
The Spectral Decomposition of Nonsymmetric Matrices on

Distributed Memory Parallel Computers

Z. Bai� J. Demmely J. Dongarraz A. Petitetx H. Robinson{ K. Stanleyk

October 9, 1995

Abstract

The implementation and performance of a class of divide-and-conquer algorithms for
computing the spectral decomposition of nonsymmetric matrices on distributed memory
parallel computers are studied in this paper. After presenting a general framework,
we focus on a spectral divide-and-conquer (SDC) algorithm with Newton iteration.
Although the algorithm requires several times as many 
oating point operations as
the best serial QR algorithm, it can be simply constructed from a small set of highly
parallelizable matrix building blocks within Level 3 BLAS. E�cient implementations of
these building blocks are available on a wide range of machines. In some ill-conditioned
cases, the algorithm may lose numerical stability, but this can easily be detected and
compensated for.

The algorithm reached 31% e�ciency with respect to the underlying PUMMA ma-
trix multiplication and 82% e�ciency with respect to the underlying ScaLAPACK ma-
trix inversion on a 256 processor Intel Touchstone Delta system, and 41% e�ciency
with respect to the matrix multiplication in CMSSL on a 32 node Thinking Machines
CM-5 with vector units. Our performance model predicts the performance reasonably
accurately.

To take advantage of the geometric nature of SDC algorithms, we have designed
a graphical user interface to let user choose the spectral decomposition according to
speci�ed regions in the complex plane.

1 Introduction

A standard technique in parallel computing is to build algorithms from existing high perfor-

mance building blocks. For example, LAPACK [1] is built on Basic Linear Algebra Subrou-

tines (BLAS), for which e�cient implementations are available on many workstations, vector

processors, and shared memory parallel machines. The recently released ScaLAPACK 1.0
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linear algebra library [11] is written in terms of the Parallel Block BLAS (PB-BLAS) [12],

Basic Linear Algebra Communication Subroutines (BLACS) [19], BLAS and LAPACK.

ScaLAPACK includes routines for LU, QR and Cholesky factorizations, and matrix inver-

sion, and has been ported to the Intel Gamma, Delta and Paragon, Thinking Machines

CM-5, and PVM clusters. The Connection Machine Scienti�c Software Library (CMSSL)

provides analogous functionality and high performance for the CM-5.

In this paper, we use these high performance kernels to implement a spectral divide-and-

conquer (SDC) algorithm for �nding eigenvalues and invariant subspaces of nonsymmetric

matrices on distributed memory parallel computers. The algorithm recursively divides the

matrix into smaller submatrices, each of which has a subset of the original eigenvalues as

its own [5, 28, 3]. On a 256 processor Intel Touchstone Delta system, the SDC algorithm

reached 31% e�ciency with respect to the underlying matrix multiplication (PUMMA [13])

for matrices of order 4000. and 82% e�ciency with respect to the underlying ScaLAPACK

1.0 matrix inversion. On a 32 processor Thinking Machines CM-5 with vector units, a

varition of the SDC algorithm obtained 41% e�ciency with respect to matrix multiplication

from CMSSL 3.2 for matrices of order 2048.

The nonsymmetric spectral decomposition problem has until recently resisted attempts

at parallelization [16]. The conventional serial method is to use the QR algorithm [1]. The

algorithm had appeared to required �ne grain parallelism and be di�cult to parallelize. But

recently Henry and van de Geijn [21] have shown that the Hessenberg QR iteration phase

can be e�ectively parallelized for distributed memory parallel computers with up to 100

processors. Although it does not appear to be as scalable as the algorithm presented in this

paper, it may be faster on a wide range of distributed memory parallel computers. The SDC

algorithm performs several times as many 
oating point operations as the QR algorithm,

but they are nearly all within Level 3 BLAS, whereas implementations of the QR algorithm

performing the fewest 
oating point operations use less e�cient Level 1 and 2 BLAS. A

thorough comparison of these algorithms will be the subject of a future paper. We also

note that the algorithm discussed in this paper may be less stable than the QR algorithm

in a number of circumstances. Fortunately, it is easy to detect and compensate for this loss

of stability. Compared with other approaches, we believe that the new algorithm o�ers an

e�ective tradeo� between parallelizability and stability.

Other parallel algorithms for the eigenproblem include Hessenberg divide-and-conquer

using either Newton's method [18] or homotopies [26], and Jacobi's method [33, 32]. All

these methods su�er from the use of �ne-grain parallelism, instability, slow or misconver-

gence in the presence of clustered eigenvalues of the original problem or some constructed

subproblems [16]. The other algorithms most closely related to the approach used here

may be found in [2, 6, 24], where symmetric matrices, or more generally matrices with real

spectra, are treated.

One of the notable features of the SDC algorithm is that it can calculate just those

eigenvalues (and the corresponding invariant subspace) in a user-speci�ed region of the

complex plane. To help the user specify this region, we developed a graphical user interface

for the algorithm.

The rest of this paper is organized as follows. In x2, we �rst present a general framework
of SDC algorithms, and then focus on an SDC algorithm with Newton iteration. We show

how to divide the spectrum along arbitrary circles and lines in the complex plane. The
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implementation and performance on Intel Delta and CM-5 are presented in x3. x4 presents
a model for performance analysis, and demonstrates that it can predict the execution time

reasonably accurately. x5 describes the design of an X-window user interface. Concluding

remarks are given in x6.

2 Spectral Divide and Conquer Algorithms

2.1 General Framework

A general framework of SDC algorithms can be described as the following. Let

A = X

 
J+ 0

0 J�

!
X�1 (1)

be the Jordan canonical form of an n � n matrix A, where the eigenvalues of J+ are the

eigenvalues of A inside a selected region D in the complex plane, and the eigenvalues of J�
are the eigenvalues of A outside D. We assume that there are no eigenvalues of A on the

boundary of D, otherwise we reselect or move the region D slightly. The invariant subspace

of the matrix A corresponding to the eigenvalues inside D are spanned by the �rst l columns

of X , where l is the number of eigenvalues inside D. The matrix

P+ = X

 
I 0

0 0

!
X�1 (2)

is the corresponding spectral projector. Let P+ = QR� be the rank revealing QR decompo-

sition of the matrix P+, where Q is unitary, R is upper triangular, and � is a permutation

matrix chosen so that the leading l columns of Q span the range space of P+. Then Q yields

the desired spectral decomposition:

QHAQ =

 
A11 A12

0 A22

!
(3)

where the eigenvalues of A11 are the eigenvalues of A inside D, and the eigenvalues of A22

are the eigenvalues of A outside D. By substituting the complementary projector I � P+
for P+ in (2), A11 will have the eigenvalues outside D and A22 will have the eigenvalues

inside D.
The crux of an SDC algorithm is to e�ciently compute the desired spectral projector

P+ without computing the Jordan canonical form.

2.2 An SDC algorithm with Newton iteration

One of ways to compute the spectral projector P+ is to use the matrix sign function.

The matrix sign function was introduced by Roberts [31] for solving the algebraic Riccati

equation. However, it was soon extended to solving the spectral decomposition problem [5].

More recent studies may be found in [28, 3].

The matrix sign function, sign(A), of a matrix A with no eigenvalues on the imaginary

axis can be de�ned via the Jordan canonical form of A (1), where the eigenvalues of J+ are
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in the open right half plane D, and the eigenvalues of J� are in the open left half plane D.
Then sign(A) is

sign(A) � X

 
I 0

0 �I

!
X�1:

It is easy to see that the matrix

P+ =
1

2
(I + sign(A)) (4)

is the spectral projector onto the invariant subspace corresponding to the eigenvalues of A

in D. l = trace(P+) = rank(P+) is the number of the eigenvalues of A in D. I � P+ =

P� = 1
2(I � sign(A)) is the spectral projector corresponding to the eigenvalues of A in D.

Let P+ = QR� be the rank revealing QR decomposition of P+. Then Q yields the desired

spectral decomposition (3), where the eigenvalues of A11 are the eigenvalues of A in D, and
the eigenvalues of A22 are the eigenvalues of A in D.

Since sign(A) satis�es the matrix equation (sign(A))2 = I , we can use Newton's method

to solve this matrix equation and derive the following Newton iteration:

Aj+1 =
1

2
(Aj +A�1j ); for j = 0; 1; 2; : : : with A0 = A: (5)

It can be shown that the iteration is globally and ultimately quadratically convergent with

limj!1 Aj = sign(A), provided A has no pure imaginary eigenvalues [31, 23]. The iteration

fails otherwise. In �nite precision arithmetic, the iteration could converge slowly or not at

all if A is \close" to having pure imaginary eigenvalues.

There are many ways to improve the accuracy and convergence rate of this basic iteration

[7, 22, 25]. For example, if kA2 � Ik < 1, we may use the Newton-Schulz iteration

Aj+1 =
1

2
Aj(3I �A2

j ) for j = 0; 1; 2; : : : with A0 = A: (6)

to avoid the use of the matrix inverse. Although it requires twice as many 
oating point

operations, it is more e�cient whenever matrix multiply is at least twice as e�cient as

matrix inversion. The Newton-Schulz iteration is also quadratically convergent provided

that kA2�Ik < 1. A hybrid iteration might begin with Newton iteration until kA2
i �Ik < 1

and then switch to Newton-Schulz iteration.

The following is an SDC algorithm with Newton iteration to compute the spectral

decomposition along the pure imaginary axis.

The SDC Algorithm with Newton Iteration

Let A0 = A

For j = 0; 1; : : : until convergence or j > jmax do

Aj+1 =
1
2(Aj + A�1j )

if kAj+1 �Ajk1 � �kAjk1, exit
End for;

Compute 1
2
(Aj+1 + I) = QR� (rank revealing QR decomposition)



5

Calculate QHAQ =

 l n� 1

l A11 A12

n� 1 E21 A22

!

Compute kE21k1=kAk1 for stability test

Here � is the stopping criterion for the Newton iteration (say, � = n", where " is the

machine precision), and jmax limits the maximum number of iterations (say jmax = 40).

l is the rank of R. On return, the generally nonzero quantity kE21k1=kAk1 measures the
backward stability of the computed decomposition, since by setting E21 to zero and so

decoupling the problem into A11 and A22, a backward error of kE21k1=kAk1 is introduced.
For simplicity, we use the QR decomposition with column pivoting for rank revealing,

although more sophisticated rank-revealing schemes exist [10, 20].

All variations of the Newton iteration with global convergence need to compute the

inverse of a matrix explicitly in one form or another. Dealing with ill-conditioned matrices

and instability in the Newton iteration for computing the matrix sign function and the

subsequent spectral decomposition have been studied in [3, 8]. Recently, an inverse free

method for achieving better numerical stability has been proposed in [30, 4]. The advantage

of the inverse free approach is obtained at the cost of more storage and arithmetic.

Since 1) any SDC algorithm could su�er numerical instability when some eigenvalues

are very close to the boundary of the selected region, 2) Newton iteration is faster but

somewhat less stable than the inverse free approach, and 3) testing stability is easy, we

propose to use the following 3 step hybrid algorithm for a general purpose program:

1. Use the SDC algorithm with Newton iteration. If it succeeds, stop.

2. Otherwise, divide the spectrum with the inverse free method. If it succeeds, stop.

3. Otherwise, use the QR algorithm.

This 3-step approach works by trying the fastest but least stable method �rst, falling back to

slower but more stable methods only if necessary. The same paradigm is also used in other

parallel algorithms [15]. If a fast parallel version of the QR algorithm [21] becomes available,

it would probably be faster than the inverse free algorithm and hence would obviate the

need for the second step listed above. But the inverse free method would still be of interest

if only a subset of the spectrum is desired (the QR algorithm necessarily computes the

entire spectrum), or for the generalized eigenproblem of a matrix pencil A� �B [4].

2.3 Spectral Transformation

Although the SDC algorithm with Newton iteration only divides the spectrum along the

pure imaginary axis, we can use M�obius and other simple transformations of the input

matrix A to divide along other more general curves. As a result, we can compute the

eigenvalues (and corresponding invariant subspace) inside any region de�ned as the inter-

section of regions de�ned by these curves. This is one of major attractions of this kind of

algorithms. Speci�cally, with M�obius transformation

�z + �


z + �
;
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Figure 1: Di�erent Geometric Regions for the Spectral Decomposition

where �; �; 
; � are constants, and z is a complex variable, the eigenproblem Ax = �x is

transformed to

(�A+ �I)x =
��+ �


�+ �
(
A+ �I)x

Then if we apply the SDC algorithm to the matrix (
A+ �I)�1(�A + �I), we can divide

the spectrum with respect to a region

<
�
��+ �


�+ �

�
> 0:

For example, by computing the matrix sign function of (A+(r��)I)�1(�A+(r+�)I), then
the SDC algorithm will divide the spectrum of A along a circle centered at � with radius

r. If A is real, and we choose � to be real, then all arithmetic will be real. Other more

general regions can be obtained by taking A0 as a polynomial function of A. For example,

by computing the matrix sign function of (A � �I)2, we can divide the spectrum within a

\bowtie" shaped region centered at �. Figure 1 illustrates the regions which the algorithms

can deal with assuming that A is real and the algorithms use only real arithmetic.

3 Implementation and Performance

In this section, we report the implementation and performance the SDC algorithm with

Newton iteration on distributed memory parallel machines, namely the Intel Delta and the

CM-5. Implementations on workstations and shared memory machines can be found in [3].

3.1 Implementation and Performance on Intel Touchstone Delta

The Intel Touchstone Delta system, located at the California Institute of Technology on

behalf of the Concurrent Supercomputing Consortium, is 16 � 32 mesh of i860 processors

with a wormhole routing interconnection network [27]. The communication characteristics

are described in [29].
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Figure 2: Performance of ScaLAPACK 1.0 subroutines on 256 (16�16) PEs Intel Touchstone
Delta system.

Our implementation on Intel is built upon ScaLAPACK 1.0 (beta version) [11]. A

square block cyclic data decomposition scheme is used, which allows the routines to achieve

well balanced computations and to minimize communication costs. ScaLAPACK relies on

the Parallel Block BLAS (PB-BLAS) [12], which hides much of the interprocessor com-

munication and makes it possible to avoid explicit calls to communication routines. The

PB-BLAS itself is implemented on top of calls to the BLAS and to the Basic Linear Algebra

Communication Subroutines (BLACS) [19].

The PUMMA routines [13] provide the required matrix multiplication. The matrix

inversion is done in two steps. After the LU factorization has been computed, the upper

triangular U matrix is inverted, and A�1 is obtained by substitution with L. Using blocked

operations leads to performance comparable to that obtained for LU factorization. The

implementation of the QR factorization with or without column pivoting is based on the

parallel algorithm presented by Coleman and Plassmann [14]. The QR factorization with

column pivoting has a much larger sequential component, processing one column at a time,

and needs to update the norms of the column vectors at each step. This makes using blocked

operations impossible and induces high synchronization overheads. However, as we will see,

the cost of this step remains negligible in comparison with the time spent in the Newton

iteration. The QR factorization without pivoting and the post- and pre-multiplication by

an orthogonal matrix do use blocked operations. Two plots in Figure 2 are the timing

and mega
ops for the PUMMA package using the BLACS for matrix multiplication, and

ScaLAPACK subroutines for the matrix inversion, QR decomposition with and without

column pivoting.

To measure the e�ciency of the algorithm for computing the spectral decomposition

with respect to the pure imaginary axis, we generated random matrices with normal distri-

bution (0,1). All computations were performed in real double precision arithmetic. Table

1 lists the CPU time and di�erent mega
ops rates. All the backward errors measured in

kE21k1=kAk1 are on the order of 10�12 to 10�13. It took between 18 to 21 steps of Newton
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Table 1: The SDC algorithm with Newton iteration on 256-node Intel Touchstone Delta

system.

n Timing M
ops M
ops GEMM-M
ops INV-M
ops

(seconds) (total) (per node) (per node) (per node)

1000 134.22 293.05 1.14 9.04 1.41

2000 448.69 808.28 3.16 15.51 3.88

3000 792.18 1340.60 5.23 19.95 6.43

4000 1436.14 1841.98 7.19 23.12 8.70

Table 2: Performance Pro�le on 256-node Intel Touchstone Delta system.

n Newton (%) QRP(%) QTAQ(%) Total CPU

1000 123.06(91%) 6.87(5%) 4.27(5%) 134.22

2000 413.95(92%) 18.60(4%) 16.13(4%) 448.69

3000 717.04(90%) 36.76(5%) 38.37(5%) 792.18

4000 1300.16(90%) 63.13(5%) 72.80(5%) 1436.14

iteration to converge. From Table 1, we see that for matrices of order 4000, the algorithm

reached 7:19=23:12 � 31% e�ciency with respect to PUMMA matrix multiplication, and

7:19=8:70 � 82% e�ciency with respect to the underlying ScaLAPACK matrix inversion

subroutine. Table 2 is the pro�le of the CPU time. It is clear that the Newton iteration

(i.e., computing the matrix sign function) is most expensive, and takes about 90% of the

total running time. Figure 3 shows the performance of the algorithm as a function of matrix

size for di�erent numbers of processors.

We also ran LAPACK driver routine DGEES (the standard serial QR algorithm) for

computing the Schur decomposition on one i860 processor. It took 592 seconds for a matrix

of order 600, or 9.1 mega
ops. Assuming that the time scales like n3, one can predict that

for a matrix of order 4000, if the matrix was able to �t on a single node, then DGEES

would take about 48 hours to compute the desired spectral decomposition. In contrast,

the SDC algorithm would only take about 24 minutes. This is about 120 times faster. Of

course, we should note that DGEES actually computes a complete Schur decomposition with

the necessary reordering of the spectrum. Our algorithm only decomposes the spectrum

along the pure imaginary axis. In some applications, this may be what users want. If the

decomposition along a �ner region or a complete Schur decomposition is desired, then the

cost of the SDC algorithm will be increased, though it is likely that the �rst dividing step

will take most of the time [9].

3.2 Implementation and Performance on the CM-5

Our implementation on 32 node CM-5 was carried out at the University of California at

Berkeley. Each CM-5 node contains a 33 MHz Sparc with an FPU and 64 KB cache, four
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Figure 3: Performance of the SDC algorithm with Newton iteration on the Intel Delta

system as a function of matrix size for di�erent numbers of processors.

vector 
oating points units, and 32 MB of memory. The front end is a 33 HMz Sparc with

32 MB of memory. With the vector units, the peak 64-bit 
oating point performance is 128

mega
ops per node (32 mega
ops per vector unit). See [34] for more details.

The SDC algorithm is implemented in CM Fortran (CMF) version 2.1 { an implementa-

tion of Fortran 77 supplemented with array-processing extensions from the ANSI and ISO

standard Fortran 90. CMF arrays come in two 
avors. They can be distributed across

CM processor memory (in some user de�ned layout) or allocated in normal column ma-

jor fashion on the front end alone. When the front end computer executes a CM Fortran

program, it performs serial operations on scalar data stored in its own memory, but sends

any instructions for array operations to the nodes. On receiving an instruction, each node

executes it on its own data. When necessary, CM nodes can access each other's memory by

available communication mechanisms.

CMSSL (version 3.2) was used in our implementation. CMSSL provides data parallel

implementations of many standard linear algebra routines. Figure 4 summarizes the per-

formance of CMSSL routines underlying the implementation of the SDC algorithm. Matrix

inversion is performed by solving the system AX = I . The LU factors can be obtained

separately { to support Balzer's and Byers' scaling schemes to accelerate the convergence

of Newton iteration { and there is a routine for estimating kA�1k1 from the LU factors to

detect ill-conditioned intermediate matrices in the Newton iteration. The QR factorization

with or without pivoting uses standard Householder transformations. Column blocking can

be performed at the user's discretion to improve load balance and increase parallelism. The

QR with pivoting routine is about half as fast as QR without pivoting. This is due in

part to the elimination of blocking techniques when pivoting, as columns must be processed

sequentially.

We tested the SDC algorithm with hybrid Newton-Schulz iteration for computing the

spectral decomposition along the pure imaginary axis. The entries of random test matrices

were uniformly distributed on [�1; 1]. We use the inequality kAi+1�Aik1 �
p
n as switching

criterion from the Newton iteration (5) to the Newton-Schulz iteration (6), i.e., we relaxed
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Figure 4: Performance of CMSSL 3.2 subroutines on 32 node CM-5 with vector units

Table 3: Performance of the SDC algorithm with Newton-Schultz iteration on a 32 node

CM-5 with vector units.

Actual Predicted GEMM- Inverse-

n Time Time M
ops M
ops M
ops M
ops

(seconds) (seconds) (total) (per node) (per node) (per node)

256 25 16 30.72 0.96 12.57 0.69

512 58 45 106.88 3.34 22.14 2.62

768 99 88 203.84 6.37 30.32 5.05

1024 143 146 318.40 9.95 37.71 7.81

1280 231 222 405.44 12.67 42.06 10.64

1536 296 316 520.64 16.27 46.61 13.49

1792 423 430 579.84 18.12 51.47 16.16

2048 506 567 732.16 22.88 55.72 18.87
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the convergence condition kA2
i � Ik < 1 for the Newton-Schulz iteration to

kA2
i � Ik1 = kAi(Ai �A�1i )k1 = 2kAi(Ai+1 �Ai)k1 � 2

p
nkAik1;

because this optimized performance over the test cases we ran.

Table 3 shows the CPU time in seconds and di�erent mega
ops rates. All backward

errors are on the order of 10�13. The Newton iteration took between 14 to 16 steps to

converge, and then took 2 steps of Newton-Schultz iteration. From the table, we see that

by comparing to CMSSL matrix multiplication, we obtain 32% to 45% e�ciency with the

matrices sizes from 512 to 2048, even faster than the CMSSL matrix inverse subroutine.

After pro�ling the total CPU time, we found that about 83% of total time is spent on the

Newton iteration, 9% on the QR decomposition with pivoting, and 7.5% on the matrix

multiplication for the Newton-Schulz iteration and orthogonal transformations.

4 Execution time modeling

In this section, we derive an execution time model for the SDC algorithm. We will show

that the model con�rms that the SDC algorithm scales well. The ratio of computation

to communication, the chief determinant of scalability, is comparable to that required by

current implementations of LU decomposition [11]. Since LU decomposition scales well to

a wide variety of machines [17], the SDC algorithm can also be expected to scale well.

4.1 Details of the execution time model

Our model is based on the actual operation counts of the ScaLAPACK implementation and

the following problem parameters and (measured) machine parameters:

n Matrix size,

p Number of processors,

� Time required to send a zero length message from one processor to another,

� Time required to send one double word from one processor to another,


 Time required per BLAS3 
oating point operation.

The models for each of the building blocks, shown in Table 4, were created by counting

the actual operations in the critical path. Each of these building block models were validated

against the performance data shown in Figures 2 and 4.

In Table 5, the predicted running time of each of the steps of the algorithm is displayed.

Summing the times in Table 5 yields:

Total time = 45
n3

p

 + (160+ 23 lg p)n�+ (90 + 40 lg p)

n2
p
p
�: (7)

Using the measured machine parameters given in Table 6 with equation (7) yields the

predicted times on CM-5 (Table 3) and the Intel Delta system (Table 7). As Table 7 shows,

our model underestimates the actual time on the Delta by no more than 30% for the problem

and machine sizes listed. Table 3 shows that our model matches the performance on the

CM-5 to within 25% for all problem sizes except the smallest, i.e. n = 256.
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Table 4: Models for each of the building blocks

Computation Communication Cost

Task Cost latency bandwidth�1

LU 2
3
n3

p

 (6+lgp)n� (3+

lg p
4

)
n2p
p
�

TRI 4
3
n3

p

 2n� (2+

3
2
lg p)

n2p
p
�

Matrix

multiply
2
n3

p

 (1+

lgp
2 )

p
p� (1+

lg p
2 )

n2p
p
�

QR 4
3
n3

p

 3n lg p�

3 lg p
4

n2p
p
�

Householder

application
2
n3

p

 2

n2p
p
lg p�

Table 5: Model of the SDC algorithm with Newton iteration

20 matrix QR 2 Householder Total

inversions applications

Computation cost �n3

p

 40

4
3 4 45

Latency cost �n� 160+20lg p 3 lg p 160+23lg p

Bandwidth cost � n2p
p
� 90+35 lgp

3
4
lg p 4 90+40 lgp

Table 6: Machine parameters

Model Performance measured values �s

Parameter Description limited by CM-5 Delta


 time per BLAS 3 
op peak 
op rate 1/90 1/34

� message latency comm. software 150 157

� bandwidth�1 comm. hardware 1.62 1.67
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Table 7: Actual and predicted performance of the SDC algorithm with Newton iteration

for the spectral decomposition along the pure imaginary axis

Delta 8� 16 PEs 16� 16 PEs 16� 32 PEs

n actual predicted actual predicted actual predicted

time (sec) time (sec) time (sec) time (sec) time (sec) time ( sec)

1000 { { 134 102 110 93

2000 502 402 448 320 336 269

3000 1037 921 792 687 576 542

4000 { { 1436 1231 1014 927

8000 { { { { 4268 3910

Table 8 compares the execution time cost to divide the spectrum once by the SDC

algorithm with the cost for LU decomposition. The ratio of SDC to LU costs in each of the

three categories, the cost of a 
op, message initiation cost and inverse bandwidth cost, is

shown in the third column and also displayed here:*
67;

160 + 23 lg p

6 + lg p
;
90 + 40 lg p

3 + 1
4
lg p

+

These cost ratios vary slowly with the number of processors. For example, the cost of

splitting the spectrum once with the SDC algorithm on 1000 processors is 67 times the 
op

cost in LU, 24 times the message initiation cost in LU and 90 times the inverse bandwidth

cost in LU. At the extremes, p = 1 and p = 1, the cost raios are < 67; 27; 30 >, and

< 67; 23; 160 > respectively. These cost ratios show that the SDC algorithm will scale

almost as well as the LU decomposition across most computers.

The performance �gures in Table 6 are all measured by an independent program, except

for the CM-5 Level 3 BLAS performance. The communication performance �gures for the

Delta in Table 6 are from a report by Little�eld1 [29]. The communication performance

�gures for the CM-5 are as measured by Whaley2 [35]. The computation performance for

the Delta is from the LINPACK benchmark[17] for a one processor Delta. There is no entry

for a one processor CM-5 in the LINPACK benchmark, so 
 for the CM-5 in Table 6 is

chosen from our own experience.

4.2 Discrepancies between the model and actual times

There are numerous sources of error in our model. The model does not count all 
oating

point operations. The number of processor rows and columns and the block size a�ect

performance and ignoring them therefore contributes to the total error. Communications

do not exactly �t the linear model (� + n�), nor are matrix multiply costs constant per


op.

1The BLACS use protocol 2, and the communication pattern most closely resembles the \shift" timings.
2� is from Table 8 and � is from Table 5 in [35].
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Table 8: The scalability of the SDC algorithm versus LU decomposition

SDC LU SDC/ LU

Computation Cost 45
n3

p

 2

3
n3

p

 67

Latency cost (160+23 lg p)n� (6+lg p)n�
160+23lg(p)

6+lg(p)

Bandwidth cost (90+40 lgp)
n2p
p
� (3+

lg p
4

)
n2p
p
�

90+40lg(p)

3+ 1

4
lg(p)

The model assumes that exactly 20 Newton iterations are required, wheras the actual

number varied from 18 to 22. It is based on QR decomposition without pivoting, but the

code has to use the QR decomposition with pivoting. On the CM-5, timings are from the

Newton-Shultz iteration because that the latter is slightly more e�cient, but the model is

uniformally based on the Newton iteration.

We have a more detailed model which matches the performance better than the one

shown here. The detailed model shows that algorithmic discrepancies and load imbalance

contribute the largest errors for large problems (n > 512) while uncounted operations

contribute the largest error for small problems (n < 512).

5 XI : A Graphical User Interface to SDC

To take advantage of the graphical nature of the spectral decomposition process of the SDC

algorithm, a graphical user interface has been implemented. Written in C and based on

X11R5's standard Xlib library, the Xt toolkit and MIT's Athena widget set, it has been

nicknamed XI for \X11 Interface". The programmer's interface to XI consists of seven

subroutines designed independently of any speci�c SDC implementation. Thus XI can be

attached to any SDC code. At present, it is in use with the CM-5 CMF implementation

and Fortran 77 version of the SDC algorithm. Figure 5 shows the coupling of the SDC code

and the XI library of subroutines.

Basically, the SDC code calls an XI routine which handles all interaction with the user

and returns only when it has the next request for a parallel computation. The SDC code

processes this request on the parallel engine, and if necessary calls another XI routine to

inform the user of the computational results. If the user had selected to split the spectrum,

then at this point the size of the highlighted region, and the error bound on the computation

(along with some performance information) is reported, and the user is given the choice of

con�rming or refusing the split. Appropriate action is taken depending on the choice. This

process is repeated until the user decides to terminate the program.

All data structures pertaining to the matrix decomposition process are managed by

XI. A binary tree records the size and status (solved/not solved) of each diagonal block

corresponding to a spectral region, the error bounds of each split, and other information.

Having the X11 interface manage the decomposition data frees the programmer of these

responsibilities and encapsulates the decomposition process. The programmer obtains any

useful information via the interface subroutines.

Figure 6 pictures a sample session of the user interface on the CM-5 with a matrix of



Figure 6: A sample xsdc session
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order 500. The central window (called the \spectrum window") represents the region of the

complex plane indicated by the axes. Its title { \xsdc :: Eigenvalues and Schur Vectors"

{ indicates that the task is to compute eigenvalues and Schur vectors for the underline

matrix. The lines on the spectrum window (other than the axes) are the result of spectral

divide-and-conquer, while the shading indicates that the \bowtie" region of the complex

plane is currently selected for further analysis. The other windows show the details of the

process.

The buttons at the top control I/O, the appearance of the spectrum window, and algo-

rithmic choices:

� File lets one save the matrix, start on a new matrix, or quit.

� Zoom lets one navigate around the complex plane by zooming in or out on part of the

spectrum window.

� Toggle turns on or o� the features of the spectrum window (for example the axes,

Gershgorin disks, eigenvalues).

� Function lets one modify the algorithm, or display details about the progress being

made.

The buttons at the bottom are used in splitting the spectrum. For example clicking

on Right halfplane and then clicking at any point on the spectrum window will split the

spectrum into two halfplanes at that point, with the right halfplane selected for further

division. The Split Information window keeps track of the matrix splitting process.

The Matrix Information window displays the status of the matrix decomposition process,

where each of the three entries corresponds to a spectral region and a square diagonal block

of the 3 � 3 block upper triangular matrix, and informs us of the block's size, whether its

eigenvalues (eigenvectors, Schur vectors) have been computed or not, and the maximum

error bound encountered. The listed eigenvalues can be plotted on the spectrum at the

user's request.

The user may select any region of the complex plane (and hence any sub-matrix on the

diagonal) for further decomposition by clicking the pointer in the desired region. Once a

block is small enough, the user may choose to solve it via the Function button at the top

of the spectrum window.

6 Concluding Remarks

Our implementation of the SDC algorithm with Newton iteration uses only highly e�cient

matrix computation kernels, which are available in the public domain and from distributed

memory parallel computer vendors. The performance attained is encouraging. This ap-

proach merits consideration for other numerical algorithms. The object oriented user inter-

face XI provides a paradigm for use in the future to design a more user friendly interface in

the massively parallel computing environment. We note that all the approaches discussed

here can be extended to compute the both right and left de
ating subspaces of a regular

matrix pencil A � �B.
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As the spectrum is repeatedly partitioned in a divide-and-conquer fashion, there is

obviously task parallelism available because of the independent submatrices that arise, as

well as the data parallel-like matrix operations considered in this paper. Analysis in [9]

indicates that this task parallelism can contribute at most a small constant factor speedup,

since most of the work is at the root of the divide-and-conquer tree. This can simplify the

implementation.
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