
Tiling with limited resources�

Pierre-Yves Calland1, Jack Dongarra2;3 and Yves Robert2

1 LIP, Ecole Normale Sup�erieure de Lyon, 69364 Lyon Cedex 07, France
2 Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, USA
3 Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

e-mail: pycallan@lip.ens-lyon.fr

e-mail: [dongarra, yrobert]@cs.utk.edu

February 1997

Abstract

In the framework of perfect loop nests with uniform dependences, tiling has been extensively

studied as a source-to-source program transformation. Little work has been devoted to the

mapping and scheduling of the tiles on to physical processors. We present several new results

in the context of limited computational resources, and assuming communication-computation

overlap. In particular, under some reasonable assumptions, we derive the optimal mapping and

scheduling of tiles to physical processors.

Cover Page Information

Corresponding author: Yves Robert

Submitted as: Regular paper

Conference area: Design methodologies, Compilers

�This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the Defense Ad-

vanced Research Projects Agency under contract DAAH04-95-1-0077, administered by the Army Research O�ce; by

the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract DE-AC05-84OR21400; by the National

Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615; by the CNRS{ENS

Lyon{INRIA project ReMaP; and by the Eureka Project EuroTOPS. Yves Robert is on leave from Ecole Normale

Sup�erieure de Lyon and is partly supported by DRET/DGA under contract ERE 96-1104/A000/DRET/DS/SR.

Pierre-Yves Calland is supported by a grant from R�egion Rhône-Alpes.

1



1 Introduction

Tiling is a widely used technique to increase the granularity of computations and the locality of

data references. This technique is restricted to perfect loop nests with uniform dependences, which

we de�ne as in Banerjee [2] (see also the examples below). The basic idea is to group elemental

computation points into tiles that will be viewed as computational units. The larger the tiles,

the more e�cient the computations are performed using state-of-the-art processors with pipelined

arithmetic units and a multi-level memory hierarchy (this is illustrated by recasting numerical linear

algebra algorithms in terms of blocked Level 3 BLAS kernels [11, 6]). Also, another advantage of

tiling is the decrease of the communication time (which is proportional to the surface of the tile)

relatively to the computation time (which is proportional to the volume of the tile). The price to

pay for tiling may be an increased latency (if there are data dependences, say, we need to wait for

the �rst processor to complete the whole execution of the �rst tile before another processor can

start the execution of the second one, and so on), as well as some load-imbalance problems (the

larger the tile, the more di�cult to distribute computations equally among the processors).

Tiling has been studied by several authors and in di�erent contexts. We provide a short review

of the existing literature in Section 2.1. Basically, most of the work amounts to partitioning the

computation domain of a uniform loop nest into tiles whose shape and size are optimized according

to some criteria. Little attention has been paid to distributing the tiles to physical processors and

to computing the �nal scheduling. For example, if each physical processor is assigned several tiles,

what should be the computation ordering of these tiles? An in-depth study has been presented by

Ohta et al [14], who have extended results of Hiranandani et al. [12] on �ne grain pipelining for

DOACROSS loops. We survey their work in Section 2.2.

In this paper, we build upon the work of Ohta et al [14]. We reformulate the problem of tiling

with limited resources using more realistic assumptions on data dependences and communication-

computation overlap than those used in [14], and we provide new results on the \optimal" tile

size. We also derive an optimal mapping to assign tiles to physical processors. All these results are

presented in Section 3. Finally, we state some conclusions in Section 4.

2 Literature overview

2.1 Tiling as a loop transformation technique

When targeting a data-parallel or SPMD style of programming, classical constraints in the literature

to de�ne tiles are the following:

Tiles are bounded For scalability reasons, we want the number of points inside a tile to be

bounded by a constant independent of the domain size.

Tiles are identical by translation This constraint is imposed to allow for automatic code gen-

eration: a tile must be the image by a translation of any other one unless it crosses the

computation domain boundaries.

Tiles are \atomic" Each tile is a unit of computation: all synchronization points are beginnings

and ends of tiles. The order on tiles must be compatible with the order on nodes: one must

thus avoid that two distinct tiles depend upon each other.

As already said, tiling is restricted to perfectly nested loops with uniform dependences, such as

the following simple example:

2



Example 1

for i = 0 to N1 do

for j = 0 to N2 do

a(i; j) = a(i� 3; j) + a(i; j � 2)

b(i; j) = a(i� 2; j � 3) + b(i� 2; j � 1)

enddo

enddo

This loop nest has depth 2. The dependences are uniform (intuitively, dependence vectors are

translations), and they can be encapsulated into the dependence matrix

D =

�
0 3 2 2

2 0 3 1

�
:

The atomicity constraint can be expressed by the analytical condition HD � 0, where H is the

matrix of vectors normal to the edges of the tile. Irigoin and Triolet [13] were the �rst to derive

the condition HD � 0. In the context of vector machines with a two-level memory hierarchy,

they have introduced tiling as a much more powerful technique than strip-mining or rectangular

partitioning [15]. In their paper, tiling consists in aggregating elemental computation points in tiles

(or supernode) de�ned as multi-dimensional parallelepipeds so that each tile executes atomically

with no intervening synchronization or communication. This approach has very close objectives to

those of Schreiber and Dongarra [17] who aim at automatically designing block versions of nested

loop kernels. Schreiber and Dongarra [17] have discussed how to determine the size and shape of

the tiles so as to optimize the communication-to-computation ratio. Their work has been extended

by Ramanujam and Sadayappan [16], and by Boulet et al. [3]. Several other papers have discussed

the same framework, including [18, 4, 1, 5]1.

Back to Example 1

In Figure 1, we sketch a valid timing for Example 1. The matrix H is the one derived using the

scalable communication-to-computation criteria of Boulet et al. [3]:

H =
1

16

�
0 1

3
1
2

0

�
:

We check that HD � 0. Note that the volume of the tile, which represents the number of com-

putations per tile, is given by the determinant of H�1: Vcomp = det(H�1) = 96. The number of

communications is the following: each tile sends

� 24 data items to its right neighbor,

� 34 data items to its lower neighbor,

� and 6 data items to its lower-right neighbor.

Note that the third message (the diagonal communication) may be routed horizontally and then

vertically, or the other way round, and even may be combined with any of the �rst two messages.

1This small list is far from being exhaustive.

3



j

i

Figure 1: Optimal tiling for a computation volume Vcomp = 96.

It is important to point out that the dependences between tiles are summarized by the vector

pair

f

�
1

0

�
;

�
0

1

�
g:

In other words, the computation of a tile cannot be started before both its left and upper neighbor

tiles have been executed.

As stated above, the atomicity constraint implies that inter-processor communications only

take place at the end of the processing of each tile. Note that current architectures do allow for

communications and computations to overlap, and it is important to point out that the atomicity

constraint does not prevent a given processor from simultaneously communicating boundary data

of one tile (whose execution it just completed) and starting the computation of another tile. Also,

minimizing communication start-up overheads is a \sine-qua-non" condition towards achieving good

performance. Even though sophisticated routing strategies are designed and implemented in hard-

ware, communication start-up costs remain very expensive as opposed to the elemental time for

communicating one data item (and even worse for performing a computation). Frequent exchanges

of short messages should therefore be replaced by fewer sends and receives of longer messages. To

summarize, in the context of distributed memory architectures, tiling is a technique that permits

to optimize communications while increasing the granularity of computations.

While well-suited to a data-parallel approach, the atomicity constraint is unnecessarily restric-

tive when targeting VLSI processor arrays. In this context, tiling is more like a data partitioning

approach, and tiles are entities that are mapped to processors. Communications can occur as soon

as the data is available, while processing the last computational points of the current tile. Each

tile still executes the same program, up to a translation in time. This approach has been chosen

by several authors, including [9, 8, 7, 20, 10, 19]. In several of these papers, resource constraints on

the number of communication links and the �xed topology of the communication network are in-

troduced, leading to solving complex optimization problems via Integer Linear Programming (ILP)

techniques. We do not present further details of these results, since we are targeting for distributed

memory machines, and therefore we want to enforce the atomicity constraint.

4



2.2 Tiling with resource constraints

Ohta et al. [14] aim at determining the best tile size under the following hypotheses:

(H1) There are P available processors interconnected as a ring.

(H2) The computation domain is a two-dimensional rectangle of size N1 �N2.

(H3) Tiles are rectangular and their edges are parallel to the axes (see Figure 2). The size of a

tile is n1 � n2, where n1 and n2 are unknowns.

(H4) Dependences between tiles are summarized by the vector pair f

�
1

0

�
;

�
0

1

�
g (as in Ex-

ample 1).

(H5) Tiles are assigned to processor using a one-dimensional cyclic distribution: in other words,

tile (i; j) is allocated to processor j mod P .

(H6) The scheduling of the tiles is column-wise: at step 0, processor P0 executes tile (0; 0) and the

computed value is communicated to the adjacent processor P1 (more precisely, a rectangular

slice of width w and height n2 is sent). At step 1, processors P1 and P2 execute tiles (0; 1)

and (1; 0) simultaneously. After having executed a whole column of tiles, a processor moves

on to its next column.

P20
P P1

(0,0) (1,0)

(0,1)

Figure 2: Mapping rectangular tiles onto a ring of processors.

A step is the time required to compute a tile and to communicate data. Ohta et al. [14] use the

following expression:

Ttile = n1n2t+ a+ bn2

where t is the elemental computation time, a is a communication start-up and b is the inverse of the

communication bandwidth times the width w of the slice being communicated (the communication

cost is a linear expression in the message size).

To compute the total execution time, Ohta et al. [14] use the formula (Ml +Mp)Ttile, where

Ml = P � 1 is the latency (the step at which the last processor begins to work) and Mp =
N1�N2

P�n1�n2

5



is the number of tiles per processor (assumed to be an integer). Using the approximation Ml = P ,

they derive the total execution time T as

T = (P +
N1N2

Pn1n2
)(n1n2t+ a+ bn2):

The execution time is found to be minimal when choosing

n1 =
N1

P
and n2 =

r
N2a

N1t
:

2.3 Discussion

The objective of this paper is to discuss the hypotheses (H1) to (H6) of Ohta et al., and to

reformulate their results using a more accurate modeling of current architectures. Indeed, their

study is conducted while assuming that processors cannot simultaneously communicate bordering

data items of the last tile and perform computations for the next tile. However, overlapping

computations and communications is a facility provided by all distributed memory computers, so

we relax this restriction. This simple modi�cation has a tremendous e�ect on the determination of

the best tile size.

3 Allowing for communication-computation overlap

3.1 On the model

Hypotheses (H2), (H3) and (H4) may appear very restricting. However, we point out the following

justi�cations:

Tile shape We assume that the tiles are rectangular. This is to be understood as the outcome of

previous program transformations. The �rst step in tiling amounts to determining the best

size and size of the tiles, assuming an in�nite grid of virtual processors. Because this step will

lead to tiles whose edges are parallel to extremal dependence vectors in the convex hull of

the dependence cone, we can perform a unimodular transformation and rewrite the original

loop nest along the edge axes. The resulting domain may not be a rectangular, but we can

approximate it using the smallest bounding box.

Dependence vectors We assume that dependences are summarized by the vector pair V =

f

�
1

0

�
;

�
0

1

�
g. Note that these are dependences between tiles, not between elementary

computations. In Example 1, we had 5 dependence vectors in the original loop nest, but we

ended up with V after tiling. This is a very general situation if the tiles are large enough.

For instance, having a dependence vector (0; a) with a � 2 between tiles, instead of having

vector (0; 1), would mean unusually long dependences in the loop nest (in Example 1, a(i; j)

would depend upon a(i; j � 8) but not on a(i; j � x) for x � 7). Note that having (0; a) in

addition to (0; 1) as a dependence vector between tiles is simply redundant.

On the other hand, hypotheses (H5) and (H6) are unnecessarily restrictive, because the mapping

and scheduling of the tiles should be an output decision of the procedure of tiling with limited

resources, rather than being given a priori. We overcome this restriction in Section 3.5.

6



3.2 Determining the total execution time

Proposition 1 Under the hypotheses (H1) to (H6) of Section 2.2, and allowing for communication-

computation overlap, the total computation time T is (assuming all fractions to be integer):

T =

�
T1 = (P � 1)(n1n2t+ a+ bn2) +

N1N2

P t if N2n1t � P (n1n2t+ a+ bn2)

T2 = (N1

n1
� 1)(n1n2t+ a+ bn2) +N2n1t otherwise

(1)

Proof According to hypothesis (H4), the computation goes column-wise. When a processor has

completed the execution of a whole column of tiles, it starts the next column that has been assigned

to it. The time to process a whole column of tiles is the number of tiles in the column, namely N2

n2
,

times the time to compute a tile, namely Tcomp = n1n2t. We obtain the value N2n1t for processing

a whole tile column.

Now, according to hypothesis (H5), tile columns are distributed cyclically to processors. If a

processor starts the execution of the �rst tile in a given column at time-step t, its right neighbor

cannot start the execution of the �rst tile in the next column before time-step t + Ttile, where

Ttile = Tcomp + Tcomm = n1n2t + (a + bn2) (this is due to the dependence vector

�
1

0

�
). Note

that Ttile is the same as in Section 2.2, but we pay a communication cost only when the processors

owning the tiles are not the same. Two cases can occur:

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

2

3

4

5

6

7

8

9

8

9

10

11

12

13

14

15

0
P 1P 2P 0

P

i

j

Figure 3: Scheduling tiles with Tcomp = 1, Tcomm = 1 and P = 3.

� Either there are enough tiles in each column so that when a processor has completed the

execution of a whole tile column, it does not have to wait for its next tile column to be

ready. This will happen if N2

n2
Tcomp = N2n1t is greater than or equal to the delay imposed by

horizontal constraints, i.e. if
N2

n2
Tcomp � P Ttile:

If this condition holds, all processors remain active throughout the entire computation, once

they have started execution. Since the last processor starts at time (P � 1)Ttile and has
N1N2

Pn1n2
tiles to execute (each in time Tcomp = n1n2t), we obtain T1, the �rst expression in

Equation (1). See Figure 3 where Tcomp = Tcomm = 1, and P = 3. There are N2

n2
= 8 tiles per

column, and PTtile = 6, hence the condition is satis�ed.

7



0

1

2

3

4

5

6

7

0
P 1P 2P 0

P

3

4
5

6

7

8

9

6

7

8

9

10

11

12

13

9

10

11

12

13

14

15

1610

i

j

Figure 4: Scheduling tiles with Tcomp = 1, Tcomm = 2 and P = 3.

� Or each processor has to wait upon �nishing a tile column until the next one is ready. This

translates into the condition N2

n2
Tcomp � PTtile. In that case, the total computation time is

equal to the time at which the last processor starts the execution of the �rst tile in the last

column, namely (N1

n1
� 1)Ttile plus the time needed to process this column. We obtain the

expression (N1

n1
� 1)Ttile +

N2

n2
Tcomp, as stated in the second formula of Equation (1). See

Figure 4 where Tcomp = 1, Tcomm = 2, and P = 3. There are N2

n2
= 8 tiles per column, and

PTtile = 9, hence N2

n2
Tcomp � PTtile. Processors remain idle at the end of each tile column,

waiting for their next column to be ready.

3.3 Optimizing the tile size

Equation 1 in Proposition 1 states that all processors remain active once started if

N2n1t � P (n1n2t+ a+ bn2):

We rewrite this equation by introducing the following function f :

n2 � f(n1) =
N2n1t� Pa

P (n1t+ b)
(2)

The values of n1 and n2 that minimize the total execution time are given by the following

theorem:

Theorem 1 Under the hypotheses (H1) to (H6) of Section 2.2, and allowing for communication-

computation overlap, the total execution time is minimum for

� n1 =
q

N1(a+b)
(N2�1)t

and n2 = 1 if f(N1

P ) � 1

� n1 =
P (a+b)
t(N2�P )

and n2 = 1 otherwise.

8



Proof We break down the problem into two subcases depending on the values taken by the

function f , whose argument n1 ranges from 1 to N1

P
;

� 8n1; f(n1) � 1. Since f is a nondecreasing function of n1, this condition is equivalent to

f(N1

P ) � 1. In this case, Equation (2) is always satis�ed (n2 � 1). Then the minimum of T

is obtained by minimizing T2 with n2 = 1, namely

T = (
N1

n1
� 1)(n1t+ a+ b) +N2n1t

This easily leads to n1 =
q

N1(a+b)

(N2�1)t
, as stated in the theorem

� 9n1; f(n1) � 1. Since f is a nondecreasing function of n1, we can safely take n01 be such that

f(n01) = 1. Note that all values of n1 � n01 will lead to admissible values for n2, because we

always have f(n1) �
N2

P
by de�nition of f . Now consider the expression of T for arbitrary n1

and n2:

{ if n2 � f(n1), then T = T1, T is a non-increasing function of both n1 and n2 decreases,

then the minimum is obtained with n2 = 1 and n1 = n01.

{ if n2 � f(n1) then T = T2 and is a non-increasing function of n2. Then the minimum

of T is reached if n2 = f(n1). In that case T2 = T1, and again the minimum is reached

when n2 = 1 and n1 = n01.

This result is disappointing in that we end up with degenerate tiles in most practical situations.

For instance if P � N2 (which is very likely to happen in practice), f(1) � 1, and the optimal

tile size is n1 = n2 = 1, not a very coarse-grain tiling indeed! The 
aw is that the model is not

accurate enough to take the impact of data locality and data reuse into account (which are the

main objectives of tiling). A �rst solution is to model the computation cost of a tile by an a�ne

expression like Tcomp = n1n2t + u, where u represents some access overhead. It is not di�cult to

plug this expression into the formula given for the total execution time T , and to derive the optimal

tile size. Another solution is to assume a �xed tile size that would be imposed by some a priori

considerations (such as the cache size). Again, we can let n1n2 = S in Equation (1), and minimize

T for n1, say.

3.4 Optimizing the number of processors

Another interesting question is the following: since the size and shape of the tiles may be imposed

by some a priori considerations (such as the cache size, and the results on the best communication-

to-computation ratio that have been reviewed in Section 2.1), we may consider n1 and n2 as input

parameters and try to determine what is the optimal number of processors that should be used so

as to minimize the total execution time. The answer is given by the following proposition:

Theorem 2 Under the hypotheses (H2) to (H6) of Section 2.2, and allowing for communication-

computation overlap, let

P� ==

r
N1N2t

n1n2t+ a+ bn2
and P� =

N2n1t

n1n2t+ a+ bn2

The number of processors P that minimizes the total execution time is given by:

9



� if P� � 1 or P� � 1 � P�, then P = 1,

� if 1 � P� � P� then P = P�,

� if 1 � P� � P� then P = P�.

Proof The \steady-state" condition N2n1t � P (n1n2t+a+bn2) in Equation (1) can be rewritten

as

P � P�:

Consider T1 = (P �1)(n1n2t+a+ bn2)+
N1N2

P t (see Equation (1)). The minimum of T1 is obtained

for P = P�. The expression of T1 shows that is a non-increasing function of P when P � P�, and

then a non-decreasing function of P when P � P�. Also, note that T2 does not depend on P (except

than through the condition P � P�). Then the result follows according to a simple case analysis.

For large domains, we will have 1 � P� � P�, and it is no surprise that the optimal number of

processors is the one required to ensure steady-state execution.

3.5 Optimal mapping and scheduling

Hypotheses (H5) and (H6) are very restrictive in that they impose the mapping of tiles to processors

as well as their scheduling. The intuitive motivation for (H5) is that a cyclic distribution of

tiles is quite natural to load-balance computations. Once the distribution of tiles to processors is

�xed, there are several possible schedulings (any wavefront execution that goes along a left-to-right

diagonal is valid). Specifying a column-wise execution may lead to the simplest code generation.

It turns out that (H5) and (H6) provide the best solution among all possible distributions of

tiles to processors, which is a very strong result. This result holds true under the assumption that

the communication cost for a tile is not larger than its computation cost. Since the communication

cost for a tile grows linearly with its size, while the computation costs grows quadratically, this

hypothesis will be satis�ed if the tile is large enough2. This result is formally stated in the theorem

below. Beforehand, we need to re�ne the communication cost as follows:

� Tcomm horiz = a + bn2 is the cost of communicating data from (the processor owning) tile

(i; j) to (the processor owning) its right neighbor tile (i+ 1; j),

� Tcomm vert = a0 + b0n1 is the cost of communicating data from (the processor owning) tile

(i; j) to (the processor owning) its bottom neighbor tile (i; j + 1).

We pay a communication cost only when the two processors that own the neighboring tiles are

not the same. So far we never paid any cost for vertical communications, and we always did for

horizontal communications, because of hypothesis (H5). We had to re�ne the communication cost

because in this section, we do not make any assumption on the mapping of tiles to processors.

Depending upon the values of Tcomm horiz and Tcomm vert, the best mapping will be column-wise

or row-wise:

Theorem 3 Under the hypotheses (H2) to (H4) of Section 2.2, and allowing for communication-

computation overlap, let n1 and n2 be chosen so that

maxfTcomm horiz; Tcomm vertg = maxfa+ bn2; a
0 + b0n1g � Tcomp = n1n2t:

2Of course, we can imagine theoretical situations where the communication cost is so large that a sequential

execution would lead to the best result.

10



1. If Tcomm horiz � Tcomm vert, assume that the steady state equation holds: N2n1t � P (n1n2t+

a+ bn2). Then the absolute minimum for the total execution time is

T1 = (P � 1)(Tcomp + Tcomm horiz) +
N1N2

P
t

and it is achieved by mapping and scheduling tiles according to hypotheses (H5) and (H6),

2. If Tcomm vert � Tcomm horiz, assume that the steady state equation holds: N1n2t � P (n1n2t+

a0 + b0n1). Then the absolute minimum for the total execution time is

T 0

1 = (P � 1)(Tcomp + Tcomm vert) +
N1N2

P
t

and it is achieved by mapping rows of tiles using a one-dimensional cyclic distribution (tile

(i; j) is allocated to processor i mod P ), and by scheduling the tiles row-wise.

Proof Without loss of generality, assume that Tcomm vert � Tcomm horiz (the result is symmetric

in the rows and columns), and let Tcomm = Tcomm vert. We begin the proof with the following

preliminary result, where � denotes any valid scheduling of the tiles (�(I) is the time-step at which

the execution of I begins):

Lemma 1 Let I = (i; j) be a tile index, and let I 0 = (i + 1; j) and I 00 = (i; j + 1) be its successor

tiles. We have

maxf�(I 00)� �(I); �(I 0)� �(I)g � Tcomm + Tcomp:

Proof Let proc(I) be the processor that executes tile I. We have three cases to consider, depend-

ing upon whether proc(I) also executes both successors I 0 and I 00, or exactly one of them, or none

of them:

both successors: proc(I) = proc(I 0) = proc(I 00)

The same processor executes both successors. They are executed sequentially and the last

one being executed cannot begin execution before time-step �(I)+2Tcomp. As Tcomm � Tcomp

the result is proven.

one successor: proc(I) = proc(I 0) and proc(I) 6= proc(I 00)

(respectively proc(I) = proc(I 00) and proc(I) 6= proc(I 0)). A communication is needed be-

tween I and I 00 (respectively I and I 0), hence �(I 00) � �(I) � Tcomm + Tcomp (respectively

�(I 0)� �(I) � Tcomm + Tcomp)

no successor: proc(I) 6= proc(I 0) and proc(I) 6= proc(I 00)

This case is similar to the previous one.

Back to the proof of the theorem, let T== the total execution time using P processors. Let Idle

be the cumulated idle time of all processors during execution. Finally, let Tseq = N1N2t be the

sequential execution time. Clearly,

PT== = Idle+ Tseq:

Hence, to show that T== � T1 = (P � 1)(Tcomp + Tcomm) +
Tseq
P

, we need to show that

Idle � P (P � 1)(Tcomp + Tcomm):

11



The structure of the dependence graph does impose that some processors are idle at the be-

ginning of the computation, which will lead to a lower bound for Idle. For instance, during the

execution of tile (0; 0), there are necessarily P � 1 idle processors. To go on, we recursively de�ne

pivot tile(k) as follows (see Figure 5):

� pivot tile(0) = (0; 0), and

� for k � 1, pivot tile(k) is the one of the two successors of pivot tile(k � 1) which is executed

last: if pivot tile(k� 1) = I = (i; j), let I 0 = (i+1; j) and I 00 = (i; j +1) be the successors of

tile I:

{ If �(I 0) � �(I 00), then pivot tile(k) = I 0, and we de�ne S(k) as the remaining tiles in

column j: S(k) = f(i; j + l); l � 1g),

{ If �(I 00) � �(I 0), then pivot tile(k) = I 00, and we de�ne S(k) as the remaining tiles in

row i: S(k) = f(i+ l; j); l � 1g,

We know from Lemma 1 that for all k � 1,

�(pivot tile(k)) � �(pivot tile(k � 1)) � Tcomm + Tcomp:

We prove by induction that for 1 � k � P � 1, at least P � k processors are kept idle between

the beginning of the execution of pivot tile(k � 1) and that of pivot tile(k). This will lead to be

result that

Idle � ((P � 1) + (P � 2) + : : :+ 1)(Tcomm + Tcomp) =
P (P � 1)

2
(Tcomm + Tcomp):

This will prove the desired result, because the same amount of idleness, so to speak, will be spent

at the end of the computation (by symmetry of the dependence graph). Now, for the induction:

� Let k = 1: pivot tile(1) is either (0; 1) or (1; 0). See Figure 5 where pivot tile(1) = (1; 0) and

S(1) = f(0; 0+ l); l � 1g. Between the the beginning of the execution of pivot tile(0) and that

of pivot tile(1), the only successors of pivot tile(0) that can be executed are in S(1). But all

tasks in S(1) must be executed sequentially, hence between the beginning of the execution of

pivot tile(0) and that of pivot tile(1), at least (P � 1) processors are kept idle.

� Assume that the hypothesis is true until step k. Between the beginning of the execution of

pivot tile(k) and that of pivot tile(k + 1), at most one processor can be active in S(1), at

most another one in S(2), : : :, and at most one processor in S(k + 1), so that at most k + 1

processors can be active, or equivalently, at least P � (k + 1) processors remain idle.

4 Conclusion

In this paper, we have studied tiling techniques aimed at adapting the granularity of uniform loop

nest algorithms towards execution on distributed-memory machines. We view tiling as a two-step

process: the �rst step amounts to determining the best shape and size of the tiles (assuming an

in�nite grid of virtual processors), while the second step consists in mapping and scheduling the

tiles to physical processors. We have concentrated on the second step, assuming a realistic model

12



0
p

1
p

2
p

3
p9

...
...

S
1

...
...

S
3

...... S
20

2

3 5

6

8

j

i

Figure 5: A schedule when Tcomm = 1 and Tcomp = 2. Pivot tiles are labeled, and sets S(k) are

framed.

where (independent) communication and computation may overlap. We have obtained several new

results, including a strong result on the optimal mapping and scheduling. However, much remains

to be done to extend these results to arbitrary dimensions and domain shapes.

More generally, the relationship between tiling, scheduling and mapping is not yet well under-

stood, and the two-step approach may not prove too complicated for practical problems. Yet, such

a two-step approach is typical in the �eld of parallelizing compilers (other examples are general

task graph scheduling, software pipelining and loop parallelization algorithms).

Finally, the recent development of heterogeneous computing platforms may well lead to using

tiles whose size and shape will depend upon the characteristics of the processors they are assigned

to ... a truly challenging problem!

References

[1] A. Agarwal, D.A. Kranz, and V. Natarajan. Automatic partitioning of parallel loops and

data arrays for distributed shared-memory multiprocessors. IEEE Trans. Parallel Distributed

Systems, 6(9):943{962, 1995.

[2] Utpal Banerjee. An introduction to a formal theory of dependence analysis. The Journal of

Supercomputing, 2:133{149, 1988.

[3] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate tiling? Integra-

tion, the VLSI Journal, 17:33{51, 1994.

[4] Pierre-Yves Calland and Tanguy Risset. Precise tiling for uniform loop nests. In P. Cappello

et al., editors, Application Speci�c Array Processors ASAP 95, pages 330{337. IEEE Computer

Society Press, 1995.

[5] Y-S. Chen, S-D. Wang, and C-M. Wang. Tiling nested loops into maximal rectangular blocks.

Journal of Parallel and Distributed Computing, 35(2):108{120, 1996.

[6] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,

and R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memory

13



computers - design issues and performance. Computer Physics Communications, 97:1{15, 1996.

(also LAPACK Working Note #95).

[7] W.H. Chou and S.Y. Kung. Scheduling partitioned algorithms with limited communication

supports. In Luigi Dadda and Benjamin Wah, editors, Application Speci�c Array Processors

ASAP 93, pages 53{64. IEEE Computer Society Press, 1993.

[8] Ed F. Deprettere. Example of combined algorithm development and architecture design. IN-

TEGRATION, the VLSI journal, 16:199{220, 1993.

[9] Ed F. Deprettere, Peter Held, and Paul Wielage. Model and methods for regular array design.

International Journal of High Speed Electronics and Systems, 4(2):133{201, 1993.

[10] Mich�ele Dion, Tanguy Risset, and Yves Robert. Resource-constrained scheduling of partitioned

algorithms on processor arrays. Integration, the VLSI Journal, 20:139{159, 1996.

[11] J. J. Dongarra and D. W. Walker. Software libraries for linear algebra computations on high

performance computers. SIAM Review, 37(2):151{180, 1995.

[12] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Evaluating compiler optimizations

for Fortran D. Journal of Parallel and Distributed Computing, 21(1):27{45, 1992.

[13] F. Irigoin and R. Triolet. Supernode partitioning. In Proc. 15th Annual ACM Symp. Principles

of Programming Languages, pages 319{329, San Diego, CA, January 1988.

[14] H. Ohta, Y. Saito, M. Kainaga, and H. Ono. Optimal tile size adjustment in compiling general

DOACROSS loop nests. In 1995 International Conference on Supercomputing, pages 270{279.

ACM Press, 1995.

[15] J. K. Peir. Program partitioning and synchronization on multiprocessor systems. PhD thesis,

University of Illinois at Urbana-Champaign, March 1986. Report UIUC-DCS-R-86-1259.

[16] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicomput-

ers. Journal of Parallel and Distributed Computing, 16(2):108{120, 1992.

[17] R. Schreiber and Jack J. Dongarra. Automatic blocking of nested loops. Technical Report

90-38, The University of Tennessee, Knoxville, TN, August 1990.

[18] S. Sharma, C.-H. Huang, and P. Sadayappan. On data dependence analysis for compiling pro-

grams on distributed-memory machines. ACM Sigplan Notices, 28(1), January 1993. Extended

Abstract.

[19] J. Teich, L. Thiele, and L. Zhang. Scheduling of partitioned regular algorithms on processor

arrays with constrained resources. In J. Fortes et al., editor, Application-Speci�c Systems,

Architectures, and Processors ASAP 96. IEEE Computer Society Press, 1996.

[20] L. Thiele. Resource constrained scheduling of uniform algorithms. In Luigi Dadda and Ben-

jamin Wah, editors, Application Speci�c Array Processors ASAP 93, pages 29{40. IEEE Com-

puter Society Press, 1993.

14


