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Abstract

The implementation and performance of a class of divide-and-conquer algorithms for
computing the spectral decomposition of nonsymmetric matrices on distributed memory
parallel computers are studied in this paper. After presenting a general framework,
we focus on a spectral divide-and-conquer (SDC) algorithm with Newton iteration.
Although the algorithm requires several times as many floating point operations as
the best serial QR algorithm, it can be simply constructed from a small set of highly
parallelizable matrix building blocks within Level 3 BLAS. Efficient implementations of
these building blocks are available on a wide range of machines. In some ill-conditioned
cases, the algorithm may lose numerical stability, but this can easily be detected and
compensated for.

The algorithm reached 31% efficiency with respect to the underlying PUMMA ma-
trix multiplication and 82% efficiency with respect to the underlying ScaLAPACK ma-
trix inversion on a 256 processor Intel Touchstone Delta system, and 41% efficiency
with respect to the matrix multiplication in CMSSL on a 32 node Thinking Machines
CM-5 with vector units. Our performance model predicts the performance reasonably
accurately.

To take advantage of the geometric nature of SDC algorithms, we have designed
a graphical user interface to let user choose the spectral decomposition according to
specified regions in the complex plane.

1 Introduction

A standard technique in parallel computing is to build algorithms from existing high perfor-
mance building blocks. For example, LAPACK [1] is built on Basic Linear Algebra Subrou-
tines (BLAS), for which efficient implementations are available on many workstations, vector
processors, and shared memory parallel machines. The recently released ScaLAPACK 1.0
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linear algebra library [11] is written in terms of the Parallel Block BLAS (PB-BLAS) [12],
Basic Linear Algebra Communication Subroutines (BLACS) [19], BLAS and LAPACK.
ScalLAPACK includes routines for LU, QR and Cholesky factorizations, and matrix inver-
sion, and has been ported to the Intel Gamma, Delta and Paragon, Thinking Machines
CM-5, and PVM clusters. The Connection Machine Scientific Software Library (CMSSL)
provides analogous functionality and high performance for the CM-5.

In this paper, we use these high performance kernels to implement a spectral divide-and-
conquer (SDC) algorithm for finding eigenvalues and invariant subspaces of nonsymmetric
matrices on distributed memory parallel computers. The algorithm recursively divides the
matrix into smaller submatrices, each of which has a subset of the original eigenvalues as
its own [5, 28, 3]. On a 256 processor Intel Touchstone Delta system, the SDC algorithm
reached 31% efficiency with respect to the underlying matrix multiplication (PUMMA [13])
for matrices of order 4000. and 82% efficiency with respect to the underlying ScaLAPACK
1.0 matrix inversion. On a 32 processor Thinking Machines CM-5 with vector units, a
varition of the SDC algorithm obtained 41% efficiency with respect to matrix multiplication
from CMSSL 3.2 for matrices of order 2048.

The nonsymmetric spectral decomposition problem has until recently resisted attempts
at parallelization [16]. The conventional serial method is to use the QR algorithm [1]. The
algorithm had appeared to required fine grain parallelism and be difficult to parallelize. But
recently Henry and van de Geijn [21] have shown that the Hessenberg QR iteration phase
can be effectively parallelized for distributed memory parallel computers with up to 100
processors. Although it does not appear to be as scalable as the algorithm presented in this
paper, it may be faster on a wide range of distributed memory parallel computers. The SDC
algorithm performs several times as many floating point operations as the QR algorithm,
but they are nearly all within Level 3 BLAS, whereas implementations of the QR algorithm
performing the fewest floating point operations use less efficient Level 1 and 2 BLAS. A
thorough comparison of these algorithms will be the subject of a future paper. We also
note that the algorithm discussed in this paper may be less stable than the QR algorithm
in a number of circumstances. Fortunately, it is easy to detect and compensate for this loss
of stability. Compared with other approaches, we believe that the new algorithm offers an
effective tradeoff between parallelizability and stability.

Other parallel algorithms for the eigenproblem include Hessenberg divide-and-conquer
using either Newton’s method [18] or homotopies [26], and Jacobi’s method [33, 32]. All
these methods suffer from the use of fine-grain parallelism, instability, slow or misconver-
gence in the presence of clustered eigenvalues of the original problem or some constructed
subproblems [16]. The other algorithms most closely related to the approach used here
may be found in [2, 6, 24], where symmetric matrices, or more generally matrices with real
spectra, are treated.

One of the notable features of the SDC algorithm is that it can calculate just those
eigenvalues (and the corresponding invariant subspace) in a user-specified region of the
complex plane. To help the user specify this region, we developed a graphical user interface
for the algorithm.

The rest of this paper is organized as follows. In §2, we first present a general framework
of SDC algorithms, and then focus on an SDC algorithm with Newton iteration. We show
how to divide the spectrum along arbitrary circles and lines in the complex plane. The



implementation and performance on Intel Delta and CM-5 are presented in §3. §4 presents
a model for performance analysis, and demonstrates that it can predict the execution time
reasonably accurately. §5 describes the design of an X-window user interface. Concluding
remarks are given in §6.

2 Spectral Divide and Conquer Algorithms

2.1 General Framework

A general framework of SDC algorithms can be described as the following. Let
_ Ji 0 1
(%) y

be the Jordan canonical form of an n X n matrix A, where the eigenvalues of J; are the
eigenvalues of A inside a selected region D in the complex plane, and the eigenvalues of J_
are the eigenvalues of A outside D. We assume that there are no eigenvalues of A on the
boundary of D, otherwise we reselect or move the region D slightly. The invariant subspace
of the matrix A corresponding to the eigenvalues inside D are spanned by the first [ columns
of X, where [ is the number of eigenvalues inside D. The matrix

P+:X(é g)X—l (2)

is the corresponding spectral projector. Let Pp = (QRII be the rank revealing QR decompo-
sition of the matrix Py, where @) is unitary, R is upper triangular, and II is a permutation
matrix chosen so that the leading ! columns of ( span the range space of Py. Then ) yields
the desired spectral decomposition:
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QHAQz( S

where the eigenvalues of Ay, are the eigenvalues of A inside D, and the eigenvalues of Ay
are the eigenvalues of A outside D. By substituting the complementary projector I — Py
for Py in (2), A;; will have the eigenvalues outside D and Ay will have the eigenvalues
inside D.

The crux of an SDC algorithm is to efficiently compute the desired spectral projector
Py without computing the Jordan canonical form.

2.2 An SDC algorithm with Newton iteration

One of ways to compute the spectral projector P, is to use the matrix sign function.
The matrix sign function was introduced by Roberts [31] for solving the algebraic Riccati
equation. However, it was soon extended to solving the spectral decomposition problem [5].
More recent studies may be found in [28, 3].

The matrix sign function, sign(A4), of a matrix A with no eigenvalues on the imaginary
axis can be defined via the Jordan canonical form of A (1), where the eigenvalues of .Jy are



in the open right half plane D, and the eigenvalues of J_ are in the open left half plane D.
Then sign(A) is

sign(A4) = X ( é _OI ) X1
It is easy to see that the matrix
1 .
Py = 5 (I + sign(4)) 4)

is the spectral projector onto the invariant subspace corresponding to the eigenvalues of A
in D. [ = trace(Py) = rank(P4) is the number of the eigenvalues of A in D. [ — Py =
P_ = (I —sign(A)) is the spectral projector corresponding to the eigenvalues of A in D.
Let Py = QRII be the rank revealing QR decomposition of P,. Then ) yields the desired
spectral decomposition (3), where the eigenvalues of Aq; are the eigenvalues of A in D, and
the eigenvalues of A,y are the eigenvalues of A in D.

Since sign(A) satisfies the matrix equation (sign(A4))? = I, we can use Newton’s method
to solve this matrix equation and derive the following Newton iteration:

1
~(A4;+ A7Y), for j=0,1,2,... with Ay=A. (5)

Ajp1 =5

It can be shown that the iteration is globally and ultimately quadratically convergent with
lim;, A; =sign(A), provided A has no pure imaginary eigenvalues [31, 23]. The iteration
fails otherwise. In finite precision arithmetic, the iteration could converge slowly or not at
all if A is “close” to having pure imaginary eigenvalues.

There are many ways to improve the accuracy and convergence rate of this basic iteration
[7, 22, 25]. For example, if ||A? — I|| < 1, we may use the Newton-Schulz iteration

1 . .
A = §Aj(31 — A%) for j=0,1,2,... with A= A. (6)

to avoid the use of the matrix inverse. Although it requires twice as many floating point
operations, it is more efficient whenever matrix multiply is at least twice as efficient as
matrix inversion. The Newton-Schulz iteration is also quadratically convergent provided
that |A*—1I]] < 1. A hybrid iteration might begin with Newton iteration until ||A? —I|| < 1
and then switch to Newton-Schulz iteration.

The following is an SDC algorithm with Newton iteration to compute the spectral
decomposition along the pure imaginary axis.

THE SDC ALGORITHM WITH NEWTON ITERATION

Let AO =A
For j = 0,1,... until convergence or j > jmax do
Ajpr = 3(A; + A7
if 1A+ = Ajlle < 7l[A ]|, exit
End for;
Compute $(A;11 + 1) = QRIL  (rank revealing QR decomposition)
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Compute || Ea||1/]|A||1 for stability test

Here 7 is the stopping criterion for the Newton iteration (say, 7 = ne, where ¢ is the
machine precision), and jmax limits the maximum number of iterations (say jmax = 40).
[ is the rank of R. On return, the generally nonzero quantity [|Fq2;||1/||Al1 measures the
backward stability of the computed decomposition, since by setting Fo; to zero and so
decoupling the problem into A1 and Asjg, a backward error of ||Eqq||1/||A||1 is introduced.
For simplicity, we use the QR decomposition with column pivoting for rank revealing,
although more sophisticated rank-revealing schemes exist [10, 20].

All variations of the Newton iteration with global convergence need to compute the
inverse of a matrix explicitly in one form or another. Dealing with ill-conditioned matrices
and instability in the Newton iteration for computing the matrix sign function and the
subsequent spectral decomposition have been studied in [3, 8]. Recently, an inverse free
method for achieving better numerical stability has been proposed in [30, 4]. The advantage
of the inverse free approach is obtained at the cost of more storage and arithmetic.

Since 1) any SDC algorithm could suffer numerical instability when some eigenvalues
are very close to the boundary of the selected region, 2) Newton iteration is faster but
somewhat less stable than the inverse free approach, and 3) testing stability is easy, we
propose to use the following 3 step hybrid algorithm for a general purpose program:

1. Use the SDC algorithm with Newton iteration. If it succeeds, stop.
2. Otherwise, divide the spectrum with the inverse free method. If it succeeds, stop.

3. Otherwise, use the QR algorithm.

This 3-step approach works by trying the fastest but least stable method first, falling back to
slower but more stable methods only if necessary. The same paradigm is also used in other
parallel algorithms [15]. If a fast parallel version of the QR algorithm [21] becomes available,
it would probably be faster than the inverse free algorithm and hence would obviate the
need for the second step listed above. But the inverse free method would still be of interest
if only a subset of the spectrum is desired (the QR algorithm necessarily computes the
entire spectrum), or for the generalized eigenproblem of a matrix pencil A — AB [4].

2.3 Spectral Transformation

Although the SDC algorithm with Newton iteration only divides the spectrum along the
pure imaginary axis, we can use Mobius and other simple transformations of the input
matrix A to divide along other more general curves. As a result, we can compute the
eigenvalues (and corresponding invariant subspace) inside any region defined as the inter-
section of regions defined by these curves. This is one of major attractions of this kind of
algorithms. Specifically, with Mobius transformation

az+ 0
yz+4]
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Figure 1: Different Geometric Regions for the Spectral Decomposition

where «, 3,7, are constants, and z is a complex variable, the eigenproblem Az = Az is
transformed to
al+ 0

YA+ §

Then if we apply the SDC algorithm to the matrix (yA + 61)7!(aA + BI), we can divide
the spectrum with respect to a region

al+ 3
" ('M +4 ) -0
For example, by computing the matrix sign function of (A+(r—u)I)= (= A+ (r+u)I), then
the SDC algorithm will divide the spectrum of A along a circle centered at u with radius
r. If A is real, and we choose p to be real, then all arithmetic will be real. Other more
general regions can be obtained by taking Ay as a polynomial function of A. For example,
by computing the matrix sign function of (A — al)?, we can divide the spectrum within a

“bowtie” shaped region centered at . Figure 1 illustrates the regions which the algorithms
can deal with assuming that A is real and the algorithms use only real arithmetic.

(0A+ e =

(vyA+ )

3 Implementation and Performance

In this section, we report the implementation and performance the SDC algorithm with
Newton iteration on distributed memory parallel machines, namely the Intel Delta and the
CM-5. Implementations on workstations and shared memory machines can be found in [3].

3.1 Implementation and Performance on Intel Touchstone Delta

The Intel Touchstone Delta system, located at the California Institute of Technology on
behalf of the Concurrent Supercomputing Consortium, is 16 x 32 mesh of i860 processors
with a wormhole routing interconnection network [27]. The communication characteristics
are described in [29].
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Figure 2: Performance of ScaLAPACK 1.0 subroutines on 256 (16 x16) PEs Intel Touchstone
Delta system.

Our implementation on Intel is built upon ScaLAPACK 1.0 (beta version) [11]. A
square block cyclic data decomposition scheme is used, which allows the routines to achieve
well balanced computations and to minimize communication costs. ScaLAPACK relies on
the Parallel Block BLAS (PB-BLAS) [12], which hides much of the interprocessor com-
munication and makes it possible to avoid explicit calls to communication routines. The
PB-BLAS itself is implemented on top of calls to the BLAS and to the Basic Linear Algebra
Communication Subroutines (BLACS) [19].

The PUMMA routines [13] provide the required matrix multiplication. The matrix
inversion is done in two steps. After the LU factorization has been computed, the upper
triangular U matrix is inverted, and A~! is obtained by substitution with L. Using blocked
operations leads to performance comparable to that obtained for LU factorization. The
implementation of the QR factorization with or without column pivoting is based on the
parallel algorithm presented by Coleman and Plassmann [14]. The QR factorization with
column pivoting has a much larger sequential component, processing one column at a time,
and needs to update the norms of the column vectors at each step. This makes using blocked
operations impossible and induces high synchronization overheads. However, as we will see,
the cost of this step remains negligible in comparison with the time spent in the Newton
iteration. The QR factorization without pivoting and the post- and pre-multiplication by
an orthogonal matrix do use blocked operations. Two plots in Figure 2 are the timing
and megaflops for the PUMMA package using the BLACS for matrix multiplication, and
ScalLAPACK subroutines for the matrix inversion, QR decomposition with and without
column pivoting.

To measure the efficiency of the algorithm for computing the spectral decomposition
with respect to the pure imaginary axis, we generated random matrices with normal distri-
bution (0,1). All computations were performed in real double precision arithmetic. Table
1 lists the CPU time and different megaflops rates. All the backward errors measured in
|F21]]1/]|Al|1 are on the order of 10712 to 10713, Tt took between 18 to 21 steps of Newton



Table 1: The SDC algorithm with Newton iteration on 256-node Intel Touchstone Delta
system.

n Timing | Mflops Mflops GEMM-Mflops | INV-Mflops
(seconds) | (total) | (per node) (per node) (per node)
1000 134.22 293.05 1.14 9.04 1.41
2000 | 448.69 808.28 3.16 15.51 3.88
3000 | 792.18 1340.60 5.23 19.95 6.43
4000 | 1436.14 | 1841.98 7.19 23.12 8.70

Table 2: Performance Profile on 256-node Intel Touchstone Delta system.

| n | Newton (%) | QRP(%) | QTAQ(%) | Total CPU |
1000 | 123.06(91%) | 6.87(5%) | 4.27(5%) 134.22
2000 | 413.95(92%) | 18.60(4%) | 16.13(4%) 448.69
3000 | 717.04(90%) | 36.76(5%) | 38.37(5%) 792.18
4000 | 1300.16(90%) | 63.13(3%) | 72.80(5%) |  1436.14

iteration to converge. From Table 1, we see that for matrices of order 4000, the algorithm
reached 7.19/23.12 =~ 31% efficiency with respect to PUMMA matrix multiplication, and
7.19/8.70 =~ 82% efficiency with respect to the underlying ScaLAPACK matrix inversion
subroutine. Table 2 is the profile of the CPU time. It is clear that the Newton iteration
(i.e., computing the matrix sign function) is most expensive, and takes about 90% of the
total running time. Figure 3 shows the performance of the algorithm as a function of matrix
size for different numbers of processors.

We also ran LAPACK driver routine DGEES (the standard serial QR algorithm) for
computing the Schur decomposition on one i860 processor. It took 592 seconds for a matrix
of order 600, or 9.1 megaflops. Assuming that the time scales like n®, one can predict that
for a matrix of order 4000, if the matrix was able to fit on a single node, then DGEES
would take about 48 hours to compute the desired spectral decomposition. In contrast,
the SDC algorithm would only take about 24 minutes. This is about 120 times faster. Of
course, we should note that DGEES actually computes a complete Schur decomposition with
the necessary reordering of the spectrum. Our algorithm only decomposes the spectrum
along the pure imaginary axis. In some applications, this may be what users want. If the
decomposition along a finer region or a complete Schur decomposition is desired, then the
cost of the SDC algorithm will be increased, though it is likely that the first dividing step
will take most of the time [9].

3.2 Implementation and Performance on the CM-5

Our implementation on 32 node CM-5 was carried out at the University of California at
Berkeley. Each CM-5 node contains a 33 MHz Sparc with an FPU and 64 KB cache, four
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Figure 3: Performance of the SDC algorithm with Newton iteration on the Intel Delta
system as a function of matrix size for different numbers of processors.

vector floating points units, and 32 MB of memory. The front end is a 33 HMz Sparc with
32 MB of memory. With the vector units, the peak 64-bit floating point performance is 128
megaflops per node (32 megaflops per vector unit). See [34] for more details.

The SDC algorithm is implemented in CM Fortran (CMF') version 2.1 — an implementa-
tion of Fortran 77 supplemented with array-processing extensions from the ANSI and ISO
standard Fortran 90. CMF arrays come in two flavors. They can be distributed across
CM processor memory (in some user defined layout) or allocated in normal column ma-
jor fashion on the front end alone. When the front end computer executes a CM Fortran
program, it performs serial operations on scalar data stored in its own memory, but sends
any instructions for array operations to the nodes. On receiving an instruction, each node
executes it on its own data. When necessary, CM nodes can access each other’s memory by
available communication mechanisms.

CMSSL (version 3.2) was used in our implementation. CMSSL provides data parallel
implementations of many standard linear algebra routines. Figure 4 summarizes the per-
formance of CMSSL routines underlying the implementation of the SDC algorithm. Matrix
inversion is performed by solving the system AX = [. The LU factors can be obtained
separately — to support Balzer’s and Byers’ scaling schemes to accelerate the convergence
of Newton iteration — and there is a routine for estimating ||A™!|| from the LU factors to
detect ill-conditioned intermediate matrices in the Newton iteration. The QR factorization
with or without pivoting uses standard Householder transformations. Column blocking can
be performed at the user’s discretion to improve load balance and increase parallelism. The
QR with pivoting routine is about half as fast as QR without pivoting. This is due in
part to the elimination of blocking techniques when pivoting, as columns must be processed
sequentially.

We tested the SDC algorithm with hybrid Newton-Schulz iteration for computing the
spectral decomposition along the pure imaginary axis. The entries of random test matrices
were uniformly distributed on [—1, 1]. We use the inequality [|A;41 —A;||1 < /7 as switching
criterion from the Newton iteration (5) to the Newton-Schulz iteration (6), i.e., we relaxed
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Figure 4: Performance of CMSSL 3.2 subroutines on 32 node CM-5 with vector units

Table 3: Performance of the SDC algorithm with Newton-Schultz iteration on a 32 node
CM-5 with vector units.

Actual Predicted GEMM- Inverse-
n Time Time Mflops Mflops Mflops Mflops
(seconds) | (seconds) | (total) | (per node) | (per node) | (per node)
256 25 16 30.72 0.96 12.57 0.69
512 58 45 106.88 3.34 22.14 2.62
768 99 88 203.84 6.37 30.32 5.05
1024 143 146 318.40 9.95 37.71 7.81
1280 231 222 405.44 12.67 42.06 10.64
1536 296 316 520.64 16.27 46.61 13.49
1792 423 430 579.84 18.12 51.47 16.16
2048 506 567 732.16 22.88 55.72 18.87
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the convergence condition ||A? — []| < 1 for the Newton-Schulz iteration to
147 =TIl = [ Ai(Ai = A7l = 20 Ai(Aigr = Ailx < 2Vl Adlly,

because this optimized performance over the test cases we ran.

Table 3 shows the CPU time in seconds and different megaflops rates. All backward
errors are on the order of 107!%. The Newton iteration took between 14 to 16 steps to
converge, and then took 2 steps of Newton-Schultz iteration. From the table, we see that
by comparing to CMSSL matrix multiplication, we obtain 32% to 45% efficiency with the
matrices sizes from 512 to 2048, even faster than the CMSSL matrix inverse subroutine.
After profiling the total CPU time, we found that about 83% of total time is spent on the
Newton iteration, 9% on the QR decomposition with pivoting, and 7.5% on the matrix
multiplication for the Newton-Schulz iteration and orthogonal transformations.

4 Execution time modeling

In this section, we derive an execution time model for the SDC algorithm. We will show
that the model confirms that the SDC algorithm scales well. The ratio of computation
to communication, the chief determinant of scalability, is comparable to that required by
current implementations of LU decomposition [11]. Since LU decomposition scales well to
a wide variety of machines [17], the SDC algorithm can also be expected to scale well.

4.1 Detalls of the execution time model

Our model is based on the actual operation counts of the ScaLAPACK implementation and
the following problem parameters and (measured) machine parameters:

Matrix size,

Number of processors,

Time required to send a zero length message from one processor to another,
Time required to send one double word from one processor to another,

= & o " 3

Time required per BLLAS3 floating point operation.

The models for each of the building blocks, shown in Table 4, were created by counting
the actual operations in the critical path. Each of these building block models were validated
against the performance data shown in Figures 2 and 4.

In Table 5, the predicted running time of each of the steps of the algorithm is displayed.
Summing the times in Table 5 yields:

3 2
Total time = 45%7 + (160 + 23 1g p)nar + (90 + 401g p) %ﬂ. (7)

Using the measured machine parameters given in Table 6 with equation (7) yields the
predicted times on CM-5 (Table 3) and the Intel Delta system (Table 7). As Table 7 shows,
our model underestimates the actual time on the Delta by no more than 30% for the problem
and machine sizes listed. Table 3 shows that our model matches the performance on the
CM-5 to within 25% for all problem sizes except the smallest, i.e. n = 256.



Table 4: Models for each of the building blocks

Computation Communication Cost
Task Cost latency bandwidth=!
2
LU %%’Y (6+1gp)nex (3+1—g;p)n—pﬁ
2
TRI %%7 2nQY (2—|—%lgp)n—pﬁ
Matrix 3 lg p lep. n2
multiply S +vea | 0+50) 50
31 2
QR %%7 3nlgpty _fpn_p
Householder 3 2
. . - _l
application 7 VP gp)

Table 5: Model of the SDC algorithm with Newton iteration

20 matrix | QR | 2 Householder Total
inversions applications
Computation cost x2Z 4 4 45
p i 3
Latency cost Xno 1604+20lgp | 3lgp 1604231g p
y
. 2
Bandwidth cost x L= 904351gp | Slgp 4 90+401gp
D 4

Table 6: Machine parameters

Model Performance measured values pus
Parameter | Description limited by CM-5 | Delta

~ time per BLAS 3 flop | peak flop rate 1/90 | 1/34

o message latency comm. software | 150 157

08 bandwidth~! comm. hardware | 1.62 1.67

12
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Table 7: Actual and predicted performance of the SDC algorithm with Newton iteration
for the spectral decomposition along the pure imaginary axis

Delta 8 x 16 PEs 16 x 16 PEs 16 x 32 PEs

n actual | predicted actual | predicted actual predicted
time (sec) | time (sec) || time (sec) | time (sec) || time (sec) | time ( sec)

1000 - - 134 102 110 93
2000 502 402 448 320 336 269
3000 1037 921 792 687 576 542
4000 - - 1436 1231 1014 927
8000 - - - - 4268 3910

Table 8 compares the execution time cost to divide the spectrum once by the SDC
algorithm with the cost for LU decomposition. The ratio of SDC to LU costs in each of the
three categories, the cost of a flop, message initiation cost and inverse bandwidth cost, is
shown in the third column and also displayed here:

6 1604+ 231gp 90+ 401gp
"o 6+lgp T 3+ Llgp

These cost ratios vary slowly with the number of processors. For example, the cost of
splitting the spectrum once with the SDC algorithm on 1000 processors is 67 times the flop
cost in LU, 24 times the message initiation cost in LU and 90 times the inverse bandwidth
cost in LU. At the extremes, p = 1 and p = oo, the cost raios are < 67,27,30 >, and
< 67,23,160 > respectively. These cost ratios show that the SDC algorithm will scale
almost as well as the LU decomposition across most computers.

The performance figures in Table 6 are all measured by an independent program, except
for the CM-5 Level 3 BLAS performance. The communication performance figures for the
Delta in Table 6 are from a report by Littlefield! [29]. The communication performance
figures for the CM-5 are as measured by Whaley? [35]. The computation performance for
the Delta is from the LINPACK benchmark[17] for a one processor Delta. There is no entry
for a one processor CM-5 in the LINPACK benchmark, so + for the CM-5 in Table 6 is
chosen from our own experience.

4.2 Discrepancies between the model and actual times

There are numerous sources of error in our model. The model does not count all floating
point operations. The number of processor rows and columns and the block size affect
performance and ignoring them therefore contributes to the total error. Communications
do not exactly fit the linear model (a + nf3), nor are matrix multiply costs constant per
flop.

'The BLACS use protocol 2, and the communication pattern most closely resembles the “shift” timings.
2t is from Table 8 and 3 is from Table 5 in [35].
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Table 8: The scalability of the SDC algorithm versus LU decomposition

SDC LU SDC/ LU
Computation Cost 45”77 %%7 67
Latency cost (1604231g p)nv (6+1g p)ney %ﬂl
. n> Igp, n2 90+40Ig(p
Bandwidth cost (90-|—401gp)\/2—?ﬁ (3+5 )\/z_?ﬁ 5 Ly (p)

The model assumes that exactly 20 Newton iterations are required, wheras the actual
number varied from 18 to 22. It is based on QR decomposition without pivoting, but the
code has to use the QR decomposition with pivoting. On the CM-5, timings are from the
Newton-Shultz iteration because that the latter is slightly more efficient, but the model is
uniformally based on the Newton iteration.

We have a more detailed model which matches the performance better than the one
shown here. The detailed model shows that algorithmic discrepancies and load imbalance
contribute the largest errors for large problems (n > 512) while uncounted operations
contribute the largest error for small problems (n < 512).

5 XI : A Graphical User Interface to SDC

To take advantage of the graphical nature of the spectral decomposition process of the SDC
algorithm, a graphical user interface has been implemented. Written in C and based on
X11R5’s standard Xlib library, the Xt toolkit and MIT’s Athena widget set, it has been
nicknamed XI for “X11 Interface”. The programmer’s interface to XI consists of seven
subroutines designed independently of any specific SDC implementation. Thus XI can be
attached to any SDC code. At present, it is in use with the CM-5 CMF implementation
and Fortran 77 version of the SDC algorithm. Figure 5 shows the coupling of the SDC code
and the XI library of subroutines.

Basically, the SDC code calls an XI routine which handles all interaction with the user
and returns only when it has the next request for a parallel computation. The SDC code
processes this request on the parallel engine, and if necessary calls another XI routine to
inform the user of the computational results. If the user had selected to split the spectrum,
then at this point the size of the highlighted region, and the error bound on the computation
(along with some performance information) is reported, and the user is given the choice of
confirming or refusing the split. Appropriate action is taken depending on the choice. This
process is repeated until the user decides to terminate the program.

All data structures pertaining to the matrix decomposition process are managed by
XI. A binary tree records the size and status (solved/not solved) of each diagonal block
corresponding to a spectral region, the error bounds of each split, and other information.
Having the X11 interface manage the decomposition data frees the programmer of these
responsibilities and encapsulates the decomposition process. The programmer obtains any
useful information via the interface subroutines.

Figure 6 pictures a sample session of the user interface on the CM-5 with a matrix of



Figure 6: A sample zsdc session
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order 500. The central window (called the “spectrum window”) represents the region of the
complex plane indicated by the axes. Its title — “xsdc :: Eigenvalues and Schur Vectors”
— indicates that the task is to compute eigenvalues and Schur vectors for the underline
matrix. The lines on the spectrum window (other than the axes) are the result of spectral
divide-and-conquer, while the shading indicates that the “bowtie” region of the complex
plane is currently selected for further analysis. The other windows show the details of the
process.

The buttons at the top control 1/O, the appearance of the spectrum window, and algo-
rithmic choices:

e File lets one save the matrix, start on a new matrix, or quit.

e Zoom lets one navigate around the complex plane by zooming in or out on part of the
spectrum window.

e Toggle turns on or off the features of the spectrum window (for example the axes,
Gershgorin disks, eigenvalues).

e Function lets one modify the algorithm, or display details about the progress being
made.

The buttons at the bottom are used in splitting the spectrum. For example clicking
on Right halfplane and then clicking at any point on the spectrum window will split the
spectrum into two halfplanes at that point, with the right halfplane selected for further
division. The Split Information window keeps track of the matrix splitting process.
The Matrix Information window displays the status of the matrix decomposition process,
where each of the three entries corresponds to a spectral region and a square diagonal block
of the 3 x 3 block upper triangular matrix, and informs us of the block’s size, whether its
eigenvalues (eigenvectors, Schur vectors) have been computed or not, and the maximum
error bound encountered. The listed eigenvalues can be plotted on the spectrum at the
user’s request.

The user may select any region of the complex plane (and hence any sub-matrix on the
diagonal) for further decomposition by clicking the pointer in the desired region. Once a
block is small enough, the user may choose to solve it via the Function button at the top
of the spectrum window.

6 Concluding Remarks

Our implementation of the SDC algorithm with Newton iteration uses only highly efficient
matrix computation kernels, which are available in the public domain and from distributed
memory parallel computer vendors. The performance attained is encouraging. This ap-
proach merits consideration for other numerical algorithms. The object oriented user inter-
face XI provides a paradigm for use in the future to design a more user friendly interface in
the massively parallel computing environment. We note that all the approaches discussed
here can be extended to compute the both right and left deflating subspaces of a regular
matrix pencil A — AB.
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As the spectrum is repeatedly partitioned in a divide-and-conquer fashion, there is
obviously task parallelism available because of the independent submatrices that arise, as
well as the data parallel-like matrix operations considered in this paper. Analysis in [9]
indicates that this task parallelism can contribute at most a small constant factor speedup,
since most of the work is at the root of the divide-and-conquer tree. This can simplify the
implementation.
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