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Overview

� Motivation - History Level 1 BLAS

� Linpack

� Unrolling to allow compiler to reconize

�Why

� Tricks like the babe algorithm

� Supercomputers

� Vector Computers

� Level 2 3 BLAS

� Compilers

� Memory Heirarchy

� RISC

� Linpack on RISC

� MP

� Scalapack

� Bandwidth Latency

� Iterative Methods (Bombardment)

� Future
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Mathematical Software for Linear
Algebra in the 1970's

� 1970's software packages for eigenvalue problems and

linear equations.

� EISPACK - Fortran routines

{ Eigenvalue problem

{ Wilkinson - Reinsch Handbook for Automatic Com-

putation

� LINPACK - Fortran routines

{ Systems of linear equations.

{ Collective ideas.
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Mathematical Software for Linear
Algebra in the 1970's

� EISPACK early 70's

� Fortran translation of Algol algorithms from Num. Math.

� Software issues -

{ Portability

{ Robustness

{ Accuracy

{ Uniform

{ Well documented

� Little thought given to high performance computers.

� CDC 7600 state-of-the-art supercomputer.
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Mathematical Software for Linear
Algebra in the 1970's

� Level 1 BLAS

� Basic Linear Algebra Subprograms for Fortran Usage

� C. Lawson, R. Hanson, D. Kincaid, and F. Krogh

� Conceptial aid in design and coding

� Aid to readability and documentation

� Promote e�cieny:

{ through optimization or assembly language versions

� Improve robustness and reliability

� Improve portability through standardization
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Mathematical Software for Linear
Algebra in the 1970's

Level 1 BLAS

� Dot products

� 'axpy' operations y  �x + y

� Multiple a vector by a constant

� Set up and apply Givens rotations

� Copy and swap vectors

� Vector norms

name dim scalars vector vector scalars

SUBROUTINE AXPY (N, ALPHA X, INCX, Y, INCY )

FUNCTION DOT (N, X, INCX, Y, INCY )

SUBROUTINE SCAL (N, ALPHA X, INCX )

SUBROUTINE ROTG ( A, B C,S )

SUBROUTINE ROT (N X, INCX, Y, INCY C,S )

SUBROUTINE COPY (N, X, INCX, Y, INCY )

SUBROUTINE SWAP (N, X, INCX, Y, INCY )

FUNCTION NRM2 (N, X, INCX )

FUNCTION ASUM (N, X, INCX )

FUNCTION ASUM (N, X, INCX )
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Mathematical Software for Linear
Algebra in the 1970's

� LINPACK late 70's

� Used current ideas - not a translation.

� First vector supercomputer arrived - CRAY 1.

� BLAS to standardize basic vector operations.

� LINPACK embraced BLAS for modularity and e�ciency.

� Reworked algorithms.

� Column oriented.
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Here is the body of the code of the LINPACK routine

SPOFA, which implements the above method:

DO 30 J = 1, N

INFO = J

S = 0.0E0

JM1 = J - 1

IF (JM1 .LT. 1) GO TO 20

DO 10 K = 1, JM1

T = A(K,J) - SDOT(K-1,A(1,K),1,A(1,J),1)

T = T/A(K,K)

A(K,J) = T

S = S + T*T

10 CONTINUE

20 CONTINUE

S = A(J,J) - S

C ......EXIT

IF (S .LE. 0.0E0) GO TO 40

A(J,J) = SQRT(S)

30 CONTINUE
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BLAS { BASICS

Level 1 BLAS { Vector Operations (Late '70s)

y  y + �x, y  x, y  �x,

� xTy, � kxk2, y $ x.

Example: SAXPY operate with vectors:

y  y + �x

� 2 vector loads

� 2 vector operations

� 1 vector store

Too muchmemory tra�c: little chance to use the memory hierarchy,

� O(n) memory references,

� O(n) 
oating point operations.
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Loop Unrolling

In scalar case

do i = 1,n,4 y(1:n) = y(1:n) + alfa*x(1:n)

y(i) = y(i) + alfa*x(i)

y(i+1) = y(i+1) + alfa*x(i+1)

y(i+2) = y(i+2) + alfa*x(i+2)

y(i+3) = y(i+3) + alfa*x(i+3)

continue

� WHY?

{ Reduce the loop overhead

{ Allow pipelined functional units to operate

{ Allow independent functional units to operate

{ Vector instructions

� Operation to data reference

{ 2n operations

{ 3n data transfer

� Machines that might bene�t?

{ Thought would work well on all scalar machines, but... vector

machines
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Other Tricks for Performance...

Algorithm for factoring a tridiagonal matrix
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� Algorithm is sequential in nature.

� Not much scope for pipelining.

� In an attempt to increase the speed of execution the BABE algorithm

was adopted.

12

Burn At Both Ends (BABE)

With the BABE algorithm the factoerization is started at

the top of the matrix as well as the bottom of the matrix

at the same time.0
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� Reduce loop overhead by a factor of 2

� Scope for independent operations

� Resulted in 25% faster execution



13

Level 1, 2, and 3 BLAS

� Level 1 BLAS{vector-vector operations

.+

y  y + �x, also dot product, ...

� Level 2 BLAS{matrix-vector operations

+

y  y + Ax, also triangular solve, rank-1 update

� Level 3 BLAS{matrix-matrix operations

+
.

A  A + BC, also block triangular solve, rank-k update
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Why Higher Level BLAS?

Register

Data cache

Local memory

Remote memory

Secondary memory

Smallest

Largest

Largest

Slowest

IBM SP2 Memory Hierarchy

256 B

256 KB

128 MB

24 GB

485 GB

2128 MB/s

10 MB/s

32 MB/s

2128 MB/s

2128 MB/s

� Can only do arithmetic on data at top

�! keep active data as close to top of hierarchy as possible

� Higher level BLAS lets us do this:

mem ref 
ops 
ops/mem ref

Level 1 BLAS y  y + �x 3n 2n 2/3

Level 2 BLAS y  y + Ax n
2

2n
2

2

Level 3 BLAS A  A + BC 4n
2

2n
3

n/2

� On parallel machines

higher level BLAS �!increase granularity �! lower synchronization cost
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Matrix-vector product

DOT version-25 M
ops in cache

( Model 530, 50 M
op/s peak)

DO 20 I = 1, M

DO 10 J = 1, N

Y(I) = Y(I) + A(I,J)*X(J)

10 CONTINUE

20 CONTINUE

From Cache 22.7 M
ops

Memory 12.4 M
ops
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Loop unrolling

DO 20 I = 1, M, 2

T1 = Y(I )

T2 = Y(I+1)

DO 10 J = 1, N

T1 = T1 + A(I,J )*X(J)

T2 = T2 + A(I+1,J)*X(J)

10 CONTINUE

Y(I ) = T1

Y(I+1) = T2

20 CONTINUE

3 loads, 4 
ops

Speed of y  y + ATx;N = 48

Model 530 (50 M
op/s peak) Depth 1 2 3 4 1

Speed 25 33.3 37.5 40 50

Measured 22.7 30.5 34.3 36.5 -

(Memory) 12.4 12.7 12.7 12.6 -
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Matrix-matrix multiply

DOT version - 25 M
ops in cache

DO 30 J = 1, M

DO 20 I = 1, M

DO 10 K = 1, L

C(I,J) = C(I,J) + A(I,K)*B(K,J)

10 CONTINUE

20 CONTINUE

30 CONTINUE
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How to get 50 M
ops!

DO 30 J = 1, M, 2

DO 20 I + 1, M, 2

T11 = C(I, J )

T12 = C(I, J+1)

T21 = C(I+1,J )

T22 = C(I+1,J+1)

DO 10 K = 1, L

T11 = T11 + A(I, K)*B(K,J )

T12 = T12 + A(I, K)*B(K,J+1)

T21 = T21 + A(I+1,K)*B(K,J )

T22 = T22 + A(I+1,K)*B(K,J+1)

10 CONTINUE

C(I, J ) = T11

C(I, J+1) = T12

C(I+1,J ) = T21

C(I+1,J+1) = T22

20 CONTINUE

30 CONTINUE

Inner loop: 4 loads, 8 operations, optimal.

In practice we have measured 48.1

(M=N=16, L=128)
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BLAS { BASICS
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Level 1

Level 2

Level 3

� Development of blocked algorithms using Level 3

BLAS,

� ) LAPACK, high performance, portability.
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BLAS { REFERENCES

� BLAS software and documentation can be obtained
via:

{ WWW: http://www.netlib.org/blas,

{ (anonymous) ftp netlib2.cs.utk.edu:

cd blas; get index

{ email netlib@ornl.gov with the message:

send index from blas

� Comments and questions can be addressed at

lapack@cs.utk.edu

� C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic Linear

Algebra Subprograms for Fortran Usage, ACM Transactions on

Mathematical Software, 5:308{325, 1979.

� J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, An Ex-

tended Set of Fortran Basic Linear Algebra Subprograms, ACM

Transactions on Mathematical Software, 14(1):1{32, (1988).

� J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, A Set of Level

3 Basic Linear Algebra Subprograms, ACM Transactions on Math-

ematical Software, 16(1):1{17, 1990.
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Block Algorithms and their Derivation
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and equating coe�cients of the jth column, we obtain:

aj = UT
11uj

ajj = uT
j uj + u2jj:

Hence, if U11 has already been computed, we can compute uj and ujj

from the equations:

UT
11uj = aj

u2jj = ajj � uT
j uj:
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Here is the body of the code of the LINPACK routine SPOFA, which

implements the above method:

DO 30 J = 1, N

INFO = J

S = 0.0E0

JM1 = J - 1

IF (JM1 .LT. 1) GO TO 20

DO 10 K = 1, JM1

T = A(K,J) - SDOT(K-1,A(1,K),1,A(1,J),1)

T = T/A(K,K)

A(K,J) = T

S = S + T*T

10 CONTINUE

20 CONTINUE

S = A(J,J) - S

C ......EXIT

IF (S .LE. 0.0E0) GO TO 40

A(J,J) = SQRT(S)

30 CONTINUE
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DO 10 J = 1, N

CALL STRSV( 'Upper', 'Transpose', 'Non-unit', J-1, A, LDA,

$ A(1,J), 1 )

S = A(J,J) - SDOT( J-1, A(1,J), 1, A(1,J), 1 )

IF( S.LE.ZERO ) GO TO 20

A(J,J) = SQRT( S )

10 CONTINUE

� change by itself is su�cient to make big gains in performance on a

number of machines

� from 24 to 34 mega
ops for a matrix of order 500 on an IBM RS/6000

model 550.

� from 72 to 251 mega
ops for a matrix of order 500 on one processor

of a CRAY Y-MP
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To derive a block form of Cholesky factorization, we write the de�ning

equation in partitioned form thus:

0
BBBBB@

A11 A12 A13

: A22 A23

: : A33

1
CCCCCA
=

0
BBBBB@

UT
11 0 0

UT
12 UT

22 0

UT
13 UT

23 UT
33

1
CCCCCA

0
BBBBB@

U11 U12 U13

0 U22 U23

0 0 U33

1
CCCCCA
:

Equating submatrices in the second block of columns, we obtain:

A12 = UT
11U12

A22 = UT
12U12 + UT

22U22:

Hence, if U11 has already been computed, we can compute U12 as the

solution to the equation

UT
11U12 = A12

by a call to the Level 3 BLAS routine STRSM; and then we can compute

U22 from

UT
22U22 = A22 � U

T
12U12:
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Speed in mega
ops of Cholesky factorization A = UTU for n = 500

Machine: RS/6000 - 500

j-variant: LINPACK 24

j-variant: using Level 2 BLAS 34

j-variant: using Level 3 BLAS 69

DO 10 J = 1, N, NB

JB = MIN( NB, N-J+1 )

CALL STRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', J-1, JB,

$ ONE, A, LDA, A(1,J), LDA )

CALL SSYRK( 'Upper', 'Transpose', JB, J-1, -ONE, A(1,J), LDA,

$ ONE, A(J,J), LDA )

CALL SPOTF2( 'Upper', JB, A(J,J), LDA, INFO )

IF( INFO.NE.0 ) GO TO 20

10 CONTINUE
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Blocked Algorithms have been developed for:

� LU factorization

� Cholesky factorization

� Factorization of symmetric inde�nite matrices

� Matrix inversion

� Banded LU and Cholesky factorization

� QR factorization

� Form Q or QTB

� Orthogonal reduction to:

{ Hessenberg

{ symmetric tridiagonal

{ bidiagonal

� Block QR iteration for nonsymmetric eigenvalue problems
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Performance Numbers Comparing Various RISC Processors

Using the Linpack Benchmark

(All based on actual runs.)

Linpack n=100 based on Fortran code only.

Ax=b n=1000 is based on a blocked algorithm (LAPACK routine)

using the Level 3 BLAS as provided by the vendor.

Cycle Linpack Ax = b Theor

time n=100 % n=1000 % Peak

Machine MHz nsec M
ops peak M
ops peak M
ops

DEC Alpha 300 3.3 140 23% 411 69% 600

IBM Power2 66 15 130 48% 236 89% 266

SGI Power 75 13.3 101 33% 260 87% 300

HP 735 100 10 61 31% 107 54% 198

DEC Alpha 200 5 43 22% 155 78% 200

DEC Alpha 182 5 39 21% 141 77% 182

IBM RS-580 66 15 38 30% 104 83% 125

DEC Alpha 160 6 36 23% 114 71% 160

DEC Alpha 150 7 30 20% 107 71% 150

IBM RS-550 42 24 26 31% 70 83% 84

HP 730/750 66 15 24 36% 47 71% 66

SGI Indy2/Crim 100 10 15 30% 32 64% 50

IBM RS-530 25 40 15 30% 42 84% 50

KSR (1 proc) 40 25 15 38% 31 78% 40

Intel i860 40 25 10 25% 34 85% 40

CRAY T90 454 2.2 522 29% 1576 88% 1800

CRAY C90 238 4.2 387 41% 902 95% 952

CRAY J90 100 10 115 51% 193 96% 200

CRAY Y-MP 166 6 161 48% 324 97% 333

CRAY X-MP 118 8.5 121 51% 218 93% 235

CRAY 3 481 2.1 241 25% 962

CRAY 2 244 4.1 120 25% 384 79% 488

CRAY 1 80 12.5 27 17% 110 69% 160
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Table 1: Multiprocessor Latency and Bandwidth.
Latency Bandwidth n1=2 Theoretical

Machine OS n = 0 (�s) n = 106 (MB/s) bytes Bandwidth

(MB/s)

Convex SPP1200 (PVM) SPP-UX 3.0.4.1 63 15 1000 250

Convex SPP1200 (sm m-n) SPP-UX 3.0.4.1 11 71 1000 250

Cray T3D (sm) MAX 1.2.0.2 3 128 363 300

Cray T3D (PVM) MAX 1.2.0.2 21 27 1502 300

Intel Paragon OSF 1.0.4 29 154 7236 175

Intel Paragon SUNMOS 1.6.2 25 171 5856 175

Intel Delta NX 3.3.10 77 8 900 22

Intel iPSC/860 NX 3.3.2 65 3 340 3

Intel iPSC/2 NX 3.3.2 370 2.8 1742 3

IBM SP-1 MPL 270 7 1904 40

IBM SP-2 MPI 35 35 3263 40

KSR-1 OSF R1.2.2 73 8 635 32

Meiko CS2 (sm) Solaris 2.3 11 40 285 50

Meiko CS2 Solaris 2.3 83 43 3559 50

nCUBE 2 Vertex 2.0 154 1.7 333 2.5

nCUBE 1 Vertex 2.3 384 0.4 148 1

NEC Cenju-3 Env. Rel 1.5d 40 13 900 40

NEC Cenju-3 (sm) Env. Rel 1.5d 34 25 400 40

SGI IRIX 6.1 10 64 799 1200

TMC CM-5 CMMD 2.0 95 9 962 10

Ethernet TCP/IP 500 0.9 1.2

FDDI TCP/IP 900 9.7 12

ATM-100 TCP/IP 900 3.5 12
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Table 2: Computation Performance.

Clock cycle Linpack 100 Linpack 1000 Latency

Machine OS MHz (nsec) M
s (ops/cl) M
s (ops/cl) us (cl)

Convex SPP1200 (PVM) SPP-UX 3.0.4.1 100 (8.33) 65 (.54) 123 (1.02) 63 (7560)

Convex SPP1200 (sm m-n) 11 (1260)

Cray T3D (sm) MAX 1.2.0.2 150 (6.67) 38 (.25) 94 (.62) 3 (450)

Cray T3D (PVM) 21 (3150)

Intel Paragon OSF 1.0.4 50 (20) 10 (.20) 34 (.68) 29 (1450)

Intel Paragon SUNMOS 1.6.2 25 (1250)

Intel Delta NX 3.3.10 40 (25) 9.8 (.25) 34 (.85) 77 (3080)

Intel iPSC/860 NX 3.3.2 40 (25) 9.8 (.25) 34 (.85) 65 (2600)

Intel iPSC/2 NX 3.3.2 16 (63) .37 (.01) { ({) 370 (5920)

IBM SP-1 MPL 62.5 (16) 38 (.61) 104 (1.66) 270 (16875)

IBM SP-2 MPI 66 (15.15) 130 (1.97) 236 (3.58) 35 (2310)

KSR-1 OSF R1.2.2 40 (25) 15 (.38) 31 (.78) 73 (2920)

Meiko CS2 (MPI) Solaris 2.3 90 (11.11) 24 (.27) 97 (1.08) 83 (7470)

Meiko CS2 (sm) 11 (990)

nCUBE 2 Vertex 2.0 20 (50) .78 (.04) 2 (.10) 154 (3080)

nCUBE 1 Vertex 2.3 8 (125) .10 (.01) { ({) 384 (3072)

NEC Cenju-3 Env Rev 1.5d 75 (13.3) 23 (.31) 39 (.52) 40 (3000)

NEC Cenju-3(sm) Env Rev 1.5d 75 (13.3) 23 (.31) 39 (.52) 34 (2550)

SGI Power Challenge IRIX 6.1 90 (11.11) 126 (1.4) 308 (3.42) 10 (900)

TMC CM-5 CMMD 2.0 32 (31.25) { ({) { ({) 95 (3040)
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Challenges in developing distributed memory libraries

� How to integrate libraries?

{ no standard software

{ many parallel languages

{ many 
avors of message passing

{ various parallel programming models

{ assumptions made about parallel environment

� granularity

� topology

� overlapping of communication / computation

� development tools

� Where is the data?

{ who owns it?

{ optimal data distribution not a function of individual routines but of

overall integration of components

� Who determines data layout and/or transformations?

{ determined by user?

{ determined by library developer?

{ choose from a small set?

{ allow for dynamic data distributions?

{ load balancing?
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PBLAS { INTRODUCTION

Parallel Basic Linear Algebra Subprograms for distributed

memory MIMD computers.

� Similar functionality as the BLAS: distributed vector-vector,

matrix-vector and matrix-matrix operations,

� Simpli�cation of the parallelization of dense linear algebra

codes: especially when implemented on top of the BLAS,

� Clarity: code is shorter and easier to read,

� Modularity: gives programmer larger building blocks,

� Program portability: machine dependency are con�ned to the

PBLAS (BLAS and BLACS).
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PBLAS { STORAGE CONVENTIONS

� An M -by-N matrix is block partitionned and these MB -by-NB

blocks are distributed according to the

2-dimensional block-cyclic scheme

) load balanced computations, scalability,

� Locally, the scattered columns are stored contiguously (FOR-

TRAN \Column-major")

) re-use of the BLAS (leading dimension LLD ).

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a35a34a33a32a31

a41 a42 a43 a44 a45

a55a54a53a52a51
5 x 5 matrix partitioned in 2 x 2 blocks

a11

a21

a51a52

a22

a12a15

a25

a55

a31a32

a42a41

a35

a45

a33a34

a43a44

a13a14

a23a24

a53a54

0

0 1

1

2 x 2 process grid point of view

Descriptor DESC : 8-Integer array describing the matrix layout, con-

taining M , N , MB , NB , RSRC , CSRC , CTXT and LLD , where (RSRC ,

CSRC ) are the coordinates of the process owning the �rst matrix entry in

the grid speci�ed by CTXT .

Ex: M =N =5, MB =NB =5, RSRC =CSRC = 0, LLD � 3 (in process row

0), and 2 (in process row 1).

35

PBLAS { ARGUMENT CONVENTIONS

� Global view of the matrix operands, allowing global address-

ing of distributed matrices (hiding complex local indexing),

N_

M_ M

N

JA

IA

A( IA:IA+M−1, JA:JA+N−1 )

� Code reusability, interface very close to sequential BLAS:

CALL DGEXXX( M, N, A( IA, JA ), LDA )

CALL DGEMM( 'No Transpose', 'No Transpose',

$ M-J-JB+1, N-J-JB+1, JB, -ONE, A(J+JB,J),

$ LDA, A(J,J+JB), LDA, ONE, A(J+JB,J+JB),

$ LDA )

#

CALL PDGEXXX( M, N, A, IA, JA, DESCA )

CALL PDGEMM( 'No Transpose', 'No Transpose',

$ M-J-JB+1, N-J-JB+1, JB, -ONE, A, J+JB,

$ J, DESCA, A, J, J+JB, DESCA, ONE, A,

$ J+JB, J+JB, DESCA )
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PBLAS { SPECIFICATIONS

DGEMV( TRANS, M, N, ALPHA, A, LDA, X, INCX,

BETA, Y, INCY )

l

PDGEMV( TRANS, M, N, ALPHA, A, IA, JA, DESCA,

X, IX, JX, DESCX, INCX,

BETA, Y, IY, JY, DESCY, INCY )

� In the PBLAS, the increment speci�ed for vectors is always global.

So far only INCX=1 and INCX=DESCX(1) are supported.

BLAS PBLAS

INTEGER LDA INTEGER IA, JA, DESCA( 8 )

INTEGER INCX INTEGER INCX, IX, JX, DESCX( 8 )

A, LDA A, IA, JA, DESCA

X, INCX X, IX, JX, DESCX, INCX

� PBLAS matrix transposition routine (REAL):

PDTRAN( M, N, ALPHA, A, IA, JA, DESCA, BETA,

C, IC, JC, DESCC )

� Level 1 BLAS functions have become PBLAS subroutines. Ouput

Scalar correct in operand scope.

>> SPMD PROGRAMMING MODEL <<
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Parallel Level 2 and 3 BLAS: PBLAS

Goal

� Port sequential library for shared memory machine that use the BLAS

to distributed memory machines with little e�ort.

� Reuse the existing software by hiding the message passing in a set of

BLAS routines.

� Parallel implementation of the BLAS that understands how the matrix

is layed out and when called can perform not only the operation but

the required data transfer.

LAPACK! ScaLAPACK

BLAS! PBLAS (BLAS, BLACS)

� Quality (maintenance)

� Portability (F77 - C)

� E�ciency - Reuseability (BLAS, BLACS)

� Hide Parallelism in (P)BLAS
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SEQUENTIAL LU FACTORIZATION CODE

DO 20 J = 1, MIN( M, N ), NB

JB = MIN( MIN( M, N )-J+1, NB )

Factor diagonal and subdiagonal blocks and test for exact

singularity.

CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ),

$ IINFO )

Adjust INFO and the pivot indices.

IF( INFO.EQ.0 .AND. IINFO.GT.0 ) INFO = IINFO + J - 1

DO 10 I = J, MIN( M, J+JB-1 )

IPIV( I ) = J - 1 + IPIV( I )

10 CONTINUE

Apply interchanges to columns 1:J-1.

CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )

IF( J+JB.LE.N ) THEN

Apply interchanges to columns J+JB:N.

CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,

$ IPIV, 1 )

Compute block row of U.

CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit',

$ JB, N-J-JB+1, ONE, A( J, J ), LDA,

$ A( J, J+JB ), LDA )

IF( J+JB.LE.M ) THEN

Update trailing submatrix.

CALL DGEMM( 'No transpose', 'No transpose',

$ M-J-JB+1, N-J-JB+1, JB, -ONE,

$ A( J+JB, J ), LDA, A( J, J+JB ), LDA,

$ ONE, A( J+JB, J+JB ), LDA )

END IF

END IF

20 CONTINUE

PARALLEL LU FACTORIZATION CODE

DO 10 J = JA, JA+MIN(M,N)-1, DESCA( 4 )

JB = MIN( MIN(M,N)-J+JA, DESCA( 4 ) )

I = IA + J - JA

Factor diagonal and subdiagonal blocks and test for exact

singularity.

CALL PDGETF2( M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO )

Adjust INFO and the pivot indices.

IF( INFO.EQ.0 .AND. IINFO.GT.0 )

$ INFO = IINFO + J - JA

Apply interchanges to columns JA:J-JA.

CALL PDLASWP( 'Forward', 'Rows', J-JA, A, IA, JA, DESCA,

$ J, J+JB-1, IPIV )

IF( J-JA+JB+1.LE.N ) THEN

Apply interchanges to columns J+JB:JA+N-1.

CALL PDLASWP( 'Forward', 'Rows', N-J-JB+JA, A, IA,

$ J+JB, DESCA, J, J+JB-1, IPIV )

Compute block row of U.

CALL PDTRSM( 'Left', 'Lower', 'No transpose', 'Unit',

$ JB, N-J-JB+JA, ONE, A, I, J, DESCA, A, I,

$ J+JB, DESCA )

IF( J-JA+JB+1.LE.M ) THEN

Update trailing submatrix.

CALL PDGEMM( 'No transpose', 'No transpose',

$ M-J-JB+JA, N-J-JB+JA, JB, -ONE, A,

$ I+JB, J, DESCA, A, I, J+JB, DESCA,

$ ONE, A, I+JB, J+JB, DESCA )

END IF

END IF

10 CONTINUE
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SCALAPACK { ONGOING WORK

�HPF

{ HPF supports the 2D-block-cyclic distri-

bution used by ScaLAPACK

{ HPF like calling sequence (Global index-

ing scheme)

� Portability: MPI implementation of the

BLACS

�More 
exibility added to the PBLAS

�More testing and timing programs

�Condition estimators

� Iterative re�nement of linear system

solutions

� SVD

� Linear Least Square solvers

�Banded systems

�Non symmetric eigensolvers

� : : :
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SCALAPACK { REFERENCES

� ScaLAPACK software and documentation can be ob-
tained via:

{ WWW: http://www.netlib.org/scalapack,

{ WWW: http://www.netlib.org/lapack/lawns,

{ (anonymous) ftp netlib2.cs.utk.edu:

� cd scalapack; get index

� cd lapack/lawns; get index

{ email netlib@ornl.gov with the message:

send index from scalapack

� Comments and questions can be addressed at

scalapack@cs.utk.edu

� LAPACK Working Notes:

#43, #55, #57, #58, #61, #65, #73, #80, #86,

#91,

#92, #93, #94, #95, #96, #100.

� J. Dongarra and D. Walker, Software Libraries for

Linear Algebra Computations on High Performance

Computers, SIAM Review, Vol. 37, (2), pp. 151 {

180, 1995.
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Divide

� Important on Tridiagonal Solver for ADI Schemes.

� 9n 
oating point operations in the inner loop, n are


oating-point divide instructions.

� Also important on block tridiagonal and pentadiagonal

solvers.

� Newton's iteration usually used

� Not typically pieplined

Clock Divide Cache BW Memory BW Peak Perf. Linpack

Processor (Mhz) (CP) (MW/s) (MW/s) (MF/s) (MF/s)

Cray C-90/1 240 4 - 1440 960 387

Cray Y-MP/1 166 4 - 500 333 161

RS/6000-590 66 19 266 266 264 130

DEC Alpha 150 63 150 37 150 30

HP PA-RISC 99 20 99 33 198 41

Intel i860 40 190 80 16 60 10

SGI (R4400) 100 36 100 50 50 17

Super SPARC 40 7 40 40 40 7
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Sparse Matrix Algorithms

� Based on iterative methods

� Important for many large applications

{ Krylov subspace methods

{ Multigrid

� Attempts to solve Ax = b, where A is large and sparse.

{ A too large for cache

{ Generates a sequence of iterates, xi converging to

solution.

{ Requires accessing A for each iteration.

{ Thus, computation runs at main memory speeds, not

cache speeds.

� Method may not converge.

44

Conclusion

� RISC has had an impact on basic software design

� Exploiting memory heirarchy in the algorithm

� Blocking is now taken for granted


