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Abstract

This paper discusses the design of linear algebra libraries for high performance computers.

Particular emphasis is placed on the development of scalable algorithms for MIMD distributed

memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK

libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version

of LAPACK currently under development. The importance of block-partitioned algorithms in

reducing the frequency of data movement between di�erent levels of hierarchical memory is

stressed. The use of such algorithms helps reduce the message startup costs on distributed

memory concurrent computers. Other key ideas in our approach are the use of distributed

versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building

blocks, and the use of Basic Linear Algebra Communication Subprograms (BLACS) as com-

munication building blocks. Together the distributed BLAS and the BLACS can be used to

construct higher-level algorithms, and hide many details of the parallelism from the application

developer.

The block-cyclic data distribution is described, and adopted as a good way of distributing

block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations

are presented, and optimization issues associated with the implementation of the LU factoriza-

tion algorithm on distributed memory concurrent computers are discussed, together with its

performance on the Intel Delta system. Finally, approaches to the design of library interfaces

are reviewed.
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1. Introduction

The increasing availability of advanced-architecture computers is having a very signi�cant ef-

fect on all spheres of scienti�c computation, including algorithm research and software de-

velopment in numerical linear algebra. Linear algebra|in particular, the solution of linear

systems of equations|lies at the heart of most calculations in scienti�c computing. This paper
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discusses some of the recent developments in linear algebra designed to exploit these advanced-

architecture computers. Particular attention will be paid to dense factorization routines, such

as the Cholesky and LU factorizations, and these will be used as examples to highlight the most

important factors that must be considered in designing linear algebra software for advanced-

architecture computers. We use these factorization routines for illustrative purposes not only

because they are relatively simple, but also because of their importance in several scienti�c

and engineering applications that make use of boundary element methods. These applications

include electromagnetic scattering and computational 
uid dynamics problems.

Much of the work in developing linear algebra software for advanced-architecture computers

is motivated by the need to solve large problems on the fastest computers available. In this

paper, we focus on four basic issues: (1) the motivation for the work; (2) the development of

standards for use in linear algebra and the building blocks for a library; (3) aspects of algorithm

design and parallel implementation; and (4) future directions for research.

For the past 15 years or so, there has been a great deal of activity in the area of algorithms

and software for solving linear algebra problems. The linear algebra community has long

recognized the need for help in developing algorithms into software libraries, and several years

ago, as a community e�ort, put together a de facto standard for identifying basic operations

required in linear algebra algorithms and software. The hope was that the routines making up

this standard, known collectively as the Basic Linear Algebra Subprograms (BLAS), would be

e�ciently implemented on advanced-architecture computers by many manufacturers, making

it possible to reap the portability bene�ts of having them e�ciently implemented on a wide

range of machines. This goal has been largely realized.

The key insight of our approach to designing linear algebra algorithms for advanced archi-

tecture computers is that the frequency with which data are moved between di�erent levels of

the memory hierarchy must be minimized in order to attain high performance. Thus, our main

algorithmic approach for exploiting both vectorization and parallelism in our implementations

is the use of block-partitioned algorithms, particularly in conjunction with highly-tuned kernels

for performing matrix-vector and matrix-matrix operations (the Level 2 and 3 BLAS). In gen-

eral, the use of block-partitioned algorithms requires data to be moved as blocks, rather than as

vectors or scalars, so that although the total amount of data moved is unchanged, the latency

(or startup cost) associated with the movement is greatly reduced because fewer messages are

needed to move the data.

A second key idea is that the performance of an algorithm can be tuned by a user by varying

the parameters that specify the data layout. On shared memory machines, this is controlled

by the block size, while on distributed memory machines it is controlled by the block size and

the con�guration of the logical process mesh, as described in more detail in Section 5.

iii



In Section 1, we �rst give an overview of some of the major software projects aimed at

solving dense linear algebra problems. Next, we describe the types of machine that bene�t

most from the use of block-partitioned algorithms, and discuss what is meant by high-quality,

reusable software for advanced-architecture computers. Section 2 discusses the role of the BLAS

in portability and performance on high-performance computers. We discuss the design of these

building blocks, and their use in block-partitioned algorithms, in Section 3. Section 4 focuses

on the design of a block-partitioned algorithm for LU factorization, and Sections 5, 6, and 7

use this example to illustrate the most important factors in implementing dense linear algebra

routines on MIMD, distributed memory, concurrent computers. Section 5 deals with the issue

of mapping the data onto the hierarchical memory of a concurrent computer. The layout of

an application's data is crucial in determining the performance and scalability of the parallel

code. In Sections 6 and 7, details of the parallel implementation and optimization issues are

discussed. Section 8 presents some future directions for investigation.

1.1. Dense Linear Algebra Libraries

Over the past twenty-�ve years, the �rst author has been directly involved in the develop-

ment of several important packages of dense linear algebra software: EISPACK, LINPACK,

LAPACK, and the BLAS. In addition, both authors are currently involved in the development

of ScaLAPACK, a scalable version of LAPACK for distributed memory concurrent computers.

In this section, we give a brief review of these packages|their history, their advantages, and

their limitations on high-performance computers.

1.1.1. EISPACK

EISPACK is a collection of Fortran subroutines that compute the eigenvalues and eigenvectors

of nine classes of matrices: complex general, complex Hermitian, real general, real symmetric,

real symmetric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, and

generalized real symmetric matrices. In addition, two routines are included that use singular

value decomposition to solve certain least-squares problems. EISPACK is primarily based on a

collection of Algol procedures developed in the 1960s and collected by J. H. Wilkinson and C.

Reinsch in a volume entitled Linear Algebra in the Handbook for Automatic Computation [51]

series. Since the release of EISPACK in 1972, over ten thousand copies of the collection have

been distributed worldwide.

1.1.2. LINPACK

LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and

linear least-squares problems. The package solves linear systems whose matrices are general,
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banded, symmetric inde�nite, symmetric positive de�nite, triangular, and tridiagonal square.

In addition, the package computes the QR and singular value decompositions of rectangular

matrices and applies them to least-squares problems.

LINPACK is organized around four matrix factorizations: LU factorization, pivoted Cholesky

factorization, QR factorization, and singular value decomposition. The term LU factorization

is used here in a very general sense to mean the factorization of a square matrix into a lower

triangular part and an upper triangular part, perhaps with pivoting. These factorizations will

be treated at greater length later, when the actual LINPACK subroutines are discussed. But

�rst a digression on organization and factors in
uencing LINPACK's e�ciency is necessary.

LINPACK uses column-oriented algorithms to increase e�ciency by preserving locality of

reference. This means that if a program references an item in a particular block, the next

reference is likely to be in the same block. By column orientation we mean that the LINPACK

codes always reference arrays down columns, not across rows. This works because Fortran

stores arrays in column major order.

Another important in
uence on the e�ciency of LINPACK is the use of the Level 1 BLAS.

These BLAS are a small set of routines that may be coded to take advantage of the special

features of the computers on which LINPACK is being run. For most computers, this simply

means producing machine-language versions. However, the code can also take advantage of

more exotic architectural features, such as vector operations.

Further details about the BLAS are presented in Section 2.

1.1.3. LAPACK

LAPACK [14] provides routines for solving systems of simultaneous linear equations, least-

squares solutions of linear systems of equations, eigenvalue problems, and singular value prob-

lems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur)

are also provided, as are related computations such as reordering of the Schur factorizations

and estimating condition numbers. Dense and banded matrices are handled, but not general

sparse matrices. In all areas, similar functionality is provided for real and complex matrices,

in both single and double precision.

The original goal of the LAPACK project was to make the widely used EISPACK and

LINPACK libraries run e�ciently on shared-memory vector and parallel processors. On these

machines, LINPACK and EISPACK are ine�cient because their memory access patterns dis-

regard the multilayered memory hierarchies of the machines, thereby spending too much time

moving data instead of doing useful 
oating-point operations. LAPACK addresses this problem

by reorganizing the algorithms to use block matrix operations, such as matrix multiplication,

in the innermost loops [3, 14]. These block operations can be optimized for each architec-
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ture to account for the memory hierarchy [2], and so provide a transportable way to achieve

high e�ciency on diverse modern machines. Here we use the term \transportable" instead of

\portable" because, for fastest possible performance, LAPACK requires that highly optimized

block matrix operations be already implemented on each machine. In other words, the cor-

rectness of the code is portable, but high performance is not|if we limit ourselves to a single

Fortran source code.

LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all the

capabilities of these two packages and much more besides. LAPACK improves on LINPACK

and EISPACK in four main respects: speed, accuracy, robustness and functionality. While

LINPACK and EISPACK are based on the vector operation kernels of the Level 1 BLAS,

LAPACK was designed at the outset to exploit the Level 3 BLAS |a set of speci�cations

for Fortran subprograms that do various types of matrix multiplication and the solution of

triangular systems with multiple right-hand sides. Because of the coarse granularity of the

Level 3 BLAS operations, their use tends to promote high e�ciency on many high-performance

computers, particularly if specially coded implementations are provided by the manufacturer.

1.1.4. ScaLAPACK

The ScaLAPACK software library, scheduled for completion by the end of 1994, will extend

the LAPACK library to run scalably on MIMD, distributed memory, concurrent computers

[10, 11]. For such machines the memory hierarchy includes the o�-processor memory of other

processors, in addition to the hierarchy of registers, cache, and local memory on each processor.

Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order

to minimize the frequency of data movement between di�erent levels of the memory hierarchy.

The fundamental building blocks of the ScaLAPACK library are distributed memory versions of

the Level 2 and Level 3 BLAS, and a set of Basic Linear Algebra Communication Subprograms

(BLACS) [16, 26] for communication tasks that arise frequently in parallel linear algebra com-

putations. In the ScaLAPACK routines, all interprocessor communication occurs within the

distributed BLAS and the BLACS, so the source code of the top software layer of ScaLAPACK

looks very similar to that of LAPACK.

We envisage a number of user interfaces to ScaLAPACK. Initially, the interface will be

similar to that of LAPACK, with some additional arguments passed to each routine to specify

the data layout. Once this is in place, we intend to modify the interface so the arguments to

each ScaLAPACK routine are the same as in LAPACK. This will require information about

the data distribution of each matrix and vector to be hidden from the user. We are also

experimenting with object-based interfaces for LAPACK and ScaLAPACK, with the goal of

developing interfaces compatible with Fortran 90 [10] and C++ [24].
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1.2. Target Architectures

The EISPACK and LINPACK software libraries were designed for supercomputers used in the

1970s and early 1980s, such as the CDC-7600, Cyber 205, and Cray-1. These machines featured

multiple functional units pipelined for good performance [40]. The CDC-7600 was basically a

high-performance scalar computer, while the Cyber 205 and Cray-1 were early vector computers.

The development of LAPACK in the late 1980s was intended to make the EISPACK and

LINPACK libraries run e�ciently on shared memory, vector supercomputers. The ScaLAPACK

software library will extend the use of LAPACK to distributed memory concurrent supercom-

puters. The development of ScaLAPACK began in 1991 and is expected to be completed by

the end of 1994.

The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of

block-partitioned algorithms to minimize data movement between di�erent levels in hierarchical

memory. Thus, the ideas discussed in this paper for developing a library for dense linear

algebra computations are applicable to any computer with a hierarchical memory that (1)

imposes a su�ciently large startup cost on the movement of data between di�erent levels

in the hierarchy, and for which (2) the cost of a context switch is too great to make �ne

grain size multithreading worthwhile. Our target machines are, therefore, medium and large

grain size advanced-architecture computers. These include \traditional" shared memory, vector

supercomputers, such as the Cray Y-MP and C90, and MIMD distributed memory concurrent

supercomputers, such as the Intel Paragon, and Thinking Machines' CM-5, and the more

recently announced IBM SP1 and Cray T3D concurrent systems. Since these machines have

only very recently become available, most of the ongoing development of the ScaLAPACK

library is being done on a 128-node Intel iPSC/860 hypercube and on the 520-node Intel Delta

system.

Future advances in compiler and hardware technologies in the mid to late 1990s are expected

to make multithreading a viable approach for masking communication costs. Since the blocks

in a block-partitioned algorithm can be handled by separate threads, our approach will still be

applicable on machines that exploit medium and coarse grain size multithreading.

2. The BLAS as the Key to Portability

At least three factors a�ect the performance of portable Fortran code.

1. Vectorization. Designing vectorizable algorithms in linear algebra is usually straight-

forward. Indeed, for many computations there are several variants, all vectorizable, but

with di�erent characteristics in performance (see, for example, [15]). Linear algebra algo-

rithms can approach the peak performance of many machines|principally because peak
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performance depends on some form of chaining of vector addition and multiplication op-

erations, and this is just what the algorithms require. However, when the algorithms are

realized in straightforward Fortran 77 code, the performance may fall well short of the

expected level, usually because vectorizing Fortran compilers fail to minimize the number

of memory references|that is, the number of vector load and store operations.

2. Data movement. What often limits the actual performance of a vector, or scalar,


oating-point unit is the rate of transfer of data between di�erent levels of memory in

the machine. Examples include the transfer of vector operands in and out of vector

registers, the transfer of scalar operands in and out of a high-speed scalar processor, the

movement of data between main memory and a high-speed cache or local memory, paging

between actual memory and disk storage in a virtual memory system, and interprocessor

communication on a distributed memory concurrent computer.

3. Parallelism. The nested loop structure of most linear algebra algorithms o�ers con-

siderable scope for loop-based parallelism. This is the principal type of parallelism that

LAPACK and ScaLAPACK presently aim to exploit. On shared memory concurrent com-

puters, this type of parallelism can sometimes be generated automatically by a compiler,

but often requires the insertion of compiler directives. On distributed memory concur-

rent computers, data must be moved between processors. This is usually done by explicit

calls to message passing routines, although parallel language extensions such as Coherent

Parallel C [30] and Split-C [13] do the message passing implicitly.

The question arises, \How can we achieve su�cient control over these three factors to obtain

the levels of performance that machines can o�er?" The answer is through use of the BLAS.

There are now three levels of BLAS:

Level 1 BLAS [41]: for vector operations, such as y  �x+ y

Level 2 BLAS [18]: for matrix-vector operations, such as y  �Ax+ �y

Level 3 BLAS [17]: for matrix-matrix operations, such as C  �AB + �C.

Here, A, B and C are matrices, x and y are vectors, and � and � are scalars.

The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance:

they perform an insigni�cant fraction of the computation, and they cannot achieve high e�-

ciency on most modern supercomputers.

The Level 2 BLAS can achieve near-peak performance on many vector processors, such as a

single processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However, on other vector
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Table 1: Speed (Mega
ops) of Level 2 and Level 3 BLAS Operations on a CRAY Y-MP. All
matrices are of order 500; U is upper triangular.

Number of processors: 1 2 4 8

Level 2: y  �Ax+ �y 311 611 1197 2285

Level 3: C  �AB + �C 312 623 1247 2425

Level 2: x Ux 293 544 898 1613

Level 3: B  UB 310 620 1240 2425

Level 2: x U�1x 272 374 479 584

Level 3: B  U�1B 309 618 1235 2398

Peak 333 666 1332 2664

processors such as a CRAY-2 or an IBM 3090 VF, the performance of the Level 2 BLAS is

limited by the rate of data movement between di�erent levels of memory.1

The Level 3 BLAS overcome this limitation. This third level of BLAS performs O(n3)


oating-point operations on O(n2) data, whereas the Level 2 BLAS perform only O(n2) op-

erations on O(n2) data. The Level 3 BLAS also allow us to exploit parallelism in a way that

is transparent to the software that calls them. While the Level 2 BLAS o�er some scope for

exploiting parallelism, greater scope is provided by the Level 3 BLAS, as Table 1 illustrates.

3. Block Algorithms and Their Derivation

It is comparatively straightforward to recode many of the algorithms in LINPACK and EIS-

PACK so that they call Level 2 BLAS. Indeed, in the simplest cases the same 
oating-point

operations are done, possibly even in the same order: it is just a matter of reorganizing the

software. To illustrate this point, we consider the Cholesky factorization algorithm used in the

LINPACK routine SPOFA, which factorizes a symmetric positive de�nite matrix as A = UTU .

We consider Cholesky factorization because the algorithm is simple, and no pivoting is required.

In Section 4 we shall consider the slightly more complicated example of LU factorization.

Suppose that after j � 1 steps the block A00 in the upper lefthand corner of A has been

factored as A00 = UT
00
U00. The next row and column of the factorization can then be computed

by writing A = UTU as

0
BB@

A00 bj A02

: ajj cTj

: : A22

1
CCA =

0
BB@

UT
00

0 0

vTj ujj 0

UT
02

wj UT
22

1
CCA

0
BB@

U00 vj U02

0 ujj wT
j

0 0 U22

1
CCA

1Machines such as the CRAY Y-MP can perform two loads, a store, and a multiply-add operation all in one

cycle, whereas the CRAY-2 and IBM 3090 VF cannot. For further details of how the performance of the BLAS

are a�ected by such factors see [19].

ix



where bj, cj, vj , and wj are column vectors of length j�1, and ajj and ujj are scalars. Equating

coe�cients of the jth column, we obtain

bj = UT
00
vj

ajj = vTj vj + u2jj:

Since U00 has already been computed, we can compute vj and ujj from the equations

UT
00
vj = bj

u2jj = ajj � vTj vj :

The body of the code of the LINPACK routine SPOFA that implements the above method

is shown in Figure 1. The same computation recoded in \LAPACK-style" to use the Level 2

BLAS routine STRSV (which solves a triangular system of equations) is shown in Figure 2.

The call to STRSV has replaced the loop over K which made several calls to the Level 1 BLAS

routine SDOT. (For reasons given below, this is not the actual code used in LAPACK | hence

the term \LAPACK-style".)

This change by itself is su�cient to result in large gains in performance on a number of

machines|for example, from 72 to 251 mega
ops for a matrix of order 500 on one processor

of a CRAY Y-MP. Since this is 81% of the peak speed of matrix-matrix multiplication on this

processor, we cannot hope to do very much better by using Level 3 BLAS.

We can, however, restructure the algorithm at a deeper level to exploit the faster speed of the

Level 3 BLAS. This restructuring involves recasting the algorithm as a block algorithm|that

is, an algorithm that operates on blocks or submatrices of the original matrix.

3.1. Deriving a Block Algorithm

To derive a block form of Cholesky factorization, we partition the matrices as shown in Figure

4, in which the diagonal blocks of A and U are square, but of di�ering sizes. We assume that

the �rst block has already been factored as A00 = UT
00
U00, and that we now want to determine

the second block column of U consisting of the blocks U01 and U11. Equating submatrices in

the second block of columns, we obtain

A01 = UT
00
U01

A11 = UT
01
U01 + UT

11
U11:
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Table 2: Speed (Mega
ops) of Cholesky Factorization A = UTU for n = 500

IBM 3090 VF, CRAY Y-MP, CRAY Y-MP,
1 proc. 1 proc. 8 proc.

j-variant: LINPACK 23 72 72
j-variant: using Level 2 BLAS 24 251 378
j-variant: using Level 3 BLAS 49 287 1225

Hence, since U00 has already been computed, we can compute U01 as the solution to the equation

UT
00
U01 = A01

by a call to the Level 3 BLAS routine STRSM; and then we can compute U11 from

UT
11
U11 = A11 � UT

01
U01:

This involves �rst updating the symmetric submatrix A11 by a call to the Level 3 BLAS

routine SSYRK, and then computing its Cholesky factorization. Since Fortran 77 does not

allow recursion, a separate routine must be called (using Level 2 BLAS rather than Level 3),

named SPOTF2 in Figure 3. In this way, successive blocks of columns of U are computed.

The LAPACK-style code for the block algorithm is shown in Figure 3. This code runs at 49

mega
ops on an IBM 3090, more than double the speed of the LINPACK code. On a CRAY

Y-MP, the use of Level 3 BLAS squeezes a little more performance out of one processor, but

makes a large improvement when using all 8 processors. Table 2 summarizes the results.

3.2. Examples of Block Algorithms in LAPACK

Having discussed in detail the derivation of one particular block algorithm, we now describe

examples of the performance achieved with two well-known block algorithms: LU and Cholesky

factorizations. No extra 
oating-point operations nor extra working storage are required for

either of these simple block algorithms. (See Gallivan et al. [32] and Dongarra et al. [19] for

surveys of algorithms for dense linear algebra on high-performance computers.)

Table 3 illustrates the speed of the LAPACK routine for LU factorization of a real matrix,

SGETRF in single precision on CRAY machines, and DGETRF in double precision on all other

machines. Thus, 64-bit 
oating-point arithmetic is used on all machines tested. A block size

of 1 means that the unblocked algorithm is used, since it is faster than { or at least as fast as

{ a block algorithm. In all cases, results are reported for the block size which is mostly nearly

optimal over the range of problem sizes considered.

LAPACK is designed to give high e�ciency on vector processors, high-performance \su-
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do j = 0, n-1

info = j + 1

s = 0.0e0

jm1 = j

do k = 0, jm1 - 1

t = a(k,j) - sdot(k,a(0,k),1,a(0,j),1)

t = t/a(k,k)

a(k,j) = t

s = s + t*t

end do

s = a(j,j) - s

if (s .le. 0.0e0) go to 40

a(j,j) = sqrt(s)

end do

Figure 1: The body of the LINPACK routine SPOFA for Cholesky factorization.

do j = 0, n - 1

call strsv( 'upper', 'transpose', 'non-unit', j, a, lda, a(0,j), 1 )

s = a(j,j) - sdot( j, a(0,j), 1, a(0,j), 1 )

if ( s .le. zero ) go to 20

a(j,j) = sqrt( s )

end do

Figure 2: The body of the \LAPACK-style" routine SPOFA for Cholesky factorization.

do j = 0, n-1, nb

jb = min( nb, n-j )

call strsm( 'left', 'upper', 'transpose', 'non-unit', j, jb, one,

a, lda, a(0,j), lda )

call ssyrk( 'upper', 'transpose', jb, j, -one, a(0,j), lda, one,

a(j,j), lda )

call spotf2( 'upper', jb, a(j,j), lda, info )

if( info .ne. 0 ) go to 20

end do

Figure 3: The body of the \LAPACK-style" routine SPOFA for block Cholesky factorization.
In this code fragment, nb denotes the width of the blocks.
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A00 A01 A02

A01
T A11 A12

A02
T A12

T A22

=

U00
T 0 0

U01
T U11

T 0

U02
T U12

T U22
T

∗

U00 U01 U02

0 U11 U12

0 0 U22

Figure 4: Partitioning of A, UT , and U into blocks. It is assumed that the �rst block has
already been factored as A00 = UT

00
U00, and we next want to determine the block column

consisting of U01 and U11. Note that the diagonal blocks of A and U are square matrices.

Table 3: Speed (Mega
ops) of SGETRF/DGETRF for Square Matrices of Order n

Machine No. of Block Values of n
processors size 100 200 300 400 500

IBM RISC/6000-530 1 32 19 25 29 31 33
Alliant FX/8 8 16 9 26 32 46 57
IBM 3090J VF 1 64 23 41 52 58 63
Convex C-240 4 64 31 60 82 100 112
CRAY Y-MP 1 1 132 219 254 272 283
CRAY-2 1 64 110 211 292 318 358
Siemens/Fujitsu VP 400-EX 1 64 46 132 222 309 397
NEC SX2 1 1 118 274 412 504 577
CRAY Y-MP 8 64 195 556 920 1188 1408

perscalar" workstations, and shared memory multiprocessors. LAPACK in its present form is

less likely to give good performance on other types of parallel architectures (for example, mas-

sively parallel SIMD machines, or MIMD distributed memory machines), but the ScaLAPACK

project, described in Section 1.1.4, is intended to adapt LAPACK to these new architectures.

LAPACK can also be used satisfactorily on all types of scalar machines (PCs, workstations,

mainframes).

Table 4 gives similar results for Cholesky factorization, extending the results given in Table 2.

LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices. The

LINPACK algorithms can easily be restructured to use Level 2 BLAS, though restructuring

has little e�ect on performance for matrices of very narrow bandwidth. It is also possible to

use Level 3 BLAS, at the price of doing some extra work with zero elements outside the band

[22]. This process becomes worthwhile for large matrices and semi-bandwidth greater than 100

or so.
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Table 4: Speed (Mega
ops) of SPOTRF/DPOTRF for Matrices of Order n. Here UPLO =
`U', so the factorization is of the form A = UTU .

Machine No. of Block Values of n
processors size 100 200 300 400 500

IBM RISC/6000-530 1 32 21 29 34 36 38
Alliant FX/8 8 16 10 27 40 49 52
IBM 3090J VF 1 48 26 43 56 62 67
Convex C-240 4 64 32 63 82 96 103
CRAY Y-MP 1 1 126 219 257 275 285
CRAY-2 1 64 109 213 294 318 362
Siemens/Fujitsu VP 400-EX 1 64 53 145 237 312 369
NEC SX2 1 1 155 387 589 719 819
CRAY Y-MP 8 32 146 479 845 1164 1393

4. LU Factorization

In this section, we �rst discuss the uses of dense LU factorization in several �elds. We next

develop a block-partitioned version of the k, or right-looking, variant of the LU factorization

algorithm. In subsequent sections, the parallelization of this algorithm is described in detail in

order to highlight the issues and considerations that must be taken into account in developing

an e�cient, scalable, and transportable dense linear algebra library for MIMD, distributed

memory, concurrent computers.

Dense matrix computations, such as LU factorization, have important applications, as dis-

cussed in a recent survey by Edelman [29]. A major source of large dense linear systems is

the solution of problems by the boundary element method. In this method integral equations

de�ned on the boundary of a region of interest are used to compute some �nal desired quantity

in three-dimensional space. The dense linear systems generated are commonly solved using LU

factorization. Electromagnetic scattering studies make use of the boundary element method,

which is usually referred to as the method of moments in this context [35, 50]. This approach

is used in the design of aircraft with small radar cross-sections, and in the design of satellite

antennae. Boundary element methods are also used in the study of 
uid 
ows, and here the

variant of the boundary element method used is called the panel method [37, 38].

4.1. Derivation of a Block Algorithm for LU Factorization

Suppose the M �N matrix A is partitioned as shown in Figure 5, and we seek a factorization

A = LU , where the partitioning of L and U is also shown in Figure 5. Then we may write,

L00U00 = A00 (1)
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A00

A10 A11

A01

=

L00

L10 L11

0

∗

U00

U110

U01

Figure 5: Block LU factorization of the partitioned matrix A. A00 is r� r, A01 is r� (N � r),
A10 is (M � r)� r, and A11 is (M � r) � (N � r). L00 and L11 are lower triangular matrices
with 1's on the main diagonal, and U00 and U11 are upper triangular matrices.

L10U00 = A10 (2)

L00U01 = A01 (3)

L10U01 + L11U11 = A11 (4)

where A00 is r � r, A01 is r � (N � r), A10 is (M � r)� r, and A11 is (M � r)� (N � r). L00

and L11 are lower triangular matrices with 1s on the main diagonal, and U00 and U11 are upper

triangular matrices.

Equations 1 and 2 taken together perform an LU factorization on the �rst M � r panel of

A (i.e., A00 and A10). Once this is completed, the matrices L00, L10, and U00 are known, and

the lower triangular system in Eq. 3 can be solved to give U01. Finally, we rearrange Eq. 4 as,

A0

11
= A11 � L10U01 = L11U11 (5)

From this equation we see that the problem of �nding L11 and U11 reduces to �nding the LU

factorization of the (M � r) � (N � r) matrix A0

11
. This can be done by applying the steps

outlined above to A0

11
instead of to A. Repeating these steps K times, where

K = min(dM=re; dN=re); (6)

where dxe denotes the least integer greater than or equal to x, we obtain the LU factorization

of the originalM �N matrix A. For an in-place algorithm, A is overwritten by L and U { the

1s on the diagonal of L do not need to be stored explicitly. Similarly, when A is updated by

Eq. 5 this may also be done in place.

After k of these K steps, the �rst kr columns of L and the �rst kr rows of U have been
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L

U

B
C

E

L

U

E’L1

U1L0
U0

Figure 6: Stage k+1 of the block LU factorization algorithm showing how the panels B and C,
and the trailing submatrix E are updated. The trapezoidal submatrices L and U have already
been factored in previous steps. L has kr columns, and U has kr rows. In the step shown
another r columns of L and r rows of U are evaluated.

evaluated, and matrix A has been updated to the form shown in Figure 6, in which panel B is

(M � kr)� r and C is r � (N � (k � 1)r). Step k + 1 then proceeds as follows,

1. factor B to form the next panel of L, performing partial pivoting over rows if necessary

(see Figure 14). This evaluates the matrices L0, L1, and U0 in Figure 6.

2. solve the triangular system L0U1 = C to get the next row of blocks of U .

3. do a rank-r update on the trailing submatrix E, replacing it with E0 = E � L1U1.

The LAPACK implementation of this form of LU factorization uses the Level 3 BLAS

routines xTRSM and xGEMM to perform the triangular solve and rank-r update. We can

regard the algorithm as acting on matrices that have been partitioned into blocks of r � r

elements, as shown in Figure 7.

5. Data Distribution

The fundamental data object in the LU factorization algorithm presented in Section 4.1 is a

block-partitioned matrix. In this section, we describe the block-cyclic method for distributing

such a matrix over a two-dimensional mesh of processes, or template. In general, each process

has an independent thread of control, and with each process is associated some local memory

directly accessible only by that process. The assignment of these processes to physical processors

is a machine-dependent optimization issue, and will be considered later in Section 7.
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A0,0 A0,1 A0,2 A0,3 A0,4 A0,5

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5

A4,0 A4,1 A4,2 A4,3 A4,4 A4,5

A5,0 A5,1 A5,2 A5,3 A5,4 A5,5

Figure 7: Block-partitioned matrix A. Each block Ai;j consists of r � r matrix elements.

An important property of the class of data distribution we shall use is that independent

decompositions are applied over rows and columns. We shall, therefore, begin by considering

the distribution of a vector of M data objects over P processes. This can be described by a

mapping of the global index, m, of a data object to an index pair (p; i), where p speci�es the

process to which the data object is assigned, and i speci�es the location in the local memory

of p at which it is stored. We shall assume 0 � m < M and 0 � p < P .

Two commondecompositions are the block and the cyclic decompositions [49, 31]. The block

decomposition, which is often used when the computational load is distributed homogeneously

over a regular data structure such as a Cartesian grid, assigns contiguous entries in the global

vector to the processes in blocks.

m 7! ( bm=Lc ;m mod L ) ; (7)

where L = dM=P e, and bxc denotes the greatest integer less than or equal to x. The cyclic

decomposition (also known as the wrapped or scattered decomposition) is commonly used

to improve load balance when the computational load is distributed inhomogeneously over a

regular data structure. The cyclic decomposition assigns consecutive entries in the global vector

to successive di�erent processes,

m 7! (m mod P; bm=P c ) (8)

Examples of the block and cyclic decompositions are shown in Figure 8.
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m 0 1 2 3 4 5 6 7 8 9

p 0 0 0 0 1 1 1 1 2 2

i 0 1 2 3 0 1 2 3 0 1

(a) Block

m 0 1 2 3 4 5 6 7 8 9

p 0 1 2 0 1 2 0 1 2 0

i 0 0 0 1 1 1 2 2 2 3

(b) Cyclic

Figure 8: Examples of block and cyclic decompositions of M = 10 data objects over P = 3
processes.The global index m is mapped to the process number, p, and local index, i.

The block cyclic decomposition is a generalization of the block and cyclic decompositions

in which blocks of consecutive data objects are distributed cyclically over the processes. In the

block cyclic decomposition the mapping of the global index,m, can be expressed asm 7! (p; b; i),

where p is the process number, b is the block number in process p, and i is the index within

block b to which m is mapped. Thus, if the number of data objects in a block is r, the block

cyclic decomposition may be written,

m 7!

��
m mod T

r

�
;
jm
T

k
; m mod r

�
(9)

where T = rP . It should be noted that this reverts to the cyclic decomposition when r = 1,

with local index i = 0 for all blocks. A block decomposition is recovered when r = L, in which

case there is a single block in each process with block number b = 0. The inverse mapping of

the triplet (p; b; i) to a global index is given by,

(p; b; i) 7! Br + i = pr + bT + i (10)

where B = p+bP is the global block number. The block cyclic decomposition is one of the data

distributions supported by High Performance Fortran (HPF) [39], and has been previously used,

in one form or another, by several researchers (see [1, 4, 5, 9, 23, 27, 45, 47, 48] for examples

of its use). The block cyclic decomposition is illustrated with an example in Figure 9.

The form of the block cyclic decomposition given by Eq. 9 ensures that the block with global

index 0 is placed in process 0, the next block is placed in process 1, and so on. However, it is

sometimes necessary to o�set the processes relative to the global block index so that, in general,

the �rst block is placed in process p0, the next in process p0 + 1, and so on. We, therefore,

generalize the block cyclic decomposition by replacing m on the righthand side of Eq. 9 by

m0 = m + rp0 to give,

m 7!

��
m0 mod T

r

�
;

�
m0

T

�
; m0 mod r

�

=

���
m mod T

r

�
+ p0

�
mod P;

�
m+ rp0

T

�
; m mod r

�
: (11)
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m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2

b 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3

i 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

(a) m 7! (p; b; i)

p 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

b 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3

i 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

m 0 1 6 7 12 13 18 19 2 3 8 9 14 15 20 21 4 5 10 11 16 17 22

(b) (p; b; i) 7! m

Figure 9: An example of the block cyclic decomposition of M = 23 data objects over P = 3
processes for a block size of r = 2. (a) shows the mapping from global index, m, to the triplet
(p; b; i), and (b) shows the inverse mapping.

Equation 10 may also be generalized to,

(p; b; i) 7! Br + i = (p� p0)r + bT + i (12)

where now the global block number is given by B = (p � p0) + bP . It should be noted that in

processes with p < p0, block 0 is not within the range of the block cyclic mapping and it is,

therefore, an error to reference it in any way.

In decomposing an M �N matrix we apply independent block cyclic decompositions in the

row and column directions. Thus, suppose the matrix rows are distributed with block size r

and o�set p0 over P processes by the block cyclic mapping �r;p0;P , and the matrix columns are

distributed with block size s and o�set q0 over Q processes by the block cyclic mapping �s;q0;Q.

Then the matrix element indexed globally by (m;n) is mapped as follows,

m
�
7�! (p; b; i)

n
�
7�! (q; d; j): (13)

The decomposition of the matrix can be regarded as the tensor product of the row and column

decompositions, and we can write,

(m;n) 7!
�
(p; q); (b; d); (i; j)

�
: (14)

The block cyclic matrix decomposition given by Eqs. 13 and 14 distributes blocks of size r � s

to a mesh of P � Q processes. We shall refer to this mesh as the process template, and refer

to processes by their position in the template. Equation 14 says that global index (m;n) is

mapped to process (p; q), where it is stored in the block at location (b; d) in a two-dimensional
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array of blocks. Within this block it is stored at location (i; j). The decomposition is completely

speci�ed by the parameters r, s, p0, q0, P , and Q. In Figure 10 an example is given of the

block cyclic decomposition of a 48 � 80 matrix for block size 4� 5, a process template 3� 4,

and a template o�set (p0; q0) = (0; 0). Figure 11 shows the same example but for a template

o�set of (1; 2).

The block cyclic decomposition can reproduce most of the data distributions commonly used

in linear algebra computations on parallel computers. For example, if Q = 1 and r = dM=P e

the block row decomposition is obtained. Similarly, P = 1 and s = dN=Qe gives a block column

decomposition. These decompositions, together with row and column cyclic decompositions,

are shown in Figure 12. Other commonly used block cyclic matrix decompositions are shown

in Figure 13.

6. Parallel Implementation

In this section we describe the parallel implementation of LU factorization, with partial pivoting

over rows, for a block-partitioned matrix. The matrix, A, to be factored is assumed to have

a block cyclic decomposition, and at the end of the computation is overwritten by the lower

and upper triangular factors, L and U . This implicitly determines the decomposition of L and

U . Quite a high-level description is given here since the details of the parallel implementation

involve optimization issues that will be addressed in Section 7.

The sequential LU factorization algorithm described in Section 4.1 uses square blocks. Al-

though in the parallel algorithm we could choose to decompose the matrix using nonsquare

blocks, this would result in a more complicated code, and additional sources of concurrent

overhead. For LU factorization we, therefore, restrict the decomposition to use only square

blocks, so that the blocks used to decompose the matrix are the same as those used to partition

the computation. If the block size is r� r, then an M �N matrix consists of Mb �Nb blocks,

where Mb = dM=re and Nb = dN=re.

As discussed in Section 4.1, LU factorization proceeds in a series of sequential steps indexed

by k = 0;min(Mb; Nb)� 1, in each of which the following three tasks are performed,

1. factor the kth column of blocks, performing pivoting if necessary. This evaluates the

matrices L0, L1, and U0 in Figure 6.

2. evaluate the kth block row of U by solving the lower triangular system L0U1 = C.

3. do a rank-r update on the trailing submatrix E, replacing it with E0 = E � L1U1.

We now consider the parallel implementation of each of these tasks. The computation in

the factorization step involves a single column of blocks, and these lie in a single column of
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0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

p,q D

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

(a) Assignment of global block indices, (B;D), to processes, (p; q).

0,0 0,4 0,8 0,12 0,1 0,5 0,9 0,13 0,2 0,6 0,10 0,14 0,3 0,7 0,11 0,15

3,0 3,4 3,8 3,12 3,1 3,5 3,9 3,13 3,2 3,6 3,10 3,14 3,3 3,7 3,11 3,15

6,0 6,4 6,8 6,12 6,1 6,5 6,9 6,13 6,2 6,6 6,10 6,14 6,3 6,7 6,11 6,15

9,0 9,4 9,8 9,12 9,1 9,5 9,9 9,13 9,2 9,6 9,10 9,14 9,3 9,7 9,11 9,15

1,0 1,4 1,8 1,12 1,1 1,5 1,9 1,13 1,2 1,6 1,10 1,14 1,3 1,7 1,11 1,15

4,0 4,4 4,8 4,12 4,1 4,5 4,9 4,13 4,2 4,6 4,10 4,14 4,3 4,7 4,11 4,15

7,0 7,4 7,8 7,12 7,1 7,5 7,9 7,13 7,2 7,6 7,10 7,14 7,3 7,7 7,11 7,15

10,0 10,4 10,8 10,12 10,1 10,5 10,9 10,13 10,2 10,6 10,10 10,14 10,3 10,7 10,11 10,15

2,0 2,4 2,8 2,12 2,1 2,5 2,9 2,13 2,2 2,6 2,10 2,14 2,3 2,7 2,11 2,15

5,0 5,4 5,8 5,12 5,1 5,5 5,9 5,13 5,2 5,6 5,10 5,14 5,3 5,7 5,11 5,15

8,0 8,4 8,8 8,12 8,1 8,5 8,9 8,13 8,2 8,6 8,10 8,14 8,3 8,7 8,11 8,15

11,0 11,4 11,8 11,12 11,1 11,5 11,9 11,13 11,2 11,6 11,10 11,14 11,3 11,7 11,11 11,15

0,0 0,4 0,8 0,12

3,0 3,4 3,8 3,12

6,0 6,4 6,8 6,12

9,0 9,4 9,8 9,12

B,D
q

p

0 1 2 3

0

1

2

(b) Global blocks, (B;D), in each process, (p; q).

Figure 10: Block cyclic decomposition of a 48 � 80 matrix with a block size of 4 � 5, onto a
3 � 4 process template. Each small rectangle represents one matrix block { individual matrix
elements are not shown. In (a), shading is used to emphasize the process template that is
periodically stamped over the matrix, and each block is labeled with the process to which it
is assigned. In (b), each shaded region shows the blocks in one process, and is labeled with
the corresponding global block indices. In both �gures, the black rectangles indicate the blocks
assigned to process (0; 0).
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1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,10,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

p,q D

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

(a) Assignment of global block indices, (B;D), to processes, (p; q).

— — — — — — — — — — — — — — — — — — — —

— 2,2 2,6 2,10 2,14 — 2,3 2,7 2,11 2,15 2,0 2,4 2,8 2,12 — 2,1 2,5 2,9 2,13 —

— 5,2 5,6 5,10 2,14 — 5,3 5,7 5,11 5,15 5,0 5,4 5,8 5,12 — 5,1 5,5 5,9 5,13 —

— 8,2 8,6 8,10 8,14 — 8,3 8,7 8,11 8,15 8,0 8,4 8,8 8,12 — 8,1 8,5 8,9 8,13 —

— 11,2 11,6 11,10 11,14 — 11,3 11,7 11,11 11,15 11,0 11,4 11,8 11,12 — 11,1 11,5 11,9 11,13 —

— 0,2 0,6 0,10 0,14 — 0,3 0,7 0,11 0,15 0,0 0,4 0,8 0,12 — 0,1 0,5 0,9 0,13 —

— 3,2 3,6 3,10 3,14 — 3,3 3,7 3,11 3,15 3,0 3,4 3,8 3,12 — 3,1 3,5 3,9 3,13 —

— 6,2 6,6 6,10 6,14 — 6,3 6,7 6,11 6,15 6,0 6,4 6,8 6,12 — 6,1 6,5 6,9 6,13 —

— 9,2 9,6 9,10 9,14 — 9,3 9,7 9,11 9,15 9,0 9,4 9,8 9,12 — 9,1 9,5 9,9 9,13 —

— — — — — — — — — — — — — — — — — — — —

— 1,2 1,6 1,10 1,14 — 1,3 1,7 1,11 1,15 1,0 1,4 1,8 1,12 — 1,1 1,5 1,9 1,13 —

— 4,2 4,6 4,10 4,14 — 4,3 4,7 4,11 4,15 4,0 4,4 4,8 4,12 — 4,1 4,5 4,9 4,13 —

— 7,2 7,6 7,10 7,14 — 7,3 7,7 7,11 7,15 7,0 7,4 7,8 7,12 — 7,1 7,5 7,9 7,13 —

— 10,2 10,6 10,10 10,14 — 10,3 10,7 10,11 10,15 10,0 10,4 10,8 10,12 — 10,1 10,5 10,9 10,13 —

— — — — — — — — — — — — — — — — — — — —

2,2 2,6 2,10 2,14

5,2 5,6 5,10 5,14

8,2 8,6 8,10 8,14

11,2 11,6 11,10 11,14

B,D
q

p

0 1 2 3

0

1

2

(b) Global blocks, (B;D), in each process, (p; q).

Figure 11: The same matrix decomposition as shown in Figure 10, but for a template o�set of
(p0; q0) = (1; 2). Dashed entries in (b) indicate that the block does not contain any data. In
both �gures, the black rectangles indicate the blocks assigned to process (0; 0).
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0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

(a) r = 3, s = 10, P = 4, Q = 1

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

(b) r = 1, s = 10, P = 4, Q = 1

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

(c) r = 10, s = 3, P = 1, Q = 4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

(d) r = 10, s = 1, P = 1, Q = 4

Figure 12: These 4 �gures show di�erent ways of decomposing a 10 � 10 matrix. Each cell
represents a matrix element, and is labeled by the position, (p; q), in the template of the
process to which it is assigned. To emphasize the pattern of decomposition, the matrix entries
assigned to the process in the �rst row and column of the template are shown shaded, and each
separate shaded region represents a matrix block. Figures (a) and (b) show block and cyclic
row-oriented decompositions, respectively, for 4 nodes. In �gures (c) and (d) the corresponding
column-oriented decompositions are shown. Below each �gure we give the values of r, s, P ,
and Q corresponding to the decomposition. In all cases p0 = q0 = 0.
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0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

(a) r = 3, s = 3, P = 4, Q = 4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

(b) r = 3, s = 1, P = 4, Q = 4

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

(c) r = 1, s = 3, P = 4, Q = 4

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

(d) r = 1, s = 1, P = 4, Q = 4

Figure 13: These 4 �gures show di�erent ways of decomposing a 10 � 10 matrix over 16
processes arranged as a 4� 4 template. Below each �gure we give the values of r, s, P , and Q
corresponding to the decomposition. In all cases p0 = q0 = 0.
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Figure 14: This �gure shows pivoting for step i of the kth stage of LU factorization. The
element with largest absolute value in the gray shaded part of column kr+ i is found, and the
row containing it is exchanged with row kr+ i. If the rows exchanged lie in di�erent processes,
communication may be necessary.

the process template. In the kth factorization step, each of the r columns in block column

k is processed in turn. Consider the ith column in block column k. The pivot is selected by

�nding the element with largest absolute value in this column between row kr+ i and the last

row, inclusive. The elements involved in the pivot search at this stage are shown shaded in

Figure 14. Having selected the pivot, the value of the pivot and its row are broadcast to all

other processors. Next, pivoting is performed by exchanging the entire row kr+ i with the row

containing the pivot. We exchange entire rows, rather than just the part to the right of the

columns already factored, in order to simplify the application of the pivots to the righthand side

in any subsequent solve phase. Finally, each value in the column below the pivot is divided by

the pivot. If a cyclic column decomposition is used, like that shown in Figure 12(d), only one

processor is involved in the factorization of the block column, and no communication is necessary

between the processes. However, in general P processes are involved, and communication is

necessary in selecting the pivot, and exchanging the pivot rows.

The solution of the lower triangular system L0U1 = C to evaluate the kth block row of

U involves a single row of blocks, and these lie in a single row of the process template. If a

cyclic row decomposition is used, like that shown in Figure 12(b), only one processor is involved

in the triangular solve, and no communication is necessary between the processes. However,

in general Q processes are involved, and communication is necessary to broadcast the lower

triangular matrix, L0, to all processes in the row. Once this has been done, each process in the
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pcol= q0
prow= p0
do k= 0;min(Mb; Nb)� 1

do i= 0; r � 1
if (q =pcol) �nd pivot value and location
broadcast pivot value and location to all processes
exchange pivot rows
if (q =pcol) divide column r below diagonal by pivot

end do

if (p =prow) then
broadcast L0 to all process in same template row
solve L0U1 = C

end if

broadcast L1 to all processes in same template row
broadcast U1 to all processes in same template column
update E  E � L1U1

pcol= (pcol + 1) mod Q
prow= (prow + 1) mod P

end do

Figure 15: Pseudocode for the basic parallel block-partitioned LU factorization algorithm. This
code is executed by each process. The �rst box inside the k loop factors the kth column of
blocks. The second box solves a lower triangular system to evaluate the kth row of blocks of
U , and the third box updates the trailing submatrix. The template o�set is given by (p0; q0),
and (p; q) is position of a process in the template.

row independently performs a lower triangular solve for the blocks of C that it holds.

The communication necessary to update the trailing submatrix at step k takes place in two

steps. First, each process holding part of L1 broadcasts these blocks to the other processes

in the same row of the template. This may be done in conjunction with the broadcast of L0,

mentioned in the preceding paragraph, so that all of the factored panel is broadcast together.

Next, each process holding part of U1 broadcasts these blocks to the other processes in the

same column of the template. Each process can then complete the update of the blocks that it

holds with no further communication.

A pseudocode outline of the parallel LU factorization algorithm is given in Figure 15. There

are two points worth noting in Figure 15. First, the triangular solve and update phases operate

on matrix blocks and may, therefore, be done with parallel versions of the Level 3 BLAS

(speci�cally, xTRSM and xGEMM, respectively). The factorization of the column of blocks,

however, involves a loop over matrix columns. Hence, is it not a block-oriented computation,

and cannot be performed using the Level 3 BLAS. The second point to note is that most of the
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parallelism in the code comes from updating the trailing submatrix since this is the only phase

in which all the processes are busy.

Figure 15 also shows quite clearly where communication is required; namely, in �nding

the pivot, exchanging pivot rows, and performing various types of broadcast. The exact way

in which these communications are done and interleaved with computation generally has an

important e�ect on performance, and will be discussed in more detail in Section 7.

Figure 15 refers to broadcasting data to all processes in the same row or column of the

template. This is a common operation in parallel linear algebra algorithms, so the idea will

be described here in a little more detail. Consider, for example, the task of broadcasting the

lower triangular block, L0, to all processes in the same row of the template, as required before

solving L0U1 = C. If L0 is in process (p; q), then it will be broadcast to all processes in row

p of the process template. As a second example, consider the broadcast of L1 to all processes

in the same template row, as required before updating the trailing submatrix. This type of

\rowcast" is shown schematically in Figure 16(a). If L1 is in column q of the template, then

each process (p; q) broadcasts its blocks of L1 to the other processes in row p of the template.

Loosely speaking, we can say that L0 and L1 are broadcast along the rows of the template.

This type of data movement is the same as that performed by the Fortran 90 routine SPREAD

[7]. The broadcast of U1 to all processes in the same template column is very similar. This

type of communication is sometimes referred to as a \colcast", and is shown in Figure 16(b).

7. Optimization, Tuning, and Trade-o�s

In this section, we shall examine techniques for optimizing the basic LU factorization code

presented in Section 4.1. Among the issues to be considered are the assignment of processes

to physical processors, the arrangement of the data in the local memory of each process, the

trade-o� between load imbalance and communication latency, the potential for overlapping

communication and calculation, and the type of algorithm used to broadcast data. Many of

these issues are interdependent, and in addition the portability and ease of code maintenance

and use must be considered. For further details of the optimization of parallel LU factorization

algorithms for speci�c concurrent machines, together with timing results, the reader is referred

to the work of Chu and George [12], Geist and Heath [33], Geist and Romine [34], Van de Velde

[49], Brent [8], Hendrickson and Womble [36], Lichtenstein and Johnsson [42], and Dongarra

and co-workers [10, 25].

7.1. Mapping Logical Memory to Physical Memory

In Section 5, a logical (or virtual) matrix decomposition was described in which the global

index (m;n) is mapped to a position, (p; q), in a logical process template, a position, (b; d), in
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(a) Broadcast along rows.

(b) Broadcast along columns.
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Figure 16: Schematic representation of broadcast along rows and columns of a 4 � 6 process
template. In (a), each shaded process broadcasts to the processes in the same row of the process
template. In (b), each shaded process broadcasts to the processes in the same column of the
process template.

a logical array of blocks local to the process, and a position, (i; j), in a logical array of matrix

elements local to the block. Thus, the block cyclic decomposition is hierarchical, and attempts

to represent the hierarchical memory of advanced-architecture computers. Although the parallel

LU factorization algorithm can be speci�ed solely in terms of this logical hierarchical memory,

its performance depends on how the logical memory is mapped to physical memory.

7.1.1. Assignment of Processes to Processors

Consider, �rst, the assignment of processes, (p; q), to physical processors. In general, more than

one process may be assigned to a processor, so the problem may be overdecomposed. To avoid

load imbalance the same number of processes should be assigned to each processor as nearly

as possible. If this condition is satis�ed, the assignment of processes to processors can still

a�ect performance by in
uencing the communication overhead. On recent distributed memory
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machines, such as the Intel Delta and CM-5, the time to send a single message between two pro-

cessors is largely independent of their physical location [28, 43, 44], and hence the assignment

of processes to processors does not have much direct e�ect on performance. However, when a

collective communication task, such as a broadcast, is being done, contention for physical re-

sources can degrade performance. Thus, the way in which processes are assigned to processors

can a�ect performance if some assignments result in di�ering amounts of contention. Loga-

rithmic contention-free broadcast algorithms have been developed for processors connected as

a two-dimensional mesh [6, 46], so on such machines process (p; q) is usually mapped to the

processor at position (p; q) in the mesh of processors. Such an assignment also ensures that the

multiple one-dimensional broadcasts of L1 and U1 along the rows and columns of the template,

respectively, do not give rise to contention.

7.1.2. Layout of Local Process Memory

The layout of matrix blocks in the local memory of a process, and the arrangement of matrix

elements within each block, can also a�ect performance. Here, tradeo�s among several fac-

tors need to be taken into account. When communicating matrix blocks, for example in the

broadcasts of L1 and U1, we would like the data in each block to be contiguous in physical

memory so there is no need to pack them into a communication bu�er before sending them. On

the other hand, when updating the trailing submatrix, E, each process multiplies a column of

blocks by a row of blocks, to do a rank-r update on the part of E that it contains. If this were

done as a series of separate block-block matrix multiplications, as shown in Figure 18(a), the

performance would be poor except for su�ciently large block sizes, r, since the vector and/or

pipeline units on most processors would not be fully utilized, as may be seen in Figure 17 for

the i860 processor. Instead, we arrange the loops of the computation as shown in Figure 18(b).

Now, if the data are laid out in physical memory �rst by running over the i index and then

over the d index the inner two loops can be merged, so that the length of the inner loop is

now rdmax. This generally results in much better vector/pipeline performance. The b and j

loops in Figure 18(b) can also be merged, giving the algorithm shown in Figure 18(c). This is

just the outer product form of the multiplication of an rdmax � r by an r � rbmax matrix, and

would usually be done by a call to the Level 3 BLAS routine xGEMM of which an assembly

coded sequential version is available on most machines. Note that in Figure 18(c) the order

of the inner two loops is appropriate for a Fortran implementation { for the C language this

order should be reversed, and the data should be stored in each process by rows instead of by

columns.

We have found in our work on the Intel iPSC/860 hypercube and the Delta system that

it is better to optimize for the sequential matrix multiplication with an (i; d; j; b) ordering of
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Figure 17: Performance of the assembly-coded Level 3 BLAS matrix multiplication routine
DGEMM on one i860 processor of the Intel Delta system. Results for square and rectangular
matrices are shown. Note that the peak performance of about 35 M
ops is attained only for
matrices whose smallest dimension exceeds 100. Thus, performance is improved if a few large
matrices are multiplied by each process, rather than many small ones.

memory in each process, rather than adopting an (i; j; d; b) ordering to avoid bu�er copies when

communicating blocks. However, there is another reason for doing this. On most distributed

memory computers the message startup cost is su�ciently large that it is preferable wherever

possible to send data as one large message rather than as several smaller messages. Thus,

when communicating L1 and U1 the blocks to be broadcast would be amalgamated into a

single message, which requires a bu�er copy. The emerging Message Passing Interface (MPI)

standard [21] provides support for noncontiguous messages, so in the future the need to avoid

bu�er copies will not be of such concern to the application developer.

7.2. Tradeo�s between Load Balance and Communication Latency

We have discussed the mapping of the logical hierarchical memory to physical memory. In addi-

tion, we have pointed out the importance of maintaining long inner loops to get good sequential

performance for each process, and the desirability of sending a few large messages rather than

many smaller ones. We next consider load balance issues. Assuming that equal numbers of

processes have been assigned to each processor, load imbalance arises in two phases of the par-

allel LU factorization algorithm; namely, in factoring each column block, which involves only

P processes, and in solving the lower triangular system to evaluate each row block of U , which
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do b = 0; bmax � 1
do d = 0; dmax � 1
do i = 0; r� 1
do j = 0; r� 1
do k = 0; r � 1
E(b; d; i; j) = E(b; d; i; j)� L1(b; d; i; k)U1(b; d; k; j)

end all do loops

(a) Block-block multiplication

do k = 0; r � 1
do b = 0; bmax � 1
do j = 0; r� 1
do d = 0; dmax � 1
do i = 0; r� 1
E(b; d; i; j) = E(b; d; i; j)� L1(b; d; i; k)U1(b; d; k; j)

end all do loops

(b) Intermediate form of algorithm

do k = 0; r � 1
do x = 0; rbmax � 1
do y = 0; rdmax � 1
E(x; y) = E(x; y)� L1(x; k)U1(k; y)

end all do loops

(c) Outer product form of algorithm

Figure 18: Pseudocode for di�erent versions of the rank-r update, E  E � L1U1, for one
process. The number of row and column blocks per process is given by bmax and dmax, respec-
tively; r is the block size. Blocks are indexed by (b; d), and elements within a block by (i; j).
In version (a) the r � r blocks are multiplied one at a time, giving an inner loop of length r.
(b) shows the loops rearranged before merging the i and d loops, and the j and b loops. This
leads to the outer product form of the algorithm shown in (c) in which the inner loop is now
of length rdmax.

involves only Q processes. If the time for data movement is negligible, the aspect ratio of the

template that minimizes load imbalance in step k of the algorithm is,

P

Q
=

Sequential time to factor column block

Sequential time for triangular solve

=
Mb � k � 1=3 + O(1=r2)

Nb � k � 1 + O(1=r2)
(15)

where Mb � Nb is the matrix size in blocks, and r the block size. Thus, the optimal aspect

ratio of the template should be the same as the aspect ratio of the matrix, i.e., Mb=Nb in

blocks, or M=N in elements. If the e�ect of communication time is included then we must

take into account the relative times taken to locate and broadcast the pivot information, and
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Figure 19: Performance of LU factorization on the Intel Delta as a function of square ma-
trix size for di�erent processor templates containing approximately 256 processors. The best
performance is for an aspect ratio of 1/4, though the dependence on aspect ratio is rather weak.

the time to broadcast the lower triangular matrix, L0, along a row of the template. For

both tasks the communication time increases with the number of processes involved, and since

the communication time associated with the pivoting is greater than that associated with the

triangular solve, we would expect the optimumaspect ratio of the template to be less thanM=N .

In fact, for our runs on the Intel Delta system we found an aspect ratio, P=Q, of between 1/4

and 1/8 to be optimal for most problems with square matrices, and that performance depends

rather weakly on the aspect ratio, particularly for large grain sizes. Some typical results are

shown in Figure 19 for 256 processors, which show a variation of less than 20% in performance

as P=Q varies between 1/16 and 1 for the largest problem.

The block size, r, also a�ects load balance. Here the tradeo� is between the load imbalance

that arises as rows and columns of the matrix are eliminated as the algorithm progresses, and

communication startup costs. The block cyclic decomposition seeks to maintain good load

balance by cyclically assigning blocks to processes, and the load balance is best if the blocks

are small. On the other hand, cumulative communication startup costs are less if the block size

is large since, in this case, fewer messages must be sent (although the total volume of data sent
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is independent of the block size). Thus, there is a block size that optimally balances the load

imbalance and communication startup costs.

7.3. Optimality and Pipelining Tradeo�s

The communication algorithms used also in
uence performance. In the LU factorization al-

gorithm, all the communication can be done by moving data along rows and/or columns of

the process template. This type of communication can be done by passing from one process

to the next along the row or column. We shall call this a \ring" algorithm, although the ring

may, or may not, be closed. An alternative is to use a spanning tree algorithm, of which there

are several varieties. The complexity of the ring algorithm is linear in the number of pro-

cesses involved, whereas that of spanning tree algorithms is logarithmic (for example, see [6]).

Thus, considered in isolation, the spanning tree algorithms are preferable to a ring algorithm.

However, in a spanning tree algorithm, a process may take part in several of the logarithmic

steps, and in some implementations these algorithms act as a barrier. In a ring algorithm, each

process needs to communicate only once, and can then continue to compute, in e�ect over-

lapping the communication with computation. An algorithm that interleaves communication

and calculation in this way is often referred to as a pipelined algorithm. In a pipelined LU

factorization algorithm with no pivoting, communication and calculation would 
ow in waves

across the matrix. Pivoting tends to inhibit this advantage of pipelining.

In the pseudocode in Figure 15, we do not specify how the pivot information should be

broadcast. In an optimized implementation, we need to �nish with the pivot phase, and the

triangular solve phase, as soon as possible in order to begin the update phase which is richest in

parallelism. Thus, it is not a good idea to broadcast the pivot information from a single source

process using a spanning tree algorithm, since this may occupy some of the processes involved

in the panel factorization for too long. It is important to get the pivot information to the other

processes in this template column as soon as possible, so the pivot information is �rst sent to

these processes which subsequently broadcast it along the template rows to the other processes

not involved in the panel factorization. In addition, the exchange of the parts of the pivot rows

lying within the panel is done separately from that of the parts outside the pivot panel. Another

factor to consider here is when the pivot information should be broadcast along the template

columns. In Figure 15, the information is broadcast, and rows exchanged, immediately after

the pivot is found. An alternative is to store up the sequence of r pivots for a panel and to

broadcast them along the template rows when panel factorization is complete. This defers the

exchange of pivot rows for the parts outside the panel until the panel factorization has been

done, as shown in the pseudocode fragment in Figure 20. An advantage of this second approach

is that only one message is used to send the pivot information for the panel along the template
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if (q =pcol) then
do i= 0; r� 1
�nd pivot value and location
exchange pivot rows lying within panel
divide column r below diagonal by pivot

end do
end if
broadcast pivot information for r pivots along template rows
exchange pivot rows lying outside the panel for each of r pivots

Figure 20: Pseudocode fragment for partial pivoting over rows. This may be regarded as
replacing the �rst box inside the k loop in Figure 15. In the above code pivot information is
�rst disseminated within the template column doing the panel factorization. The pivoting of
the parts of the rows lying outside the panel is deferred until the panel factorization has been
completed.

rows, instead of r messages.

In our implementation of LU factorization on the Intel Delta system, we used a spanning

tree algorithm to locate the pivot and to broadcast it within the column of the process template

performing the panel factorization. This ensures that pivoting, which involves only P processes,

is completed as quickly as possible. A ring broadcast is used to pipeline the pivot information

and the factored panel along the template rows. Finally, after the triangular solve phase has

completed, a spanning tree broadcast is used to send the newly-formed block row of U along

the template columns. Results for square matrices from runs on the Intel Delta system are

shown in Figure 21. For each curve the results for the best process template con�guration are

shown. For a memory-constrained scalable algorithm the performance should depend linearly

on the number of processors for �xed granularity, and so scalability may be assessed by the

extent to which isogranularity curves di�er from linearity. An isogranularity curve is a plot

of performance against number of processors for a �xed granularity. The results in Figure

21 can be used to generate the isogranularity curves shown in Figure 22 which show that on

the Delta system the LU factorization routine starts to lose scalability when the granularity

falls below about 0:2 � 106. This corresponds to a matrix size of about M = 10000 on 512

processors, or about 13% of the memory available to applications on the Delta, indicating that

LU factorization scales rather well on the Intel Delta system.

8. Conclusions and Future Research Directions

Portability of programs has always been an important consideration. Portability was easy to

achieve when there was a single architectural paradigm (the serial von Neumann machine) and

a single programming language for scienti�c programming (Fortran) embodying that common
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Figure 21: Performance of LU factorization on the Intel Delta as a function of square matrix size
for di�erent numbers of processors. For each curve, results are shown for the process template
con�guration that gave the best performance for that number of processors.
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Figure 22: Isogranularity curves in the (Np; G) plane for the LU factorization of square matrices
on the Intel Delta system. The curves are labeled by the granularity in units of 106 matrix
elements per processor. The linearity of the plots for granularities exceeding about 0:2� 106

indicates that the LU factorization algorithm scales well on the Delta.
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model of computation. Architectural and linguistic diversity have made portability much more

di�cult, but no less important, to attain. Users simply do not wish to invest signi�cant amounts

of time to create large-scale application codes for each new machine. Our answer is to develop

portable software libraries that hide machine-speci�c details.

In order to be truly portable, parallel software libraries must be standardized. In a par-

allel computing environment in which the higher-level routines and/or abstractions are built

upon lower-level computation and message-passing routines, the bene�ts of standardization

are particularly apparent. Furthermore, the de�nition of computational and message-passing

standards provides vendors with a clearly de�ned base set of routines that they can implement

e�ciently.

From the user's point of view, portability means that, as new machines are developed, they

are simply added to the network, supplying cycles where they are most appropriate.

From the mathematical software developer's point of view, portability may require signif-

icant e�ort. Economy in development and maintenance of mathematical software demands

that such development e�ort be leveraged over as many di�erent computer systems as possible.

Given the great diversity of parallel architectures, this type of portability is attainable to only

a limited degree, but machine dependences can at least be isolated.

LAPACK is an example of a mathematical software package whose highest-level components

are portable, while machine dependences are hidden in lower-level modules. Such a hierarchical

approach is probably the closest one can come to software portability across diverse parallel

architectures. And the BLAS that are used so heavily in LAPACK provide a portable, e�cient,

and 
exible standard for applications programmers.

Like portability, scalability demands that a program be reasonably e�ective over a wide

range of number of processors. The scalability of parallel algorithms, and software libraries

based on them, over a wide range of architectural designs and numbers of processors will likely

require that the fundamental granularity of computation be adjustable to suit the particular

circumstances in which the software may happen to execute. Our approach to this problem

is block algorithms with adjustable block size. In many cases, however, polyalgorithms2 may

be required to deal with the full range of architectures and processor multiplicity likely to be

available in the future.

Scalable parallel architectures of the future are likely to be based on a distributed memory

architectural paradigm. In the longer term, progress in hardware development, operating sys-

tems, languages, compilers, and communications may make it possible for users to view such

distributed architectures (without signi�cant loss of e�ciency) as having a shared memory with

2In a polyalgorithm the actual algorithm used depends on the computing environment and the input data.

The optimal algorithm in a particular instance is automatically selected at runtime.
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a global address space. For the near term, however, the distributed nature of the underlying

hardware will continue to be visible at the programming level; therefore, e�cient procedures

for explicit communication will continue to be necessary. Given this fact, standards for basic

message passing (send/receive), as well as higher-level communication constructs (global sum-

mation, broadcast, etc.), become essential to the development of scalable libraries that have

any degree of portability. In addition to standardizing general communication primitives, it

may also be advantageous to establish standards for problem-speci�c constructs in commonly

occurring areas such as linear algebra.

The BLACS (Basic Linear Algebra Communication Subprograms) [16, 26] is a package

that provides the same ease of use and portability for MIMD message-passing linear algebra

communication that the BLAS [17, 18, 41] provide for linear algebra computation. Therefore,

we recommend that future software for dense linear algebra on MIMD platforms consist of calls

to the BLAS for computation and calls to the BLACS for communication. Since both packages

will have been optimized for a particular platform, good performance should be achieved with

relatively little e�ort. Also, since both packages will be available on a wide variety of machines,

code modi�cations required to change platforms should be minimal. This is borne out by

prototype implementations of ScaLAPACK on the IBM SP-1, the CRAY T3D, and Thinking

Machines Corporation's CM-5. Preliminary results for the IBM SP-1 and CRAY T3D indicate

that the ScaLAPACK code runs e�ciently on these machines { a 12000�12000 LU factorization

runs at 21.4 G
op/s on a 256-node CRAY T3D. An 8000� 8000 LU factorization runs at 5.3

G
op/s on a 64-node CRAY T3D, compared with 2.6 and 2.0 G
op/s for 64-node IBM SP-1

and Intel Paragon machines, respectively. Initial results on the CM-5, however, have been

disappointing because of the di�culty of using the vector units in message passing programs.

The EISPACK, LINPACK, and LAPACK linear algebra libraries are in the public domain,

and are available from netlib. For example, for more information on how to obtain LAPACK,

send the following one-line email message to netlib@ornl.gov:

send index from lapack

Information for EISPACK and LINPACK can be similarly obtained. A preliminary version of

the ScaLAPACK library is also available from netlib.
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