bor02o] Jonathan M. Borwein. Introduction to the work of the CEIC. Electronic Information Afternoon at the ICM, Beijing, August 20–27, 2002., August 26, 2002.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bor05b] Jonathan M. Borwein. (2 times) ten challenge problems. Third Clifford Lecture, Tulane University, New Orleans, LA, USA., April 1, 2005.

[Bor05d] Jonathan M. Borwein. Aarms. Presentation, Department of Math and Stats, Memorial University, St John’s, NL, Canada., November 17, 2005.

Jonathan M. Borwein. East meets West: Collaboration goes national. Delivered over the Access Grid to the opening of IRMACS at Simon Fraser University, Burnaby, BC, Canada., April 8, 2005.

REFERENCES

Borwein:2005:EDLd

Borwein:2005:EDLe

Borwein:2005:EMPb

Borwein:2005:EMPc

Borwein:2005:FH

Borwein:2005:HPMa

Borwein:2005:HPMb

Borwein:2005:HPMc

Borwein:2005:HPMd

REFERENCES

[Bor05z] Jonathan M. Borwein. The life of pi. Colloquium: La Trobe University, Melbourne, VIC, Australia., October 4, 2005.

REFERENCES

REFERENCES

[Bor06g] Jonathan M. Borwein. Collaborative environments. Panel Discussion HPCS 06, Memorial University, St John’s, NL, Canada., May 17, 2006.

Jonathan M. Borwein. Four lectures on variational principles. II: Monotone operators as convex objects. Spring School on Analysis, Paseky, Czech Republic, April 25, 2006.

REFERENCES

Borwein:2007:APP

Borwein:2007:ADMb

Borwein:2007:BLS

Borwein:2007:CSF

Borwein:2007:CDS

Borwein:2007:CTH

Borwein:2007:CAD

REFERENCES

REFERENCES

[Bor07-27] Jonathan M. Borwein. Some convexity results a Jon or a Thompson might like. 65th Birthday Colloquium lecture for Jon Thompson, (Inter-Campus Seminar Day), University of New Brunswick, Moncton, NB, Canada., June 8, 2007.

[Bor08h] Jonathan M. Borwein. Effective computation of Bessel functions. SIAM-AMS Special Session on Special Functions, Combined Membership Meetings, San Diego, CA, USA, Jan 6–9, 2008., January 6, 2008.

REFERENCES

[Bor08r] Jonathan M. Borwein. The past 60 years in mathematics. Colloquium, Department of Mathematics, University of Auckland, Auckland, New Zealand., December 4, 2008.

REFERENCES

REFERENCES

Borwein:2009:IRA

Borwein:2009:IRM

Borwein:2009:IMC

Borwein:2009:IC
Jonathan M. Borwein. Introduction to CARMA. Presentation to students from Dungog High School in CARMA., August 11, 2009.

Borwein:2009:ISC

Borwein:2009:MME

Borwein:2009:MEP

Borwein:2009:PRCa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bor11g] Jonathan M. Borwein. Actually: Teaching and researching at the tertiary level with collaboration tools. CARMA Colloquium., November 3, 2011.

[Bor11o] Jonathan M. Borwein. Chiropractic: crackers now, and crackers way back when. Math Drudge, December 23,
REFERENCES

[Bor11u] Jonathan M. Borwein. Fractal geometry. Presentation to Year 7 students form Wallsend with Michael Rose to the NSW MEGS program (Making Educational Goals Sustainable)., February 16, 2011.

REFERENCES

REFERENCES

[Bor12n] Jonathan M. Borwein. Interdisciplinarity, innovation, collaboration and creativity or how to manage a research portfolio. CARMA Colloquium., September 13, 2012.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bor13q</td>
<td>Jonathan M. Borwein. Modelling and simulation of seasonal rainfall.</td>
<td>Recent Advances in OR, RMIT AGR–University of Newcastle AGR–Adelaide,</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

Jonathan M. Borwein. CARMA and me. Opening of CRM, University of Western Sydney, NSW, Australia., May 28, 2014.

Jonathan M. Borwein. Douglas–Rachford methods for matrix completion problems. ANZIAM 2014, Federation University meet-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bor15t] Jonathan M. Borwein. Who we are and how we got that way? In Casazza et al. [CKR15], pages 140–156. ISBN 0-88385-585-2

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BRxx] J. M. Borwein and B. Richmond. When is a matrix a square? Research report 5, Department of Mathematics, Dalhousie University and Department of Combinatorics and Optimization, University of Waterloo, Halifax, NS, Canada and Waterloo, ON, Canada, 19xx. 22 pp.

Borwein:2010:ICF

Jonathan M. Borwein and Michael Rose. Introduction to CARMA and fractals. BOOST + on campus high school visit to University of Newcastle, Newcastle, NSW, Australia., October 19, 2010.

Borwein:2012:EW

Borwein:2013:TTS

Borwein:2013:EWC

Borwein:2014:ECC

Borwein:2014:HBW

Borwein:2014:CCB

Borwein:2016:EAI

Jonathan M. Borwein and Michael Rose. Expectations over attractors of iterated function systems. Submitted JMAA, June

[BRL99] Jonathan M. Borwein, John Read, Adrian S. Lewis, and Qiji Zhu. Convex spectral functions of compact operators. Report, Centre for Experimental and Constructive Mathematics (CECM) at Simon Fraser University (SFU), Burnaby, BC V5A 1S6, Canada, March 10, 1999. 27 pp. Published in [BRLZ00].

REFERENCES

REFERENCES

Borwein:1999:ITDb

Borwein:1999:NCMb

Borwein:1999:ITDa

Borwein:1999:NCMa

Borwein:19xx:ASW

Borwein:2000:NCMa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Borwein:1995:EUC

Borwein:1995:SRSa

Borwein:1995:SRSb

Borwein:1996:BSAa

Borwein:1996:BSAb

Borwein:1996:EUC

REFERENCES

304

[BvdPSZ14] Jonathan M. Borwein, Alfred Jacobus van der Poorten, Jeffrey Shallit, and Wadim Zudilin. Neverending Frac-
REFERENCES

Ponomarenko:2021:YAMi

Borwein:2001:LLC

Borwein:2003:LLC

Borwein:1979:COA

Borwein:1979:COC

Borwein:1981:CCP
J. M. Borwein and H. Wolkowicz. Cone-convex programming, stability and affine constraints. In Schäible and Ziemba [SZ81], pages...
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Borwein:2012:MMO

Borwein:2013:STMa

Borwein:2013:MSM

Borwein:2013:STMb

Borwein:2014:LTI

Borwein:2014:SRC

REFERENCES

REFERENCES

[BZ97] Jonathan M. Borwein and Qiji J. Zhu. Variational analysis in nonreflexive spaces and applications to control prob-

REFERENCES

REFERENCES

REFERENCES

Calude:2020:RQC

Chan:2020:RWT

Calkin:2021:WNM

Campbell:2020:HP

Chieu:2018:SCS

Cotrina:2018:EPE

Cohen:1995:AAA

[CGM95] G. (Gérard) Cohen, Marc Giusti, and Teo Mora, editors. *Applied algebra, algebraic algorithms, and error-correcting codes:*
REFERENCES

REFERENCES

math.monthly.122.6.613.

[Com18] Patrick L. Combettes. Perspective functions: Properties, constructions, and examples. Set-Valued and Variational Analy-
com/article/10.1007/s11228-017-0407-x.

[Cos17] John Cosgrave. Extension of Gauss’ binomial coefficient congru-

[CS21] Marc Chamberland and Armin Straub. Apéry limits: Experi-
ments and proofs. American Mathematical Monthly, 128(9):811–824, 2021. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-
0972 (electronic).

Campbell:2016:LEJ

Chen:2021:BBG

Dai:2015:PBB

Demir:1988:PSSa

Deutsch:1988:PSSa

Davis:2015:MSS

REFERENCES

References

Ganz:2017:RR

Gessel:1988:PSSb

Gao:2015:BBL

Georgiev:2005:PBP

Goulévitch:2007:CBS

Giladi:2018:RCD

García-Lírola:2018:MRN

Galicki:2016:CAB

Goos:2020:CBF

Galvin:1997:PSP

Grippo:2002:NGT

Gold:2008:POD

REFERENCES

Holmes:2020:MEC

Honor:1985:DTR

Howlett:2014:BRC

Hong:2014:MSI

Han:2009:MBB

IEEE:2008:HIS

IEE:2008:HIS

Ioffe:1992:ONA

Iannazzo:2017:RBB

Iannazzo:2018:RBB

Jackson:2009:JER

REFERENCES

REFERENCES

Kendall:2015:CAM

Kemp:1989:PSS

Kemp:2004:NTP

Kemp:1986:PSS

Kemp:2016:BBM

Kitazume:2000:BIV

Kellar:2003:DCM

Kohlenbach:2001:QVT

Komatsu:2000:IDA

Komatsu:2002:IDA

Komatsu:2004:IDA

LaCruz:2009:EBB

Lassonde:2018:USF

Li:2015:SNB

Liu:2000:BCT

Liu:2001:SES

Lewis:2001:BCT

Lin:2009:PPM

Liu:2013:MSB

Limber:1995:DRF

Li:2011:FSM

Lauster:2018:SCM

Lord:1990:BRD

Lorentzen:2008:CDR

REFERENCES

[Li:2021:DSP]

[Merca:2015:DI]

[Mic03]

[Mil89]

[Mil89:GRB]

[Mil90]

Monsky:1989:PSS

Moors:2018:NCS

Momeni:2018:NCG

Morovati:2016:BBM

Molina:1996:PBB

Musev:2011:QJB

Monaghan:2016:TMI
REFERENCES

Marechal:1998:APR

Marechal:1999:CSA

Miller:2012:MBD

Marchant:2016:PJM

Nosratipour:2017:ANG

REFERENCES

Julia Piantadosi, Phil Howlett, and Jonathan Borwein. Modelling and simulation of seasonal rainfall using checkerboard cop-

Piantadosi:2012:MEM

Piantadosi:2013:GSR

Phillips:2020:MEI

Pospisil:2013:OAB

Pilehrood:2011:ABB

Phillips:1992:SMS

REFERENCES

Reich:2018:CMU

Schoenberg:1987:APS

Stodden:2013:SDR

Singh:1984:ATS

Schoenberg:1985:PAS

Scherzer:2015:HMM

Matthew P. Skerritt and Paul Vrbik. Extending the PSLQ algorithm to algebraic integer relations. In Bailey et al. [BBB+20],
Stoica:2021:ICC

Swedroe:2017:SGF

Schaible:1981:CCP

Sendov:2014:SBA

Straub:2020:SWA

Shallit:1986:PSS

REFERENCES

[Tre13] Virginia Tressider. The explainer: from déjà vu to why the sky is blue, and other conundrums. CSIRO Publishing, Collingwood,

See [BB88a] for the original Barzilai–Borwein work.

REFERENCES

Zhao:2010:CBB

Zhang:2013:NFB

Zhou:2012:EBP

Zhuang:1991:BCC

Zhang:2022:BBR

Zhang:2012:BTF

Zhang:2010:NFB
