ScaLAPACK Tutorial *

Jack Dongarral? and L. Susan Blackford**!

! Department of Computer Science, University of Tennessee, Knoxville,
TN 37996-1301, USA
2 Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge,
TN 37831, USA

Abstract. ScaLAPACK is a library of high performance linear alge-
bra routines for distributed memory MIMD computers. It is a continu-
ation of the LAPACK project, which designed and produced analogous
software for workstations, vector supercomputers, and shared memory
parallel computers. The goals of the project are efficiency (to run as
fast as possible), scalability (as the problem size and number of pro-
cessors grow), reliability (including error bounds), portability (across all
important parallel machines), flexibility (so users can construct new rou-
tines from well-designed parts), and ease-of-use (by making LAPACK
and ScalLAPACK look as similar as possible). Many of these goals, par-
ticularly portability, are aided by developing and promoting standards,
especially for low-level communication and computation routines. We
have been successful in attaining these goals, limiting most machine de-
pendencies to two standard libraries called the BLAS, or Basic Linear
Algebra Subroutines, and BLACS, or Basic Linear Algebra Communica-
tion Subroutines. ScaLAPACK will run on any machine where both the
BLAS and the BLACS are available.

This tutorial will begin by reviewing the fundamental design princi-
ples of the BLAS and LAPACK and their influence on the development
of ScaLAPACK. The two dimensional block cyclic data decomposition
will be presented, followed by a discussion of the underlying building
blocks of ScaLAPACK, the BLACS and the PBLAS. The contents of
the ScaLAPACK library will then be enumerated, followed by exam-
ple programs and performance results. And finally, future directions and
related projects will be described.

1 Introduction

Much of the work in developing linear algebra software for advanced architec-
ture computers 1s motivated by the need to solve large problems on the fastest

** formerly L. Susan Ostrouchov

* This work was supported in part by the National Science Foundation Grant No.
ASC-9005933; by the Defense Advanced Research Projects Agency under con-
tract DAALO03-91-C-0047, administered by the Army Research Office; by the Of-
fice of Scientific Computing, U.S. Department of Energy, under Contract DE-ACO05-
840R21400; and by the National Science Foundation Science and Technology Center
Cooperative Agreement No. CCR-8809615.

computers available. In this tutorial, we focus on the development of standards
for use in linear algebra and the building blocks for a library and the aspects of
algorithmic design and parallel implementation.

The linear algebra community has long recognized the need for help in devel-
oping algorithms into software libraries, and several years ago, as a community
effort, put together a de facto standard for identifying basic operations required
in linear algebra algorithms and software. The hope was that the routines mak-
ing up this standard, the Basic Linear Algebra Subprograms (BLAS), would
be implemented on advanced-architecture computers by many manufacturers,
making it possible to reap the portability benefits of having them efficiently
implemented on a wide range of machines. This goal has been largely realized.

The key insight of our approach to designing linear algebra algorithms for ad-
vanced architecture computers is that the frequency with which data are moved
between different levels of the memory hierarchy must be minimized in order
to attain high performance. Thus, our main algorithmic approach for exploiting
both vectorization and parallelism is the use of block-partitioned algorithms, par-
ticularly in conjunction with highly-tuned kernels for performing matrix-vector
and matrix-matrix operations (BLAS). In general, block-partitioned algorithms
require the movement of blocks, rather than vectors or scalars, resulting in a
greatly reduced startup cost because fewer messages are exchanged.

A second key idea is that the performance of an algorithm can be tuned by
a user by varying the parameters that specify the data layout. On shared mem-
ory machines, this is controlled by the block size, while on distributed memory
machines it is controlled by the block size and the configuration of the logical
process grid.

Sections 2 and 3 review the fundamental design principles of the BLAS and
LAPACK. The two dimensional block cyclic data decomposition is presented
in Section 4 as the basis for matrix distribution in ScaLAPACK. The building
blocks of the ScaLAPACK library, the BLACS and the PBLAS, are then pre-
sented in Sections 5.1 and 5.2. The contents and performance of ScaLAPACK
and described in Section 5. And finally, Section 6 summarizes and discusses fu-
ture directions and related projects.

2 The Basic Linear Algebra Subprograms (BLAS)

The Basic Linear Algebra Subprograms are key to portability and efficiency
across sequential and parallel environments. There are three levels of BLAS:

Level 1 BLAS [2]: for vector operations, such as y «+ oz +y
Level 2 BLAS [3]: for matrix-vector operations, such as y + oAz + By
Level 3 BLAS [4]: for matrix-matrix operations, such as C' + «AB + pC.

Here, A, B and C' are matrices, ¢ and y are vectors, and « and [are scalars.

The Level 1 BLAS are used in LAPACK, but for convenience rather than
for performance: they perform an insignificant fraction of the computation, and
they cannot achieve high efficiency on most modern supercomputers.

The Level 2 BLAS can achieve near-peak performance on many vector pro-
cessors, such as a CRAY Y-MP, or Convex C-2 machine. However, on other
vector processors such as a CRAY-2, the performance of the Level 2 BLAS is
limited by the rate of data movement between different levels of memory [11].

The Level 3 BLAS overcome this limitation. They perform O(n?) floating-
point operations on O(n?) data, whereas the Level 2 BLAS perform only O(n?)
operations on O(n?) data. The Level 3 BLAS also allow us to exploit parallelism
in a way that is transparent to the software that calls them. While the Level 2
BLAS offer some scope for exploiting parallelism, greater scope is provided by
the Level 3 BLAS, as Table 1 illustrates.

Table 1. Speed (Megaflops) of BLAS Operations on a CRAY Y-MP. All matrices are
of order 500.

Number of processors: 1| 2 4 8
Level 2: y + oAz + Fy [311]611]|1197|2285
Level 3: C «+ aAB + 8C|312(623|1247|2425
Peak 333(666(1332|2664

3 The Linear Algebra Package (LAPACK)

LAPACK [1] provides routines for solving systems of simultaneous linear equa-
tions, least-squares solutions of linear systems of equations, eigenvalue problems,
and singular value problems. The associated matrix factorizations (LU, Cholesky,
QR, SVD, Schur, generalized Schur) are also provided, as are related computa-
tions such as reordering of the Schur factorizations and estimating condition
numbers. Dense and banded matrices are handled, but not general sparse matri-
ces. In all areas, similar functionality 1s provided for real and complex matrices,
in both single and double precision.

The original goal of the LAPACK project was to make the widely used EIS-
PACK [17] and LINPACK libraries run efficiently on shared-memory vector and
parallel processors. On these machines, LINPACK and EISPACK are inefficient
because their memory access patterns disregard the multi-layered memory hier-
archies of the machines, thereby spending too much time moving data instead
of doing useful floating-point operations. LAPACK addresses this problem by
reorganizing the algorithms to use block matrix operations, such as matrix mul-
tiplication, in the innermost loops [6, 1]. These block operations can be optimized
for each architecture to account for the memory hierarchy [5], and so provide a
transportable way to achieve high efficiency on diverse modern machines.

LAPACK can be regarded as a successor to LINPACK and EISPACK. It has

virtually all the capabilities of these two packages and much more besides. It

improves on them in four main respects: speed, accuracy, robustness and func-
tionality. While LINPACK and EISPACK are based on the vector operation
kernels of the Level 1 BLAS, LAPACK was designed at the outset to exploit
the matrix-matrix operation kernels of the Level 3 BLAS. Because of the coarse
granularity of these operations, their use tends to promote high efficiency on
many high-performance computers, particularly if specially coded implementa-
tions are provided by the manufacturer.

Extensive performance results for LAPACK can be found in the LAPACK
Users’ Guide [1].

3.1 A Block Partitioned Algorithm Example

We consider the Cholesky factorization algorithm, which factorizes a symmetric
positive definite matrix as A = UTU. To derive a block form of Cholesky fac-
torization, we partition the matrices into blocks, in which the diagonal blocks of
A and U are square, but of differing sizes. We assume that the first block has
already been factored as Agg = U(% Upo, and that we now want to determine the
second block column of U consisting of the blocks Uy and Usy.

Aoo Aot Ao Uk 0 0 Uoo Uo1 U
A11 A12 = UoTl UlTl 0 0 Ull U12
Ass UL UL UL)\ 0 0 Us

Equating submatrices in the second block of columns, we obtain

Aoy = UdyUos
Ay = ULUp + UL UL

Hence, since Uyg has already been computed, we can compute Uy as the solution
to the equation

ULUo = An

by a call to the Level 3 BLAS routine STRSM; and then we can compute Uy
from

ULUy, = Ay — UL U

This involves first updating the symmetric submatrix A;; by a call to the
Level 3 BLAS routine SSYRK, and then computing its Cholesky factorization.
Since Fortran 77 does not allow recursion, a separate routine must be called
(using Level 2 BLAS rather than Level 3), named SPOTF2 in Figure 1. In this
way, successive blocks of columns of U are computed. The LAPACK-style code
for the block algorithm is shown in Figure 1.

do j =0, n-1, nb
jb = min(nb, n-j)
call strsm(’left’, ’upper’, ’transpose’, ’non-unit’, j, jb, one,
a, lda, a(0,j), 1da)
call ssyrk(’upper’, ’transpose’, jb, j, -one, a(0,j), lda, one,
a(j,j), lda)
call spotf2(’upper’, jb, a(j,j), 1lda, info)
if (info .ne. 0) go to 20
end do

Fig. 1. The body of the “LAPACK-style” routine for block Cholesky factorization. In
this code fragment, nb denotes the width of the blocks.

4 Block Cyclic Data Distribution

The way in which a matrix is distributed over the processes has a major impact
on the load balance and communication characteristics of the concurrent algo-
rithm, and hence largely determines i1ts performance and scalability. The block
cyclic distribution provides a simple, yet general-purpose way of distributing a
block-partitioned matrix on distributed memory concurrent computers. It has
been incorporated in the High Performance Fortran standard [14].

The block cyclic data distribution is parameterized by the four numbers P,
P., r, and ¢, where P, x P, is the process template and r x ¢ is the block size.

Suppose first that we have M objects, indexed by an integer 0 < m < M, to
map onto P processes, using block size r. The m-th item will be stored in the
1-th location of block b on process p, where

(p,b,i) = <{%J mod P, VﬁJJ , mmodr> .

= of

In the special case where r = 2" and P are powers of two, this mapping
is really just bit extraction, with ¢ equal to the rightmost 7 bits of m, p equal
to the next P bits of m, and b equal to the remaining leftmost bits of m. The
distribution of a block-partitioned matrix can be regarded as the tensor prod-
uct of two such mappings: one that distributes the rows of the matrix over P,
processes, and another that distributes the columns over P. processes. That 1s,

the matrix element indexed globally by (m,n) is stored in location

<(pa Q)a (b’ d)’ (Z,_])> =

<([§J mod Py, | 2| mod), QLP;JJ VP;JD , (mmodr, nmodc)> .

The nonscattered decomposition (or pure block distribution) is just the spe-
cial case r = [M/P,] and ¢ = [N/FP,.]. Similarly a purely scattered decomposi-
tion (or two dimensional wrapped distribution) is the special case r = ¢ = 1.

5 ScaLAPACK

The ScalLAPACK software library is extending the LAPACK library to run
scalably on MIMD, distributed memory, concurrent computers [9]. For such ma-
chines the memory hierarchy includes the off-processor memory of other pro-
cessors, in addition to the hierarchy of registers, cache, and local memory on
each processor. Like LAPACK, the ScaLAPACK routines are based on block-
partitioned algorithms in order to minimize the frequency of data movement be-
tween different levels of the memory hierarchy. The fundamental building blocks
of the ScaLAPACK library are a set of Basic Linear Algebra Communication
Subprograms (BLACS) [8] for communication tasks that arise frequently in par-
allel linear algebra computations, and the Parallel Basic Linear Algebra Sub-
programs (PBLAS), which are a distributed memory version of the sequential
BLAS. In the ScaLAPACK routines, all interprocessor communication occurs
within the PBLAS and the BLACS, so the source code of the top software layer
of ScaLAPACK looks very similar to that of LAPACK.

Figure 2 describes the ScalLAPACK software hierarchy. The components be-
low the dashed line, labeled Local, are called on a single processor, with argu-
ments stored on single processors only. The components above the line, labeled
Global, are synchronous parallel routines, whose arguments include matrices and
vectors distributed in a 2D block cyclic layout across multiple processors.

ScalL APACK Software Hierarchy

ScalL APACK

M essage Passing Primitives
(MPI, PVM, MPL, NX, etc.)

Fig. 2. ScalLAPACK Software Hierarchy

5.1 The Basic Linear Algebra Communication Subprograms

(BLACS)

The BLACS (Basic Linear Algebra Communication Subprograms) [8] are a
message passing library designed for linear algebra. The computational model
consists of a one or two dimensional grid of processes, where each process stores
matrices and vectors. The BLACS include synchronous send/receive routines to
send a matrix or submatrix from one process to another, to broadcast subma-
trices to many processes, or to compute global reductions (sums, maxima and
minima). There are also routines to construct, change, or query the process grid.
Since several ScaLAPACK algorithms require broadcasts or reductions among
different subsets of processes, the BLACS permit a process to be a member of
several overlapping or disjoint process grids, each one labeled by a context. Some
message passing systems, such as MPI [15], also include this context concept.
The BLACS provide facilities for safe inter-operation of system contexts and
BLACS contexts.

5.2 PBLAS

In order to simplify the design of ScaLAPACK, and because the BLAS have
proven to be very useful tools outside LAPACK, we chose to build a Parallel
BLAS, or PBLAS [10], whose interface is as similar to the BLAS as possible. This
decision has permitted the ScaLAPACK code to be quite similar, and sometimes
nearly identical, to the analogous LAPACK code. Only one substantially new
routine was added to the PBLAS, matrix transposition, since this is a compli-
cated operation in a distributed memory environment [7].

We hope that the PBLAS will provide a distributed memory standard, just
as the BLAS have provided a shared memory standard. This would simplify and
encourage the development of high performance and portable parallel numerical
software, as well as providing manufacturers with a small set of routines to
be optimized. The acceptance of the PBLAS requires reasonable compromises
among competing goals of functionality and simplicity.

The PBLAS operate on matrices distributed in a 2D block cyclic layout. Since
such a data layout requires many parameters to fully describe the distributed
matrix, we have chosen a more object-oriented approach, and encapsulated these
parameters in an integer array called an array descriptor. An array descriptor
includes

1) the descriptor type,

2) the BLACS context (see Section 5.1),

3) the number of rows in the distributed matrix,

4) the number of columns in the distributed matrix,

5) the row block size (r in Section 4),

6) the column block size (¢ in Section 4),

7) the process row over which the first row of the matrix is distributed,
8) the process column over which the first column of the matrix is

(
(
(
(
(
(
(
(

distributed,
(9) the leading dimension of the local array storing the local blocks.

By using this descriptor, a call to a PBLAS routine is very similar to a call
to the corresponding BLAS routine.

CALL DGEMM (TRANSA, TRANSB, M, N, K, ALPHA,
A(IA, JA), LDA,
B(IB, JB), LDB, BETA,
¢(I¢, JC), LDC)

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, IA, JA, DESC_A,
B, JB, DESC_B, BETA,
¢, IC, JC, DESC_C)

DGEMM computes C = BETA * C + ALPHA * op(A) * op(B), where op(4)
is either A or its transpose depending on TRANSA, op(B) is similar, op(4) is M-
by-K, and op(B) is K-by-N. PDGEMM is the same, with the exception of the way in
which submatrices are specified. To pass the submatrix starting at A(IA,JA) to
DGEMU, for example, the actual argument corresponding to the formal argument A
would simply be A(IA,JA). PDGEMM, on the other hand, needs to understand the
global storage scheme of A to extract the correct submatrix, so IA and JA must
be passed in separately. DESC_A is the array descriptor for A. The parameters
describing the matrix operands B and C are analogous to those describing A. In
a truly object-oriented environment matrices and DESC_A would be synonymous.
However, this would require language support, and detract from portability.

The presence of a context associated with every distributed matrix provides
the ability to have separate “universes” of message passing. The use of separate
communication contexts by distinct libraries (or distinct library invocations)
such as the PBLAS insulates communication internal to the library from external
communication. When more than one descriptor array is present in the argument
list of a routine in the PBLAS, it is required that the individual BLACS context
entries must be equal. In other words, the PBLAS do not perform “inter-context”
operations.

We have not included specialized routines to take advantage of packed storage
schemes for symmetric, Hermitian, or triangular matrices, nor of compact storage
schemes for banded matrices [10].

5.3 ScalLAPACK sample code

Given the infrastructure described above, the ScaLAPACK version (PDGETRF)
of the LU decomposition is nearly identical to its LAPACK version (DGETRF).

SEQUENTIAL LU FACTORIZATION CODE

D0 20 J =1, HINCH,), B
JB = MIN(MIN(M, W)-J+1, UB)

Factor diagonal and subdiagonal blocks and test for exact
singularity.

CALL DGETF2(M-J+1, JB, AC J, J), LDA, IPIV(J),
$ IINFO)

Adjust INFD and the pivot indices.
IF(INFO.EQ.O .AND. IINFO.GT.0) INFO = IINFO + J - 1
D0 10 I = J, MINC M, J+JB-1)
IPIV(I) =J -1+ IPIV(I)
10 CONTINUE

Apply interchanges to columns 1:J-1.

CALL DLASWP(J-1, A, LDA, J, J+JB-1, IPIV, 1)

IF(J+JB.LE.N) THER
Apply interchanges to columns J+JB:N.

CALL DLASWP(§-J-JB+1, A(1, J+JB), LDA, J, J+JB-1,
$ IPIV, 1)

Compute block row of U.

CALL DTRSM(’Left’, ’Lower’, ’Ho transpose’, ’Unit’,
$ JB, N-J-JB+1, ONE, A(J, J), LD4,
$ A(J, J+JB), LDA)

IF(J+JB.LE.M) THEN

Update trailing submatrix.

CALL DGEMM(’No tramspose’, ’'No transpose’,

$ W-J-JB+1, W-J-JB+1, JB, -ONE,
$ A(J+JB, J), LDA, A(J, J+JB), LDA,
$ ONE, A(J+JB, J+JB), LDA)
END IF
END IF

20 CONTINUE

PARALLEL LU FACTORIZATION CODE
DO 10 J = JA, JA+HIN(H,ID-1, DESCA(5)
JB = MIN(MIN(M,N)-J+JA, DESCA(5))
T=T1a+J-JA

Factor diagonal and subdiagonal blocks and test for exact
singularity.

CALL PDGETF2(M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO)

Adjust INFO and the pivot indices.

IF(INFO.EQ.O .AND. IINFD.GT.0)
$ INFO = IINFD + J - JA

Apply interchanges to columns JA:J-JA.

CALL PDLASWP(’Forward’, 'Rows’, J-JA, A, IA, JA, DESCA,
$ J, J+JB-1, IPIV)

IF(J-JA+JB+1.LE.N) THEN
Apply interchanges to columns J+JB:JA+H-1.

CALL PDLASWP(’Forward’, ’Rows’, H-J-JB+JA, A, IA,
$ J+JB, DESCA, J, J+JB-1, IPIV)

Compute block row of U.

CALL PDTRSM(’Left’, ’Lower’, ’Ho transpose’, ’Unit’,
$ JB, N-J-JB+JA, ONE, A, I, J, DESCA, A, I,
$ J+JB, DESCA)

IF(J-JA+JB+1.LE.M) THEN

Update trailing submatrix.

CALL PDGEMM(’No tramspose’, ’Ho tramspose’,

$ W-J-JB+JA, W-J-JB+JA, JB, -DUE, A,
$ I+JB, J, DESCA, A, I, J+JB, DESCA,
$ ONE, A, I+JB, J+JB, DESCA)
END IF
END IF

10 CONTINUE

5.4 ScaLAPACK — Contents and Documentation

The ScaLAPACK library provides routines for the solution of linear systems of
equations, symmetric positive definite banded linear systems of equations, con-
dition estimation and iterative refinement, for LU and Cholesky factorization,
matrix inversion, full-rank linear least squares problems, orthogonal and gener-
alized orthogonal factorizations, orthogonal transformation routines, reductions
to upper Hessenberg, bidiagonal and tridiagonal form, reduction of a symmetric-
definite generalized eigenproblem to standard form, the symmetric, generalized
symmetric and the nonsymmetric eigenproblem. Similar functionality is provided
for real and complex matrices, in both single and double precision.

A comprehensive Installation Guide is provided, as well as test suites for all

ScaLAPACK, PBLAS, and BLACS routines.

5.5 ScaLAPACK — Performance

The main factors that affect the performance of linear algebra software on
distributed-memory machines are the block size and the configuration of the

Performance comparison of various codes on 64 SP-2 thin nodes

process grid.

The ScaLAPACK codes run efficiently on a wide range of distributed memory
MIMD computers, such as the IBM SP series, the Cray T3 series, and the Intel
series. Figure 3 presents a variety of performance results on the IBM SP-2 and
the Intel Paragon. Extensive performance results can be found in [9]. On 8 wide
nodes of an IBM SP-2 for example, a 13000 x 13000 LU factorization runs at
1.6 Gflop/s. A 2000 x 2000 LU factorization on the same machine reaches already
1.0 Gflop/s. These performance results correspond to a very efficient use of this
machine. The ScalLAPACK library can also be used on clusters of workstations,
and any system for which PVM [12] or MPT [13, 15, 16] is available. Performance
results on the TMC CM-5, however, have been disappointing because of the
difficulty of using the vector units in message passing programs.

LU Efficiency on the Intel Paragon MP's node (r=c=16)

LLT, 8x8 01l
QR, 8x8 : 28 48

. 0.6

L

o

135
T

o
~
T

Efficiency

o
w
T

BRD, 848

TRD, 8x8 02r

4x16

I 0 I I I I I I I I
18 2 0 0.2 0.4 0.6 0.8 1 12 14 16

Matrix Size

Matrix Size

Fig. 3. IBM SP-2 and Intel Paragon Performance

6 Conclusions and Related Projects

Both LAPACK and ScalLAPACK are slated for updated software and documen-
tation releases toward the end of 1996. Alternative interfaces for the libraries are
under development. A BLAS Technical Forum is being established to consider
expanding the BLAS for serial and parallel computation. And finally, a number
of other aspects of the ScaLAPACK project, including sparse and out-of-core
activities, are available or underway.

The upcoming LAPACK release (version 3.0) will introduce routines for the
singular value decomposition computed by the divide-and-conquer method, new

18

x10°

simple and expert drivers for the generalized nonsymmetric eigenproblem, a
faster QR decomposition with column pivoting, a faster solver for the rank-
deficient least squares, and a blocked version of the reduction of a upper trape-
zoidal matrix to upper triangular form. The third edition of the LAPACK Users’
Guide will coincide with this release.

Future releases of the ScaLAPACK library will extend the flexibility of the
PBLAS and increase the functionality of the library to include routines for the
solution of general banded linear systems, general and symmetric positive defi-
nite tridiagonal systems, rank-deficient linear least squares problems, generalized
linear least squares problems, and the singular value decomposition. A draft of
the ScaLAPACK Users’ Guide is currently available on netlib and we plan to
have the final draft ready for publication at the end of 1996.

A Fortran 90 interface for the LAPACK library 1s currently under develop-
ment. This interface will provide an improved user-interface to the package by
taking advantage of the considerable simplifications of the Fortran 90 language
such as assumed-shape arrays, optional arguments, and generic interfaces.

As HPF compilers have recently become available, work is currently in progress
to produce an HPF interface for the ScaLAPACK library. HPF provides a much
more convenient distributed memory interface than can be provided in processor-
level languages such as Fortran77 or C. This interface to a subset of the ScalLA-
PACK routines will be available at the time of the next ScaLAPACK release.
With the increased generality of the PBLAS to operate on partial first blocks,
ScaLAPACK will be fully compatible with HPF [14].

Also underway is an effort to establish a BLAS Technical Forum to consider
expanding the BLAS in a number of ways in light of modern software, language,
and hardware developments. The goals of the forum are to stimulate thought and
discussion, and define functionality and future development of a set of standards
for basic matrix and data structures. Dense and sparse BLAS are considered,
as well as calling sequences for a set of low-level computational kernels for the
parallel and sequential settings. For more information on the BLAS Technical
Forum refer to the URL:

http://www.netlib.org /utk/papers/blast-forum.html
The EISPACK, LINPACK, LAPACK, BLACS and SCALAPACK linear al-

gebra libraries are in the public domain. The software and documentation can
be retrieved from netlib (http://www.netlib.org).

7 Acknowledgments

We wish to acknowledge Antoine Petitet for assembling the previous version of
this tutorial, and thank him for his advice and contributions to this effort.
References

1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK

Users’ Guide, Second Edition. SIAM, Philadelphia, PA, 1995.

2. Lawson, C., Hanson, R., Kincaid, D., Krogh, F.: Basic Linear Algebra Subprograms
for Fortran Usage. ACM Transactions on Mathematical Software, 5:308-323, 1979.

3. Dongarra, J., Du Croz, J., Hammarling, S., Hanson, R.: Algorithm 656: An ex-
tended Set of Basic Linear Algebra Subprograms: Model Implementation and Test
Programs. ACM Transactions on Mathematical Software, 14(1):18-32, 1988.

4. Dongarra, J., Du Croz, J., Duff, 1., Hammarling, S.: A Set of Level 3 Basic Linear
Algebra Subprograms. ACM Transactions on Mathematical Software, 16(1):1-17,
1990.

5. Anderson, E., Dongarra, J.: Results from the initial release of LAPACK. LAPACK
working note 16, Computer Science Department, University of Tennessee, Knoxville,
TN, 1989.

6. Anderson, E., Dongarra, J.: Evaluating block algorithm variants in LAPACK. L A-
PACK working note 19, Computer Science Department, University of Tennessee,
Knoxville, TN, 1990.

7. Cho, J., Dongarra, J., Walker, D.: Parallel matrix transpose algorithms on dis-
tributed memory concurrent computers. In Proceedings of Fourth Symposium on
the Frontiers of Massively Parallel Computation (McLean, Virginia), pages 245—
252. IEEE Computer Society Press, Los Alamitos, California, 1993. (also LAPACK
Working Note #65).

8. Dongarra, J., Whaley, R.C.: A User’s Guide to the BLACS v1.0. Technical Report
UT CS-95-281, LAPACK Working Note #94, University of Tennessee, 1995.

9. Choi, J., Demmel, J., Dhillon, 1., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley,
K., Walker, D., Whaley, R.C.: ScaLAPACK: A Portable Linear Algebra Library for
Distributed Memory Computers - Design Issues and Performance. Technical Report
UT CS-95-283, LAPACK Working Note #95, University of Tennessee, 1995.

10. Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D., Whaley, R.C.: A
Proposal for a Set of Parallel Basic Linear Algebra Subprograms. Technical Report
UT CS-95-292, LAPACK Working Note #100, University of Tennessee, 1995.

11. Dongarra, J., Duff, 1., Sorensen, D., Van der Vorst, H.: Solving Linear Systems
on Vector and Shared Memory Computers. SIAM Publications, Philadelphia, PA,
1991.

12. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., V. Sunderam, V.:
PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Parallel
Computing. The MIT Press, Cambridge, Massachusetts, 1994.

13. Gropp, W., Lusk, E. Skjellum, A.: Using MPI: Portable Programming with the
Message-Passing Interface, MIT Press, Cambridge, MA, 1994.

14. Koebel, C., Loveman, D., Schreiber, R., Steele, G., Zosel, M.: The High Perfor-
mance Fortran Handbook. The MIT Press, Cambridge, Massachusetts, 1994.

15. Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
International Journal of Supercomputer Applications and High Performance Com-
puting, 8(3-4), 1994.

16. Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W. and Dongarra, J.: MPI:
The Complete Reference, MIT Press, Cambridge, MA, 1996.

17. Wilkinson, J., Reinsch, C.: Handbook for Automatic Computation: Volume II -
Linear Algebra. Springer-Verlag, New York, 1971.

This article was processed using the IATpX macro package with LLNCS style

