
Location-Independent Naming for Virtual

Distributed Software Repositories�

Shirley Browney, Jack Dongarra, Stan Green, Keith Moore

Theresa Pepin, Tom Rowan, and Reed Wade

University of Tennessee

Eric Grosse

AT&T Bell Laboratories

Abstract

A location-independent naming system for network re-
sources has been designed to facilitate organization and de-
scription of software components accessible through a vir-
tual distributed repository. This naming system enables
easy and e�cient searching and retrieval, and it addresses
many of the consistency, authenticity, and integrity issues
involved with distributed software repositories by providing
mechanisms for grouping resources and for authenticity and
integrity checking. This paper details the design of the nam-
ing system, describes a prototype implementation of some of
the capabilities, and describes how the system �ts into the
development of the National HPCC Software Exchange, a
virtual software repository that has the goal of providing ac-
cess to reusable software components for high-performance
computing.

1 Introduction

Well-maintained software repositories are central to software
reuse because they make high-quality software widely avail-
able and easily accessible. One such repository is Netlib1 ,
a collection of high-quality publicly available mathematical
software[6, 4]. Netlib, in operation since 1985, currently
processes over 300,000 requests a day. Netlib is serving as
a prototype for development of the National HPCC Soft-
ware Exchange (NHSE)2, which has the goal of encompass-
ing all High Performance Computing and Communications
(HPCC) software repositories and of promoting reuse of
software components developed by Grand Challenge and
other scienti�c computing researchers [5]. Other network-

�The work described in this paper is sponsored by NASA under
Grant No. NAG 5-2736, by the National Science Foundation under
Grant No. ASC-9103853, and by AT&T Bell Laboratories.

yAuthor to whom correspondence should be directed. 107
Ayres Hall, Computer Science Department, University of Tennessee,
Knoxville, TN 37996-1301, (615) 974-5886, browne@cs.utk.edu

1Accessible from a World Wide Web browser at
http://www.netlib.org/

2Accessible at http://www.netlib.org/nse/

accessible software repositories include ASSET3, CARDS4,
DSRS5 , ELSA6, the GAMS Virtual Software Repository7 ,
and STARS8. ASSET, CARDS, DSRS, and ELSA are par-
ticipating in an interoperability experiment that allows a
user of any one of these repositories to access software ex-
ported from the other repositories.

The software reuse marketplace is expanding in at least
two dimensions. One dimension is the expansion from intra-
organizational reuse to inter-organizational reuse. For ex-
ample, various federal agencies have established their own
internal software reuse programs. Several e�orts are now
underway to promote reuse of software across agencies.
Similarly, companies are becoming interested in accessing
software produced by academic and government research
groups. Another dimension of expansion is from reuse within
a particular application domain to interdisciplinary reuse.
Reuse of software from other disciplines is being fostered,
for example, by e�orts to solve interdisciplinary Grand Chal-
lenge problems. Solution of such problems will require col-
laboration by scientists from di�erent disciplines, as well as
sharing of software produced by application and computer
scientists.

Another recent development that a�ects the software
reuse marketplace is the growth of the World Wide Web
(WWW), together with the ease with which individuals may
make resources available on a WWW server. A contributor
need only make the �les composing an resource available
on a �le server and make available a descriptive HTML �le
containing pointers to the resource �les.

Growth in the popularity of the Internet and the World
Wide Web, as well as the wide availability of WWW
client and server software, has accelerated the shift from
centrally maintained software repositories to virtual, dis-
tributed repositories. For example, the GAMS Repository,
once a central repository, is now a virtual repository that
catalogs software maintained by other repositories [2]. Sim-
ilarly, the NHSE will provide a uniform interface to a virtual
HPCC software repository that will be built on top of a dis-
tributed set of discipline-oriented repositories[5], as shown
in Figure 1.

The main advantage of distributing a repository is to

3Accessible at http://source.asset.com/
4Accessible at http://dealer.cards.com/
5Accessible at http://ssed1.ims.disa.mil/srp/dsrspage.html
6Accessible at

http://rbse.mountain.net/ELSA/elsa lob.html
7Accessible at http://gams.nist.gov/
8Accessible at

http://www.stars.ballston.paramax.com/index.html



Physical

Repository 1
Physical

Repository 2
Physical

Repository n

NHSE

Search/Browse

Interface

User

Catalog
info

Catalog
info

Catalog
info

Search request

Search results

File
request

Retrieved
file

Figure 1: Virtual Repository Architecture

allow the software to be maintained by those in the best po-
sition to keep it up-to-date. Also, copies of popular software
packages may be mirrored by a number of sites to increase
availability (e.g., if one site is unreachable, the software may
be retrieved from a di�erent site) and to prevent bottlenecks.

Despite the bene�ts, distributed maintenance and mir-
roring of software poses the following challenges.

� Maintaining the quality of software and of indexing
information and presenting a uniform searching and
browsing interface become much more di�cult.

� The WWW mechanism of specifying a �le by its Uni-
form Resource Locator (URL) is inadequate for ensur-
ing the consistency and currency of mirrored copies, as
a URL for an independently mirrored copy of a soft-
ware package may point to an out-of-date copy and
give no indication that it is not up-to-date. Further-
more, mirror copies of a �le cannot be located from a
URL reference, since each copy has a di�erent URL.

� Consistency between a set of �les that are meant to
be used together must be maintained. For example,
the Netlib Software Repository provides dependency
checking that allows the user to retrieve a top-level
routine plus all routines in its dependency tree (i.e.,
those routines that are called directly or indirectly by
the top-level routine). Another example is a graph-
ical parallel programming environment that relies on
an underlying parallel communications support pack-
age. The problem becomes more complex when di�er-
ent pieces might be retrieved from di�erent physical
repositories. Ideally, the user should be able to have
a consistent set retrieved automatically without hav-
ing to scan documentation to verify that compatible
pieces have been retrieved.

� As the number of reuse libraries grows, users cannot
be expected to access each of them separately using
a di�erent interface. Thus, scalable interoperability
between separately managed repositories is needed.

� In the environment of accessing a few well-established
repositories that the user knows and trusts, a user
is assured of the integrity and authenticity of a re-
trieved �le because these properties are provided by
the administrative procedures of that repository. With
a large number of less familiar repositories, however,
it becomes necessary to establish interoperable trust
mechanisms and to reduce the number of parties with
whom the user must establish trust.

� The more decentralized and smaller the individual
repositories become, the less practical it becomes for
each individual repository to provide the full range of
search and authentication services.

Most of the above problems can be alleviated by im-
plementing a location-independent naming system that in-
cludes mechanisms for authenticity and integrity checking.
We have designed a naming system that provides for two
levels of naming. The binding between a lower-level name
(called a LIFN) and �le contents is unchangeable and ver-
i�able. A lower-level name may be resolved to multiple,
mirrored copies. In the case where it represents a set of
�les, the name may be resolved to a list of other names. A
higher-level name (called a URN) is associated with a cat-
aloging record that includes the lower-level name as well as
other descriptive information. This record may be crypto-
graphically signed by the publisher so that users may verify
the authenticity of a retrieved resource. At any given time,
a higher-level name is associated with exactly one lower-
level name, but this binding may change over time. Higher-
level names allow for long-lived human-readable references,
while lower-level names permit reliable caching and mirror-
ing as well as permitting precise references when needed.
Location-independent names will be the basis of transpar-
ent mirroring. They will also provide a unique key to which
third parties may attach value-added information such as
additional cataloging information and quality assessments.
This paper describes the design of our naming system. We
also describe our implementation of a prototype name-to-
location service and of a modi�ed WWW client that does
name resolution. A glossary of acronyms and terms used in
this paper is included as an appendix.

2 Related Work

The use of a public-key encryption technique for authenti-
cating the source of a software component and for ensuring
that the component has not been altered subsequent to its
publication is proposed in [9]. Cryptographic information, in
the form of a digital signature created by signing the hashed
digest of the contents of a component, is included within
the component's unique identi�er. The proposed method
is intended to prevent not only changes by unauthorized
parties, but also changes by the original author { i.e., the
author is not permitted to modify a component without as-
signing a new unique identi�er. The method assumes that
each author has been assigned a globally unique Author ID,
has chosen an asymmetric public/private key pair, and has
publicized the public key to the community of potential re-
users. A newly chosen symmetric encryption key is used
to encrypt the component itself. Then the symmetric key,
the hashed digest of the component, and the Author ID are
concatenated and encrypted using the asymmetric private
key, and the result is concatenated to the clear-text ver-
sion of the Author ID to create the unique identi�er for the
component. The method does not address name-to-location
resolution, other than to say that the encrypted component
is made available along with the unique identi�er and any
other cleartext information. The proposed unique identi�er
is similar to our LIFN, and encryption of the hash digest
and Author ID is similar to our method of having the author
cryptographically sign a catalogue record that includes the
author name and the �le's MD5 signature. Our method al-
lows a choice of encryption algorithms, however, and allows
the digital signature used for authentication to be generated



independently and at a di�erent time from the component's
identi�er.

Functional requirements for Uniform Resource Names
(URNs) are proposed in [12] by the IETF Uniform Resource
Identi�cation (URI) Working Group. According to [12], the
function of a URN is to provide a globally unique, per-
sistent identi�er used for recognition of and for access to
characteristics of a resource or to the resource itself. URN
assignment is delegated to naming authorities, the names
of which are persistent and globally unique, and who may
assign names directly or delegate their authority to sub-
authorities. Global uniqueness of URNs is guaranteed by
requiring each naming authority to guarantee uniqueness
within its portion of the URN namespace. It is left up to
each naming authority to determine the conditions under
which it will issue a URN (for example, whether or not to
issue a new URN when the contents of a �le change). Some
test implementations of URNs are underway by members of
the URI Working Group at Georgia Tech and Bunyip Cor-
poration 9. The Georgia Tech testbed uses the whois++
protocol for URN to URC resolution. A URC, or Uniform
Resource Characteristic, is a catalog record which includes
locations, or URLs, at which the resource may be accessed.
The URC server supports searching by other attributes, in
addition to URN lookup, via the whois++ protocol. A mod-
i�ed version of Mosaic that does URN to URC resolution is
available. A proxy server based on CERN httpd that does
cacheing by URNs is also running at Georgia Tech.

As part of the Computer Science Technical Report
(CSTR) project [8], which is developing an architecture
for distributed digital document libraries, the Corporation
for National Research Initiatives (CNRI) is implementing a
name-to-location resolution service called the Handle Man-
agement System (HMS) 10. CNRI's handle is a name for a
digital object and is analogous to IETF's URN. The HMS in-
cludes a Handle Generator that a naming authority may run
and use to create globally unique handles, Handle Servers
that process update requests from naming authorities and
query requests from clients to resolve handles, and a Handle
Server Directory that maps a handle to the appropriate Han-
dle Server. The distribution of handles to Handle Servers is
based on a hashing algorithm. An electronic mail interface
is used by handle administrators to add, delete, and modify
handle entries in the Handle Server database. Clients use
a UDP datagram interface to request location data associ-
ated with a handle. A modi�ed version of Mosaic that does
handle resolution is available from CNRI. The types of lo-
cation information stored by Handle Servers include URL,
repository name, email address, and X.500 Distinguished
Name. Use of a repository name by a client requires an-
other round of name-to-location resolution. CNRI's proper-
ties record that describes the properties of a digital object
is analogous to IETF's URC. The properties record is not
stored by the HMS, but rather by an Information and Refer-
ence (IR) Server that is to be maintained by each repository.
Each naming authority may also maintain an IR server con-
taining a properties record for each digital object within its
authority.

3 Publishing and Name Assignment

Internet-accessible resources are currently referenced using
Uniform Resource Locators (URLs). Because URLs are lo-

9More information is available at http://www.gatech.edu/iiir/
10More information is available at

http://www.cnri.reston.va.us/

cations rather than names, their use as references presents
at least two problems. One problem is that �les get moved,
changing their URLs. Then pointers that contain the old
URLs become stale. One can leave a forwarding address at
the old URL, but forwarding addresses are an awkward and
inelegant solution. Another problem with using URLs as
references is that mirrored copies of �les cannot be located
from a URL reference, since each copy has a di�erent URL.

It has been widely recognized that a solution to the
above problems is to assign location-independent names to
�les and to provide a name-to-location service that, given
a name, returns a list of locations for that name. A re-
source provider who moves some �les need only delete the
old name-to-location bindings and register the new bindings
with the name-to-location service. Likewise, a site that mir-
rors a copy of a �le need only register its location with the
name-to-location service. Then a user attempting to retrieve
the �le corresponding to a location-independent name may
query the name-to-location service for a list of alternative
locations to be tried.

Our work is similar to the IETF's Uniform Resource
Identi�er Working Group's work on Uniform Resource
Names (URNs) [12] and to CNRI's work on unique docu-
ment identi�ers for digital libraries [8]. However, neither of
these groups has addressed the reliability and consistency is-
sues addressed by our two-level naming system. Our system
includes a lower-level name a called Location Independent
File Name (LIFN) and a higher-level name called a Uniform
Resource Name (URN).

An important question is whether the byte contents of
the �le referred to by a location-independent name should
be �xed or be allowed to change. If the byte contents are
allowed to change, then a further question arises as to what
should be the consistency requirements for alternative loca-
tions for the same name. Valid arguments for both cases
can be made for di�erent situations. For example, for soft-
ware resources it is desirable to have an unambiguous refer-
ence to the �xed byte contents for the purpose of attaching
a review or reporting experimental or performance results.
Fixed contents also make it possible to compute a �le di-
gest that may be cryptographically signed by the author
of the resource, allowing veri�cation of the integrity of a
retrieved �le. On the other hand, it is desirable to have a
reference to a software package that need not be changed ev-
ery time a bug �x or minor revision takes place, especially
if the cataloging information (e.g., title, author, abstract)
does not change. The cataloging information for a software
package might contain a reference to a Web page describing
and/or documenting the package. The author of the Web
page would like to be able to update the page without having
to change all the references to it. A non-software example
where it would be desirable to allow contents to change is
a name that refers to a �le containing the \current weather
map".

Because both types of name are needed, we have imple-
mented both. The type of name that refers to �xed byte con-
tents is called a Location Independent File Name, or LIFN.
Once a LIFN has been assigned to a particular sequence of
bytes, that binding may not be changed. The type of name
for which the contents to which it refers may change is called
a Uniform Resource Name, or URN.

We divide the �le access system into two levels. The
upper level is where publishing, cataloging, and searching
activities take place. These upper-level activities are con-
cerned with the semantic, or intellectual, contents of �les.
The lower level is where distribution, mirroring, and caching



activities occur. These lower-level activities are not con-
cerned with the semantic contents of �les, only with ensur-
ing that �les may be accessed e�ciently and that the byte
contents of �les are not corrupted.

The above arguments about the need for two types of
name pertain to the upper level. At the lower level, there is
a need for LIFNs, but not for URNs. Mirror sites use LIFNs
and their associated �le digests to ensure that their copies of
�les have not been corrupted. A cache site needs to be able
to tell a user or client program whether it holds a copy of
a requested �le, and for this purpose it can answer whether
or not it holds a copy of a particular LIFN.

The above considerations led us to implement LIFNs at
the lower level of the �le access system and URNs at the
upper level, but to make LIFNs visible at the upper level
as well. A publisher will be responsible for assigning both
a URN and a LIFN to any resource for which cataloging
information is provided. For other �les, only LIFNs need be
provided. At any given time, a URN that refers to a �le or a
set of �les is associated with exactly one LIFN. A URN may
be associated with a set of di�erent LIFNs over the URN's
lifetime, but we require that the set be in the form of a linear
sequence, with the sequence order given by increasing time.

The LIFN and URN name spaces are subdivided among
several publishers, also called naming authorities, who are
responsible for ensuring the uniqueness of names assigned
within their portions of the name spaces. A name is formed
by concatenating the registered naming authority identi�er
with a unique string assigned by the naming authority. The
LIFN and URN are formatted as

LIFN:<publisher id>:string

URN:<publisher id>:string

The publisher id portion of the name is used to lo-
cate appropriate URN and LIFN servers for that publisher.
Given a URN, a URN server returns a Uniform Resource
Citation (URC) for that URN that includes its currently
associated LIFN, as well as other cataloging information.
Given a LIFN, a LIFN server returns a list of locations for
that LIFN. More information about accessing URCs and
�les from their URNs and LIFNs may be found in Section
4.

The publisher provides cataloging information for each
URN it assigns. The catalog record includes information
such as title, author, abstract, etc. A recommended set of
attributes for software assets is given by the Reuse Library
Interoperability Group (RIG) Basic Interoperability Data
Model [1]. In addition, the catalogue record for a URN in-
cludes its currently associated LIFN, as well as an MD5 or
similar �ngerprint for that LIFN. This �ngerprint is a 128-
bit quantity resulting from applying the MD5 function to
the contents of the �le. The function is designed to make
it computationally infeasible to �nd a di�erent sequence of
bytes that produces the same �ngerprint [10]. To enable
authentication, the entire description may be cryptographi-
cally signed, as discussed in Section 5. Portions of the cat-
alog record may be exported to resource discovery servers,
such as a Harvest Broker [3], which provide search services
based on resource descriptions. The URN exported to the
search service provides a unique long-lived key, so that de-
scriptions may be unambiguously associated with a resource,
and so that a resource turns up at most once in a list of
search hits.

For a name to be useful, there must be some means of
resolving a name to a location from which the resource can
be retrieved or accessed. Thus, the publisher, as well as

Publisher

Mirror
File
Server

Search
Service

Register
LIFN->URL
binding

Register signed
URC with
URN->LIFN
binding

Export
description

Register
LIFN->URL
binding

Notification
of updates

1,2

Server
File

3. Make
files available

Server

LIFN
Server

URN

4.

5.

6.

7.

Figure 2: Publishing steps

any other parties that mirror the resource, must register
such locations with the appropriate name-to-location lookup
services. Such name-to-location services are discussed in
Section 4.

Thus, publishing a resource involves the following steps,
shown in Figure 2:

1. creating the resource's catalog record in the form of a
URC,

2. signing the catalog record with the publisher's private
key,

3. making the resource �les available on one or more �le
servers,

4. registering the �le locations with the LIFN server,

5. registering the URC with the URN server,

6. informing mirror sites of the new or updated �le,

7. exporting relevant portions of the URC to search ser-
vices.

Steps 1 and 5 have been discussed above. Steps 2 is discussed
in Section 5, and Steps 3, 4, and 5 are discussed in Section
4.

4 Name Resolution and File Mirroring

Resources available from the virtual repository will be
named by URNs and/or LIFNs, rather than by URLs. Thus,
WWW clients will need a means of resolving a URN or LIFN
to one or more locations, expressed in the form of a URL,
to be able to access the resource. Access to �les is provided
by conventional �le servers, using protocols such as HTTP,
Gopher, and FTP.

For a non-�le resource, such as a database service, a list
of locations is associated directly with the URN for that
resource. For a �le resource, such as a �le containing a
piece of software, the relationship between the URN and
the locations is indirect, via a LIFN { the URN is associated
with a LIFN, and the LIFN is associated with a list of URLs.

The LIFN-to-location mapping service is provided by
a network of LIFN servers, collectively called the LIFN
database. These servers process queries for locations of



Service
Search

Search request

Search results (containing URNs)

Server

Server

URN lookup

URC+LIFN

LIFN

List of URLs

User/
Client program

Cache

File
Server

File
requestFile

LIFNFile

1,2.

4,5.4-6.

6.

URN

LIFN

Figure 3: File access steps

LIFNs. They also accept updates from �le servers contain-
ing new locations for LIFNs, as well as requests to delete old
LIFN-to-location mappings. A naming authority may run
its own LIFN servers, or it may �nd another organization
willing to provide the service on its behalf.

The URN service is similar to the LIFN service, except
that it maps a name either to a list of locations or to a URC
that includes a LIFN. For fault tolerance and availability,
the URN service is also provided by a network of servers.

Mappings from naming authority identi�ers to URN and
LIFN servers are stored in the the Domain Name System
(DNS) name space, so that a client program can deter-
mine which URN (LIFN) server to query for a particular
URN (LIFN). Our current client uses an ordinary DNS
lookup for IP address records. The publisher identi�er is
prepended to the string .LIFN.NETLIB.ORG (for a LIFN)
or .URN.NETLIB.ORG (for a URN). The resulting string is
treated as if it were the name of an Internet host, and DNS
is queried to �nd the IP addresses of that host. For example,
to �nd a LIFN server for the naming authority foo, the client
would look up the IP addresses for foo.LIFN.NETLIB.ORG.
Several IP addresses may be listed for any one naming au-
thority. Our client attempts to query each IP address until it
�nds one that can satisfy the LIFN or URN lookup request.

Thus, the steps involved in resolving a URN so as to
access a copy of the �le it names are as follows, as shown in
Figure 3:

1. Use DNS to locate an appropriate URN server.

2. Query the URN server to retrieve the URC which con-
tains the currently associated LIFN.

3. Authenticate the URC if desired.

4. Use DNS to locate an appropriate LIFN server.

5. Query the LIFN server to retrieve a list of locations.

6. Choose a location from which to retrieve the �le.

In practice, Steps 4 through 6 will often be replaced by using
the LIFN to access a local cache server. Because the binding
between a LIFN and the byte contents it points to is �xed,
the cached copy is sure to be correct.

A �le server can mirror a �le by acquiring a copy of it
and posting an update to a LIFN server for the �le's naming
authority. If a �le server moves or deletes a �le, then it
would post that information as well. It is not necessary
to keep all LIFN servers for a particular naming authority
perfectly synchronized. Such synchronization would entail
too much overhead. Instead, location updates are posted
to a any LIFN server and propagated to other peer servers
using a batch update protocol.

Updates to the URN server are posted by the publisher
and by others authorized by the publisher to update the cat-
alog record for a given URN. In order to ensure a consistent
linear history of updates to the catalog record for a URN
(e.g., the sequence of LIFNs associated with that URN),
replicated URN servers use a master-slave update protocol.

One of the most important aspects of our use of LIFNs
is that it assures the user of retrieving the most up-to-date
copy of a �le referenced by a URN, without the overhead
of a replica control protocol between �le servers mirroring
that �le, which in general will not all be under the control of
the URN's naming authority. This assurance is modulo the
time required for the master-slave update protocol for the
replicated URN servers, but if the user insists on contacting
the master URN server, he is ensured of getting the most
up-to-date copy.

5 Authenticity, Integrity, and Consistency of Resources

Authentication of a resource veri�es that the resource was
published by its purported publisher. Verifying the integrity
of a �le ensures that the �le has not been modi�ed. Pro-
visions for authenticity and integrity checking are necessary
for a software repository because there have been instances
of software packages stored on a public repository that were
modi�ed by intruders to introduce security holes which were
then spread to other systems11. Our authentication and in-
tegrity mechanisms are similar to those described in [11] and
[9].

Recall from Section 3 that a publisher cryptographically
signs the catalog record for a resource. In the case of a �le re-
source, this record includes the �le's LIFN and MD5 �nger-
print. Any client in possession of the publisher's public key
can verify the authenticity of the resource description. Pub-
lishers are expected to widely advertise their public keys to
make it di�cult for an attacker to substitute rogue keys. In
addition, publishers may have their keys certi�ed by trusted
third parties to further establish their authenticity, as in
[11].

Assuming that the association between a LIFN and a �le
signature (e.g., the MD5 �ngerprint) is known to be correct
(either because the signature is part of the LIFN or because
of the description authentication described in the preceding
paragraph), a client may perform an integrity check on a
retrieved �le by computing the signature for the �le and
comparing it with the one known to be associated with the
�le's purported LIFN. Recall from Section 4 that a LIFN
server returns a list of locations for a given LIFN but does
not guarantee the correctness of those locations. A location
may be incorrect if it no longer exists or if the contents of
that location are wrong. In the former case, no �le will be
returned from that location. The latter condition may be
detected by the client performing an integrity check.

To ensure consistency within a group of related �les, we
allow a URN to refer to a set of �les. There are at least two

11For an example, see the CERT advisory at ftp://ftp.cert.org
/pub/cert advisories/CA-94:07.wuarchive.ftpd.trojan.horse



cases where this might occur. One case is where a resource
consists of a number of related �les, for example the �les
making up a software package. Of course, such a set of �les
could be made available instead as a single tar �le. If a
�le can be used in more than one package, however, or if
some �les are also of use individually, it might be preferable
to make the �les available separately. Another case is when
there are alternative versions of a �le { for example, multiple
precisions of a Fortran routine, or multiple formats of an
image.

The �rst case is handled by ordering the �les making up
the resource and considering the ordered list of LIFNs for
these �les to be the contents of another �le which we call
the composite-parts-list for the resource. The composite-
parts-list �le itself has a LIFN, and it is this LIFN that is
associated with the URN for the resource. The second case
is handled in a similar manner, but the �le containing the
ordered list of LIFNs is called the alternative-parts-list
for the resource. The parts-list may contain additional in-
formation, such as how the alternative parts vary. After
retrieving a parts-list, the client program will invoke a spe-
cial module for handling it, similar to how current browsers
invoke viewers for image or sound �les. This module will
assist the user in retrieving the component �les and saving
or displaying them locally.

6 Prototype Implementation

The naming system is being implemented as part of the
Bulk File Distribution (BFD) package. BFD is part of the
implementation of the National HPCC Software Exchange
(NHSE), which is being developed by the Center for Re-
search in Parallel Computing (CRPC), a consortium of uni-
versities and national laboratories formed to make high per-
formance and parallel computing accessible to engineers and
scientists. BFD URN and LIFN servers will run at all the
CRPC participating sites, as well as at other major NHSE
sites, such as Oak Ridge National Laboratory.

A BFD client is a WWW browser that, in addition
to having the capability to retrieve a �le given its URL,
also has the capability to retrieve a �le given its URN
or LIFN. A version of NCSA Mosaic 2.4 for X Windows
that has been modi�ed to support BFD is available at
http://www.netlib.org/nse/bfd/. A BFD client library
that can be incorporated into other Web browsers will be
available soon.

The prototype implementation of BFD uses query and
update protocols based on Sun's Remote Procedure Call
(RPC) mechanism over UDP. RPC was chosen because it is
very lightweight (one packet for request, and one for reply),
widely supported on UNIX platforms, and easy to imple-
ment on other platforms (at least for the portions of RPC
needed by BFD). The BFD RPC requests are sent to a server
at a �xed port number, rather than using the RPC portmap-
per, to avoid the overhead of an extra RPC call.

To locate a LIFN server, BFD uses an ordinary DNS
lookup for IP address records. LIFN.NETLIB.ORG is the im-
plicit root of the LIFN name tree. For example, to �nd a
LIFN server for the naming authority foo, a client looks
up the IP addresses for foo.LIFN.NETLIB.ORG. IP addresses
were used instead of new DNS records types because ex-
periments showed that many DNS servers would not accept
unknown record types. Several IP addresses may be listed
for any one naming authority.

The BFD LIFN database is a simple key/data database
in which the unique keys are LIFNs. Sending a BFD LIFN

server a query containing a LIFN causes a list of URLs to be
returned, possibly along with other information. Sending a
BFD LIFN server an update containing a LIFN/URL pair
(and possibly additional location-speci�c descriptive infor-
mation) causes that pair to be added to the database.

The URN database and protocols have been imple-
mented in an analogous manner. The current URN server
stores only the LIFN attribute in the URC for a URN.

To test the system, LIFNs were assigned to the software
components making up the LAPACK directory in Netlib
(around 2500 �les total). Each of these LIFNs was of the
form

lifn:netlib:<signature>

where <signature> is the ascii form of the MD5 signature
of the �le. The URLs listed for the LIFNs were of the form

<protocol>://<hostname>/<path>/<lifn>

When a client program requests such a URL from the �le
server, the �le server either returns a �le that is correct for
the given LIFN, or it returns an error indicating that the �le
corresponding to that LIFN was not found. The overhead
for assigning these LIFNs involved running a script that
computed the MD5 signatures and generated the LIFNs,
created a directory that aliased the ascii form of the MD5
signatures to the actual �le locations, and registered the
LIFN-to-URL mapping with the LIFN server. For the 2482
�les in the test described above, this script took 2 minutes
35 seconds CPU time.

7 Conclusions and Future Work

We have designed a naming system that provides for two lev-
els of location-independent naming. At the lower level, there
is an immutable association between a location-independent
�lename, called a LIFN, and a speci�c byte stream. A
higher-level location-independent name, called a URN, is as-
sociated with a particular LIFN at any given time, but with
a linear sequence of LIFNs over its lifetime. We have de-
ployed URN and LIFN servers that provide URN and LIFN
lookup services, and we have made available a modi�ed ver-
sion of Mosaic that can retrieve �les named by URNs or
LIFNs.

We have described mechanisms, based on a public key
encryption system, for verifying the authenticity of LIFN
and URN servers, of trusted �le servers, and of resource
descriptions. Although we have not yet implemented such
mechanisms, we plan to do so soon. We will initially use the
PGP public-key encryption system [13].

Our naming system will help provide a uniform interface
to a virtual distributed software repository, such as the Na-
tional HPCC Software Exchange, while preserving the ad-
vantages of distributed maintenance of contributed software
and of �le mirroring. Our consistency, authenticity, and
integrity mechanisms will provide assurances that software
components retrieved from independent sources are consis-
tent with their veri�able descriptions. Use of LIFNs will
allow value-added descriptions, such as critical reviews, to
be unambiguously associated with the exact �le or set of
�les that was reviewed. Referring to a LIFN also allows a
researcher to unambiguously specify the exact piece of soft-
ware used to produce and report experimental results.

As part of the BFD package, we plan to implement
a replication daemon that acquires new �les from remote
servers, deletes �les that are no longer wanted, and informs



LIFN servers of the changes. These functions are similar to
those provided by several existing mirror programs, such as
the Netlib repository mirroring scheme described in [7], but
with the addition of interacting with the LIFN database.
The BFD replication daemon will be designed to perform
its tasks very e�ciently. Planned features include on-the-
wire compression, checkpoint/restart, multiple �le multi-
plexing (to allow for gradual transfer of very large �les),
integrity checking, and a protocol that works well over high
bandwidth-delay links.

A collection manager program will also be part of the
BFD package. The collection manager will decide which
�les to acquire and which ones to keep or throw away, based
on access statistics and site-speci�c criteria. The results of
such decisions will then be fed to one or more replication
daemons.

We are involved in discussions with the IETF URI Work-
ing Group and with CNRI that we hope will lead to a merg-
ing of the di�erent technologies the three groups are de-
veloping for name-to-location resolution, meta-information
lookup, and searching.

A Glossary of Acronyms and Terms

BFD Bulk File Distribution

BIDM Basic Interoperability Data Model

CNRI Corporation for National Research Initiatives

CRPC Center for Research in Parallel Computing

CSTR Computer Science Technical Reports, a digital li-
brary project

DNS Domain Name System

FTP File Transfer Protocol

GAMS Guide to Available Mathematical Software

Harvest An information discovery and access system

HMS Handle Management System, a name-to-location res-
olution service being developed at CNRI

HPCC High Performance Computing and Communica-
tions

HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

LAPACK A linear algebra software package

LIFN Location Independent File Name

MD5 A message digest algorithm

Mosaic A World Wide Web browser

NCSA National Center for Supercomputing Applications

Netlib A mathematical software repository

NHSE National HPCC Software Exchange

PGP Pretty Good Privacy, a public key encryption package

RIG Reuse library Interoperability Group

RPC Remote Procedure Call

URC Uniform Resource Characteristic

URL Uniform Resource Locator

URN Uniform Resource Name

WWW World Wide Web

References

[1] Standard reuse library Basic Data Interoperability
Model (BIDM). Technical Report RPS-0001, Reuse Li-
brary Interoperability Group, 1993.

[2] R. F. Boisvert. The architecture of an intelligent vir-
tual mathematical software repository system. Math.
& Comp. in Simul., 36:269{279, 1994.

[3] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber,
and M. F. Schwartz. Harvest: A scalable, customizable
discovery and access system. Technical Report CU-CS-
732-94, Department of Computer Science, University of
Colorado - Boulder, Aug. 1994.

[4] S. Browne, J. Dongarra, S. Green, K. Moore, T. Rowan,
and R. Wade. Netlib services and resources. Technical
Report UT-CS-94-222, University of Tennessee Com-
puter Science Department, Feb. 1994.

[5] S. Browne, J. Dongarra, S. Green, K. Moore, T. Rowan,
R. Wade, G. Fox, K. Hawick, K. Kennedy, J. Pool, and
R. Stevens. The National HPCC Software Exchange.
IEEE Computational Science and Engineering, 1995.
(to appear).

[6] J. J. Dongarra and E. Grosse. Distribution of mathe-
matical software via electronic mail. Commun. ACM,
30(5):403{407, May 1987.

[7] E. Grosse. Repository mirroring. ACM Trans. Math.
Softw., 21(1), Mar. 1995.

[8] R. R. Larson. Design and development of a network-
based electronic library. In Proc. ASIS Mid-Year Meet-

ing, pages 95{114, Portland, Oregon, May 1994.

[9] J. W. Moore. The use of encryption to ensure the
integrity of reusable software components. In Proc.
Third International Conference on Software Reusabil-

ity. IEEE Computer Society Press, Nov. 1994.

[10] R. Rivest. The MD5 message-digest algorithm. Internet
RFC 1321, Apr. 1992.

[11] A. D. Rubin. Trusted distribution of software over the
Internet. In Internet Society 1995 Symposium on Net-

work and Distributed System Security, 1995. (to ap-
pear).

[12] K. Sollins and L. Masinter. Functional requirements
for Uniform Resource Names. Internet RFC 1737, Dec.
1994.

[13] P. Zimmerman. PGP user's guide. PGP Version 2.6.2,
Oct. 1994.


