
Digital Software and Data Repositories for

Support of Scienti�c Computing
�

Ronald Boisvert

National Institute of Standards and Technology

Shirley Browney

University of Tennessee

Jack Dongarra

University of Tennessee and Oak Ridge National Lab

Eric Grosse

AT&T Bell Laboratories

Abstract

This paper discusses the special characteristics and needs of software

repositories and describes how these needs have been met by some exist-

ing repositories. These repositories include Netlib, the National HPCC

Software Exchange, and the GAMS Virtual Repository. We also describe

some systems that provide on-line access to various types of scienti�c data.

Finally, we outline a proposal for integrating software and data reposito-

ries into the world of digital document libraries, in particular CNRI's

ARPA-sponsored Digital Library project.

�The work described in this paper was sponsored by NASA under Grant No. NAG 5-
2736, by the National Science Foundation under Grant No. ASC-9103853, and by AT&T Bell
Laboratories.

yAuthor to whom correspondence should be directed. 107 Ayres Hall, Computer Sci-

ence Department, University of Tennessee, Knoxville, TN 37996-1301, (615) 974-5886,
browne@cs.utk.edu

1



1 Introduction

Most work on digital libraries has focused on storage, retrieval, and display
of digital forms of documents. A number of on-line software repositories have
been developed that provide access to software and software artifacts. These
document and software e�orts have been mostly independent, with little atten-
tion paid to integrating the two types of libraries and to developing common
principles for organization and operation.

This paper discusses the special characteristics and needs of software repos-
itories and describes how these needs have been met by some existing reposi-
tories. These repositories include Netlib [20, 12], the National HPCC Software
Exchange [13], and the GAMS Virtual Repository [8]. We also describe some
systems that provide on-line access to various types of scienti�c data. Finally,
we outline a proposal for integrating software and data repositories into the
world of digital document libraries, in particular CNRI's ARPA-sponsored Dig-
ital Library project [28, 26].

2 Characteristics of Some Existing Software

Repositories

2.1 Netlib

Netlib began services in 1985 to �ll a need for cost-e�ective, timely distribution
of high-quality mathematical software to the research community. Some of the
libraries Netlib distributes { such as EISPACK, LINPACK, FFTPACK, and
LAPACK { have long been used as important tools in scienti�c computation and
are widely recognized to be of high quality. The Netlib collection also includes
a large number of newer, less well-established codes. Most of the software is
written in Fortran, but programs in other languages, such as C and C++, are
also available.

Netlib sends, by return electronic mail, requested routines together with

subsidiary routines and any requested documents or test programs supplied by
the software authors [20]. Xnetlib, an interactive tool for software and document
distribution [19], use an X Window interface and TCP/IP connections to allow
users to receive replies to their requests within a matter of seconds. The interface
provides a number of modes and searching mechanisms to facilitate searching
through a large distributed collection of software and documents. World Wide
Web browsers such as Mosaic and Netscape can also be used to access Netlib
via HTTP and FTP 1.

Although the original focus of the Netlib repository was on mathematical
software, the collection has grown to include other software (such as networking

1Netlib is accessible from a WWW browser at http://www.netlib.org/

2



tools and tools for visualization of multiprocessor performance data), technical
reports and papers, a Whitepages Database, benchmark performance data, and
information about conferences and meetings. The number of Netlib servers has
grown from the original two, at Oak Ridge National Laboratory (initially at
Argonne National Laboratory) and Bell Labs, to servers in Norway, the United
Kingdom, Germany, Australia, Japan, and Taiwan. A mirroring mechanism
keeps the repository contents at the di�erent sites consistent on a daily ba-
sis, as well as automatically picking up new material from distributed editorial
sites[24].

Netlib di�ers from other publicly available software distribution systems,
such as Archie, in that the collection is moderated by an editorial board and
the software contained in it is widely recognized to be of high quality. However,
the Netlib repository is not intended to replace commercial software. Commer-
cial software companies provide value-added services in the form of support.
Although the Netlib collection is moderated, its software comes with no guar-
antee of reliability or support. Rather, the lack of bureaucratic, legal, and
�nancial impediments encourages researchers to submit their codes by ensuring
that their work will be made available quickly to a wide audience.

2.2 The National HPCC Software Exchange (NHSE)

The National HPCC Software Exchange (NHSE) is an Internet-accessible re-
source that will facilitate the exchange of software and information among
research and computational scientists involved with High Performance Com-
puting and Communications (HPCC) [13]. The purpose of the NHSE is to
promote the development of discipline-oriented software and document reposi-
tories and of contributions to and use of such repositories by Grand Challenge
teams, as well as by other members of the high performance computing com-
munity. The target audiences for the NHSE include HPCC application and
computer scientists, users of government supercomputer centers, and potential
industrial users. A prototype of the NHSE is accessible from a WWW browser
at http://www.netlib.org/nse/.

The scope of the NHSE is software and software-related artifacts produced
by and for the HPCC Program. Software-related artifacts include algorithms,
speci�cations, designs, and software documentation. The following types of
software are to be made available:

� Systems software and software tools. This category includes parallel pro-
cessing tools such as parallel compilers, message-passing communication
subsystems, and parallel monitors and debuggers.

� Data analysis and visualization tools.

� Basic building blocks for accomplishing common computational and com-
munication tasks. These building blocks will be of high quality and trans-

3



portable across platforms. Building blocks are meant to be used by Grand
Challenge teams and other researchers in implementing programs to solve
computational problems. Use of high-quality transportable components
will speed implementation, as well as increase the reliability of computed
results.

� Research codes that have been developed to solve di�cult computational
problems. Many of these codes will have been developed to solve speci�c
problems and thus will not be reusable as is. Rather, they will serve as
proofs of concept and as models for developing general-purpose reusable
software for solving broader classes of problems. The development of this
reusable software is expected to be undertaken by commercial companies,
rather than by academic researchers.

A catalog of the software currently available from the NHSE is accessible at
http://www.netlib.org/nse/sw survey.html.

Although the di�erent disciplines will maintain their own software repos-
itories, users should not need to access each of these repositories separately.
Rather, the NHSE will provide a uniform interface to a virtual HPCC software
repository which will be built on top of the distributed set of discipline-oriented
repositories. The interface will assist the user in locating relevant resources
and in retrieving these resources. A combined browse/search interface will al-
low the user to explore the various HPCC areas and become familiar with the
available resources. A longer term goal of the NHSE is to provide users with
domain-speci�c expert help in locating and understanding relevant resources.

2.3 GAMS Virtual Repository

The Guide to Available Mathematical Software (GAMS) project of the National
Institute of Standards and Technology (NIST) studies techniques to provide
scientists and engineers with improved access to reusable computer software
components available to them for use in mathematical modeling and statistical
analysis. One of the products of this work is the GAMS system, an on-line cross-
index and virtual repository of mathematical software [8]. GAMS performs the
function of an interrepository and interpackage cross-index, collecting and main-
taining data about software available from external repositories and presenting
it as a homogeneous whole. It also provides the functions of a repository itself
(i.e., retrieval). However, instead of maintaining the cataloged software itself,
it provides transparent on-demand access to repositories managed by others.

GAMS currently contains information on more than 9800 problem-solving
software modules from about 85 packages found in four physically distributed
software repositories (three maintained at NIST and Netlib). In addition to most
of the software in the Netlib collection, GAMS cross indexes individual compo-
nents in large multipurpose libraries such as IMSL, NAG, PORT, STARPAC

4



and SLATEC, as well as capabilities of statistical analysis systems such as DAT-
APLOT and SAS. Both public-domain and commercial software is cataloged,
and although source code of proprietary software products are not available
through GAMS, related items such as documentation and example programs
often are.

All problem-solving software modules in GAMS are assigned one or more
problem classi�cations from a 736-node tree-structured taxonomy of mathe-
matical and statistical problems developed as part of the project [9]. Users
can browse through modules in any given problem class. To �nd an appropri-
ate class, one can utilize the taxonomy as a decision tree, or enter keywords
which are then mapped to problem classes. Search �lters can be declared which
allow users to specify preferences such computing precision or programming lan-
guage. In addition, users can browse through all modules in a given package,
or all modules with a given name. Each module's abstract lists the retrievable
objects associated with the module, such as documentation, examples, test pro-
grams, source code and dependencies. (More than 32,000 such objects can be
retrieved.)

At the core of the GAMS system is a relational database of information
about available software. This database is maintained at NIST, which provides
a classi�cation service for the repositories it indexes. The GAMS network server
provides this information to network clients using a specialized protocol over
TCP/IP connections. In addition, a gateway to the World Wide Web has been
developed using the CommonGateway Interface (CGI) facility of NCSA's httpd
server 2.

3 Indexing and Searching of Software Objects

Cataloguing information for software objects serves two purposes { 1) to supply
material from which a searchable index may be constructed, and 2) to supply
information needed by the user to select/reject search hits and to obtain and
use selected software. The �eld names and de�nitions used for cataloguing in
a particular library are described in the data model used by that library. For
example, for document libraries, the CSTR project [26] has adopted RFC1357
[14] as its data model.

3.1 Data Models

Data models used for document digital libraries are not in general suitable for
use by software repositories. Although some �elds are useful in both settings {
e.g., author,title, abstract { software cataloguing requires a number of additional
�elds. A �eld that appears in most major catalogs is a requirements �eld that
lists the hardware, operating system, and other software needed to use the

2Accessible at http://gams.nist.gov/

5



catalogued item. Another important �eld in the case of public domain software
repositories such as Netlib, where software is author-supported, is a contact

�eld giving an electronic mail address to which questions and bug reports may
be sent. Still another �eld used by many software repositories is a certi�cation
�eld that tells at what level the software has been certi�ed and possibly includes
pointers to certi�cation artifacts such as completed checklists and testing results.

The Reuse Library Interoperability Group (RIG) has developed and ap-
proved the Basic Interoperability Data Model (BIDM) as a standard data model
for software repository interoperability, and the BIDM has been submitted for
balloting as an IEEE standard [3]. The BIDM will be used as a lowest com-
mon denominator for interoperation between software repositories. However,
because of considerable variation in the purpose, contents, and application do-
mains of di�erent software repositories, no single data model will be suitable
for all, and important cataloguing information will be lost in exporting to the
BIDM. An example where such loss occurs is the certi�cation �eld. This �eld
was not included in the BIDM because of the wide variety of certi�cation and
evaluation methods in use at di�erent repositories. The RIG also encountered
di�culty in developing controlled vocabulary lists, because again di�erent sets
of terms were appropriate for di�erent repositories. The approach now being
taken by the RIG is to de�ne a standard for an Extensible Uniform Data Model
(EUDM), which will be a meta-model a repository can use to describe the data
model it is using. For example, using the EUDM, a repository will be able to
de�ne its certi�cation methods and the meanings of di�erent certi�cation levels.
As a member of the RIG, Netlib is participating in development and promotion
of standard data models for software repositories.

3.2 Software Classi�cation

A number of studies have shown that proper classi�cation of software objects
contributes to e�ective location of the objects by potential reusers [15, 31, 22].
Classi�cation is carried out by assigning codes and/or keywords from a classi�-
cation scheme or thesaurus. Classi�cations and thesauri developed for indexing
documents, such as the INSPEC classi�cation [1] and INSPEC thesaurus [2],
are inadequate for indexing software objects. Firstly, these tools cover a broad
range of topics and cover software-related topics only super�cially. Thus, they
do not allow the user to discriminate �nely enough among the available software
objects. Secondly, e�ective classi�cation of software objects requires that the
function of the object be indexed [10]. Because documents are not used as soft-
ware is, terms related to function have not generally been included in thesauri
developed for document indexing.

A classi�cation scheme that has been developed speci�cally for use in index-
ing mathematical software is the GAMS hierarchy [9]. The GAMS scheme has
been widely adopted by network-accessible repositories such as Netlib and by
commercial mathematical software libraries such as NAG and IMSL. A succes-

6



sor to GAMS is currently under development. The new scheme will re�ne areas
needing better discrimination and will add new categories to encompass recent
developments in numerical algorithms. The new scheme will also be reorganized
so as to be less cumbersome.

An HPCC software thesaurus is under development as part of the NHSE.
This thesaurus uses GAMS categories for mathematical software but de�nes
new terms for other areas of high performance computing. Some of these terms
are drawn from an existing HPCC glossary [25] and from a book that gives
an overview of parallel computing [21]. Terms from the INSPEC thesaurus [2]
are being used for application areas. The thesaurus has a faceted structure
with facets for application area, problem area, function, algorithm, and target
architecture. The thesaurus will be made available on-line in hypertext form to
assist with searching the NHSE, similar to [30]. Hypertext links from terms to
scope and de�nition notes will also be provided.

3.3 Search Interfaces

Netlib currently provides a search interface 3 that allows the user to do �eld-
speci�c keyword searching. For example, the user may search by author, �le-
name, abstract keywords, or GAMS classi�cation. Search results are returned
as a hypertext list of catalog records from which the user may select �les to
view or download.

Searching by keywords or classi�cation codes often returns a large number
of search hits, leaving the user to sort through them. Further discrimination
often cannot be provided by an overall classi�cation scheme, but requires use of
a domain speci�c knowledge base. Such knowledge bases have been constructed
for specialized domains, including di�erential equations [29, 27, 4] and approx-
imation [23]. We are experimenting with providing on-line hypertext interfaces
to such knowledge bases. For example, we have provided a hypertext version of
a decision tree for approximation algorithms 4.

We have also developed a prototype expert help system to assist users in
selecting software within speci�c domains [7, 8]. An advisory system for a
given problem class helps the user discriminate between problem-solving soft-
ware modules for that class. For a given problem class, a set of features are
partitioned into a small set of feature classes, and information is encoded about
how each feature applies to each software module. Prototype user interfaces
have been developed that allow the user to interact with choice widgets for
the various features. The system provides more speci�c and e�ective help in
selecting software than a domain-independent search interface.

3Accessible from a WWW browser at http://www.netlib.org/nse/netlib query.html
4Accessible from a WWW browser at http://www.netlib.org/a/catalog.html

7



4 Retrieval of Software Objects

Once a user has located relevant software objects, he needs to be able to make
use of them. Modes of use include the following:

1. Downloading, con�guring, compiling, and executing a complete program
or package.

2. Downloading routines and combining them with a user-supplied main pro-
gram and other user-supplied routines before compiling and executing.

3. Using retrieved source code as a starting point for developing software
with similar functionality.

4. Downloading templates or archetypes that provide a framework for writing
actual code.

5. Using a remote execution service { i.e., shipping input data over a network
to a remote execution server and then retrieving the resulting output data.

4.1 Downloading Files

A user may download �les from Netlib by sending an email request or by click-
ing on the �lenames from Xnetlib, GAMS, or WWW interfaces. Netlib �les
are organized into directories. Some directories contain a single package, such
as the LAPACK directory, while others contain programs for a particular do-
main, such as the OPTimization directory. Each directory contains an index
�le containing catalog records for the �les in the directory. Most directories also
contain a readme �le giving an overview of the directory. Some directories have
subdirectories, for example for the di�erent Fortran precisions available and for
test and example programs. A user may initially do a keyword search to locate
relevant directories and then browse the index �les for those directories to locate
relevant �les which may then be downloaded.

When downloading a routine fromNetlib, a user maymake use of a dependency-
checking mechanism that allows retrieval of the entire dependency tree for that
routine. The user may specify that a subtree be omitted, however, if those rou-
tines have been retrieved previously. There is also an automatic tar facility that
builds and returns a tar �le of any Netlib directory or subdirectory upon user
request. Binary executable �les for several Netlib packages are also available {
for example, for the Xnetlib and HeNCE packages.

Users may download �les from the NHSE via a WWW browser. The NHSE
provides a searchable catalog of HPCC software, as well as a browseable listing
by category 5. Each entry in the catalog includes either a URL that may be
clicked on to retrieve the software or more information about it. Clicking on

5Accessible at http://www.netlib.org/nse/sw survey.html

8



these URLs connects the user to the software provider's home site { i.e., the
NHSE provides an interface to a virtual distributed repository consisting of a
large number of independently maintained physical repositories. In the near
future, the NHSE will switch from using URLs to using location independent
names [11]. Use of location independent names will allow �les to be moved
without requires references to them to be changed and will permit transparent
mirroring and reliable cacheing.

Care should always be exercised when downloading and using �les obtained
over a network, especially tar �les and executables. Although Netlib is re-
garded by most users as a trusted source, it would be possible for someone to
impersonate a Netlib server and make dangerous tar or executable �les avail-
able, purportedly from Netlib. Because source code is unlikely to be examined
closely by the user, deliberately introduced bugs or other malicious modi�ca-
tions might also slip past in source code form. In the near future, both Netlib
and the NHSE will use public key cryptography to allow users to authenticate
the source of downloaded �les.

4.2 Templates and Archetypes

A template is a description of a general algorithm rather than the executable
object code or the source code more commonly found in a conventional software
library [5]. Templates may be customized by the user { for example, they can
be con�gured for the speci�c data structure of a problem or for the speci�c
computing system on which the problem is to run. Templates are written in a
language-independent Algol-like structure, which is readily translatable into a
target language such as Fortran or C. A collection of templates focusing on iter-
ative methods for solving large sparse linear systems is available from Netlib 6.
For each template, the following is provided: a mathematical description of the

ow of the iteration; discussion of convergence and stopping criteria; suggestions
for applying a method to special matrix types (e.g., banded systems); advice for
tuning (for example, which preconditioners are applicable and which are not);
tips on parallel implementations; and hints as to when to use a method, and
why.

A program archetype is (a) a program design strategy appropriate for a
restricted class of problems, and (b) a collection of program designs with (c)
implementations of exemplar problems in one or more programming languages
and optimized for a collection of target machines. The program design strategy
includes archetype-speci�c information about methods of deriving a program
from a speci�cation, methods of parallelizing sequential programs, the program
structure, methods of reasoning about correctness and performance, empirical
data on performance measurements and tuning for di�erent kinds of machines,
and suggestions for test suites. A project at Caltech is exploring the question

6Accessible at http://www.netlib.org/linalg/html templates/report.html

9



of whether a library of parallel program archetypes be used to reduce the e�ort
required to produce correct e�cient programs 7.

4.3 Remote Execution

If a user needs to run a program only infrequently, and if compiling and in-
stalling the program involves considerable overhead, the user may prefer to
take advantage of a remote execution service if one is available. Netlib has ex-
perimented with making remote execution of the Fortran-to-C converter (f2c)
and Fortran checking (ftnchek) programs available. We con�gured the Mosaic
WWW browser to invoke the Tcl language interpreter to execute downloaded
�les of type application/x-safe-tcl. We then made downloaded user interfaces
for the f2c and ftnchek programs available on a Netlib server. Users could then
download the interface modules and use them to interact with the remote execu-
tion services. The user interfaces allowed the user to select �les to be transferred
for processing and to set various options. Our work on remote execution is ex-
perimental at this stage because a safe client execution environment for Tcl has
not yet been rigorously de�ned, although researchers at Sun Microsystems are
working on it.

Software for using ORNL's GRAIL and GENQUEST remote execution ser-
vices for doing DNA sequence analysis, gene assembly, and sequence comparison
is available through the NHSE 8. These services cannot be used from a WWW
browser, but require downloading specialized X-Windows client software. In the
future, the NHSE plans to support use of such services from a WWW browser
by means of a safe execution environment for downloadable Safe-Tcl code, so
that the client module may be executed directly from the browser.

Another possibility for remote execution is to allow users to upload exe-
cutable code to a Netlib server and run it there. For example, the user might
want to send an agent that would sift through and summarize computer per-
formance data residing on Netlib. A search service such as Harvest might send
an agent that would summarize the contents of Netlib and stream the summary
back to an indexing engine. We are investigating the provision of this kind of
user-directed remote execution using the Plan 9 operating system developed at
AT&T Bell Labs.

4.4 Change Noti�cation

Some digital document libraries have a noti�cation service that informs sub-
scribers of newly available documents. The noti�cation service for a software
repository is somewhat di�erent, because it informs subscribers of changes and
bug �xes to the software as much or more than of additions of new software.

7More information is available at
http://www.etext.caltech.edu/Papers2/ArchetypeOverview/ArchPaper.html

8More information is available at http://avalon.epm.ornl.gov/

10



In the early days of the Netlib repository, when all access was by email and the
tra�c was mostly from professional numerical analysts, we relied on log �les
to send out noti�cation of important bug �xes to everyone who had retrieved
a�ected �les. Now, because access is more anonymous and a wider spectrum of
users are involved, the old scheme has been replaced by explicit subscription.
People may indicate interest in speci�c Netlib directories, using subscribe and
unsubscribe commands. Automatic noti�cation is sent, on a daily basis, when
�les in the directory are changed. The subscriber lists also give the authors
and editors a way to judge what community is particularly interested in a given
Netlib collection.

5 Access to Scienti�c Data

The Netlib Performance Database provides an on-line catalog of public-domain
computer benchmarks such as the Linpack Benchmark, Perfect Benchmarks,
and the Genesis Benchmarks [6]. A benchmark code is a program designed to
be run on an architecture so as to produce a relative measure of its execution.
Benchmarks tend to evolve from individual applications that do not necessarily
stress all features of a given architecture. Thus, benchmark numbers do not
imply general machine performance but instead describe the performance of a
machine on an algorithm or application class.

Although benchmarking has become very popular because of the diversity
and competition in the computer hardware business, there was, previous to
development of our database, no central repository for benchmark data. The
WWW interface to our Performance Database 9 allows the user to

� view complete benchmark reports that disply sorted data from various
published benchmark reports,

� browse the performance data tree by selecting the benchmark and ma-
chines about which information is desired,

� search the performance database

There are also pointers to benchmark papers and other benchmark and performance-
related literature.

Various archives of scienti�c data are accessible from the NHSE { for ex-
ample, NASA's Planetary Data System 10 and Astrophysics Data System 11,
NIST's Atomic Spectroscopic Database 12, and NOAA's Environmental Data
Centers 13. There is no uniform cataloguing method or search interface for these

9Accessible at http://performance.netlib.org/performance/html/PDStop.html
10Accessible at http://stardust.jpl.nasa.gov/pds home.html
11Accessible at http://adswww.harvard.edu
12Accessible at http://aeldata.phy.nist.gov/nist beta.html
13Accessible at http://www.esdim.noaa.gov/

11



databases, nor a standard way of describing the contents and services o�ered.
Thus, the user has no way of systematically discovering relevant databases and
must learn a di�erent interface for each one.

6 Integration with Document Digital Libraries

The Corporation for National Research Initiatives (CNRI) is working with �ve
major universities (CMU, Cornell, UC-Berkeley, Stanford, and MIT) on an
ARPA-sponsored project to develop concepts for digital libraries. As part of
this project, each university is placing its Computer Science Technical Reports
on-line and providing access to the distributed CSTR collection. Technologies
developed for the CSTR project include the Dienst distributed search system
[18] and a Handle Management Service for assigning, maintaining, and using
unique identi�ers for digital library objects [16].

The basic architecture being developed by CNRI for distributed digital li-
braries includes the following concepts [26]:

� A digital object which consists of a sequence of bits plus a unique identi�er
known as a handle (the binding between the handle and the sequence of
bits may change over time).

� Naming authorities who are responsible for assigning unique identi�ers
within their portions of the handle namespace.

� Repositories from which digital objects are available.

� Information and Reference (IR) servers that provide reference information
about collections of digital objects.

The CNRI work is closely related to the IETF Uniform Resource Identi�er
(URI) Working Group's work on Uniform Resource Names (URNs) [32] and
Uniform Resource Citations [17]. CNRI's handle is the equivalent of IETF's
URN, and CNRI's IR server serves a similar function to IETF's URC server.

The Netlib and NHSE Development Group has been engaged in a parallel
e�ort to implement a location-independent naming architecture [11]. We provide
for two types of location-independent names:

� a Uniform Resource Name (URN), for which the contents it refers to may
change { e.g., the \current version of LAPACK".

� a Location Independent File Name (LIFN), for which the binding between
the name and the byte contents of the �le it refers to is �xed, once assigned.
This type of name is needed for unambiguous references when attaching
critical reviews or reporting scienti�c results obtained using a particular
version of a piece of software. LIFNs also permit reliable and e�cient
cacheing and mirroring of �les.

12



At any given time, a URN is associated with exactly one LIFN. By looking
up the LIFN associated with a URN and then retrieving the �le corresponding
to that LIFN, the user is assured of retrieving the most recent copy, even if
some mirrored copies are out-of-date. Thus, we obtain consistency of replicated
copies without the overhead of a replica control protocol.

We are also developing a URC server that provides support for the following:

� Provision by the publisher of attribute-value pairs for a given URN in the
form of cryptographically signed assertions.

� Retrieval and authentication of assertions by users.

� Speci�cation of the data model used for a particular URN.

� Choice of encryption algorithm, including none.

We propose to integrate our software repository naming architecture with
CNRI's digital library architecture in the following manner:

1. Both URNs and LIFNs will be expressible as handles, and URN and LIFN
lookup will be merged with the Handle Management Service.

2. Our URC server will be an implementation of CNRI's IR server that may
be used for cataloguing general Web resources, including software and
data archives.

3. Similar to the Dienst protocol for document repositories, we will develop
service speci�cations and retrieval protocols appropriate for software and
data repositories. In addition, similar to the Digital Library Document
Architecture that de�nes requirements for digital document structure [33],
we will de�ne requirements for software and data archive structures.

References

[1] INSPEC Classi�cation. Institution of Electrical Engineers, 1992.

[2] INSPEC Thesaurus. Institution of Electrical Engineers, 1993.

[3] Standard reuse library Basic Data Interoperability Model (BIDM). Tech-
nical Report RPS-0001, Reuse Library Interoperability Group, 1993.

[4] C. A. Addison, W. H. Enright, P. W. Ga�ney, I. Gladwell, and P. M.
Hanson. Algorithm 687: A decision tree for the numerical solution of
initial value ordinary di�erential equations. ACM Trans. Math. Softw.,
17(1):1{11, Mar. 1991.

13



[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Dunato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates for the

Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM,
1994.

[6] M. W. Berry, J. J. Dongarra, B. H. Larose, and T. Letsche. PDS: A
performance database server. Scienti�c Computing, 3(2):147{156, 1994.

[7] R. F. Boisvert. Toward an intelligent system for mathematical software
selection. In P. W. Ga�ney and E. N. Houstis, editors, Programming En-

vironments for High-Level Scienti�c Problem Solving, pages 79{92. North-
Holland, Amsterdam, 1992.

[8] R. F. Boisvert. The architecture of an intelligent virtual mathematical
software repository system. Math. & Comp. in Simul., 36:269{279, 1994.

[9] R. F. Boisvert, S. E. Howe, and D. K. Kahaner. The Guide to Avail-
able Mathematical Software problem classi�cation system. Comm. Stat. {

Simul. Comp., 20(4):811{842, 1991.

[10] E. J. Breton. Indexing for invention. Journal of the American Society for

Information Science, 42(3):173{177, 1991.

[11] S. Browne, J. Dongarra, S. Green, K. Moore, T. Pepin, T. Rowan, and
R. Wade. Location-independent naming for virtual distributed software
repositories. In ACM-SIGSOFT Symposium on Software Reusability, Apr.
1995. (to appear).

[12] S. Browne, J. Dongarra, S. Green, K. Moore, T. Rowan, and R. Wade.
Netlib services and resources. Technical Report UT-CS-94-222, University
of Tennessee Computer Science Department, Feb. 1994.

[13] S. Browne, J. Dongarra, S. Green, K. Moore, T. Rowan, R. Wade, G. Fox,
K. Hawick, K. Kennedy, J. Pool, and R. Stevens. The national HPCC
software exchange. IEEE Computational Science and Engineering, 1995.
(to appear).

[14] D. Cohen. A format for e-mailing bibliographic records. Internet RFC
1357, July 1992.

[15] P. Constantopoulos and E. Pataki. A browser for software reuse. In
Advanced Information Systems Engineering, 4th International Conference

CAiSE '92, Porceedings, pages 304{326. Springer-Verlag, Berlin, Germany,
May 12{15 1992.

[16] Corporation for National Research Initiatives. Interfacing to the handle
management system. Accessible at
http://www.cnri.reston.va.us/home/cstr/handle-intro.html, 1994.

14



[17] R. Daniel Jr. and M. Mealling. URC scenarios and requirements. Internet
Draft draft-ietf-uri-urc-req-00.txt, Nov. 1994.

[18] J. R. Davis and C. Lagoze. Dienst, a protocol for a distributed
digital document library. Internet Draft accessible at http://cs-
tr.cs.cornell.edu/Info/dienst protocol.html, July 1994.

[19] J. Dongarra, T. Rowan, and R. Wade. Software distribution using
XNETLIB. ACM Trans. Math. Softw., 21(1), 1995 1995.

[20] J. J. Dongarra and E. Grosse. Distribution of mathematical software via
electronic mail. Commun. ACM, 30(5):403{407, May 1987.

[21] G. Fox, R. D. Williams, and P. Messina. Parallel Computing Works. Mor-
gan Kaufmann, 1994.

[22] W. B. Frakes and T. P. Pole. An empirical study of representation methods
for reusable software components. IEEE Trans. on Software Engineering,
20(8):617{630, Aug. 1994.

[23] E. Grosse. A catalogue of algorithms for approximation. In J. Mason and
M. Cox, editors, Algorithms for Approximation II, pages 479{514 (of 514),
London, England, 1990. Chapman and Halll.

[24] E. Grosse. Repository mirroring. ACM Trans. Math. Softw., 21(1), Mar.
1995.

[25] K. A. Hawick. High Performance Computing and Communications glos-
sary. Technical report, Northeast Parallel Architectures Center at Syracuse
University, July 1994.

[26] R. Kahn and R. Wilensky. Locating electronic library services and objects:
A frame of reference for the CS-TR project. Draft for discussion purposes,
Feb. 1994.

[27] M. S. Kamel, K. S. Ma, and W. H. Enright. ODEXPERT: An expert
system to select numerical solvers for initial value ODE systems. ACM

Trans. Math. Softw., 19(1):44{62, Mar. 1993.

[28] R. R. Larson. Design and development of a network-based electronic library.
In Proc. ASIS Mid-Year Meeting, pages 95{114, Portland, Oregon, May
1994.

[29] M. Lucks and I. Gladwell. Automated selection of mathematical software.
ACM Trans. Math. Softw., 18(1):11{54, Mar. 1992.

[30] R. Pollard. A hypertext-based thesaurus as a subject browsing aid for bib-
liographic databases. Information Processing and Management, 29(3):345{
357, 1993.

15



[31] R. Prieto-Diaz. Implementing faceted classi�cation for software reuse.
Commun. ACM, 34(5):88{97, May 1991.

[32] K. Sollins and L. Masinter. Functional requirements for uniform resource
names. Internet RFC 1737, Dec. 1994.

[33] W. Turner. The document architecture for the Cornell Digital Library.
Internet RFC 1691, Aug. 1994.

16


