The Impact of RISC
and Parallel RISC Systems

on Linear Algebra Software

Jack Dongarra
Computer Science Department
University of Tennessee
and

Mathematical Sciences Section
Oak Ridge National Laboratory

(http://www.netlib.org/utk/people/JackDongarra.html)

Overview

e Motivation - History Level 1 BLAS
e Linpack

e Unrolling to allow compiler to reconize
e Why

e Tricks like the babe algorithm

e Supercomputers

¢ Vector Computers

e Level 2 3 BLAS

e Compilers

e Memory Heirarchy

¢ RISC

e Linpack on RISC

e MP

e Scalapack

¢ Bandwidth Latency

¢ Iterative Methods (Bombardment)
o Future

Mathematical Software for Linear
Algebra in the 1970’s

¢ 1970’s software packages for eigenvalue problems and
linear equations.

¢ EISPACK - Fortran routines

— Eigenvalue problem

— Wilkinson - Reinsch Handbook for Automatic Com-
putation

¢ LINPACK - Fortran routines

— Systems of linear equations.

— Collective ideas.

Mathematical Software for Linear
Algebra in the 1970’s

¢ EISPACK early 70’s
e Fortran translation of Algol algorithms from Num. Math.
e Software issues -
— Portability
— Robustness
— Accuracy
— Uniform
— Well documented
e Little thought given to high performance computers.

e CDC 7600 state-of-the-art supercomputer.

Mathematical Software for Linear
Algebra in the 1970’s

e Level 1 BLAS
¢ Basic Linear Algebra Subprograms for Fortran Usage
e C. Lawson, R. Hanson, D. Kincaid, and F. Krogh
e Conceptial aid in design and coding
e Aid to readability and documentation
e Promote efficieny:
— through optimization or assembly language versions
e Improve robustness and reliability

e Improve portability through standardization

Mathematical Software for Linear
Algebra in the 1970’s

Level 1 BLAS
¢ Dot products
e ’axpy’ operations y + az +y
e Multiple a vector by a constant
e Set up and apply Givens rotations
¢ Copy and swap vectors

e Vector norms

name dim scalars vector vector scalars

SUBROUTINE _AXPY (N, ALPHA X,INCX, Y,INCY)
FUNCTION DOT_ (N, X, INCX, Y, INCY)
SUBROUTINE _SCAL (N, ALPHA X, INCX)

SUBROUTINE _ROTG (A B Cs)
SUBROUTINE _ROT (N X, INCX, Y, INCY CS)
SUBROUTINE _COPY (N, X, INCX, Y, INCY)
SUBROUTINE _SWAP (N, X, INCX, Y, INCY)
FUNCTION _NRM2 (N, X, INCX))

FUNCTION CASUM (N, X, INCX')

FUNCTION CASUM (N, X, INCX')

-

Mathematical Software for Linear
Algebra in the 1970’s

¢ LINPACK late 70’s
e Used current ideas - not a translation.
e First vector supercomputer arrived - CRAY 1.

e BLAS to standardize basic vector operations.

¢ LINPACK embraced BLAS for modularity and efficiency.

¢ Reworked algorithms.

e Column oriented.

8

Here is the body of the code of the LINPACK routine
SPOFA, which implements the above method:

DO 30 J=1, N

INFO = J
S = 0.0EO
JM1 =J -1

IF (JM1 .LT. 1) GO TO 20
DO 10 K = 1, JM1
T = A(K,J) - SDOT(K-1,A(1,K),1,A(1,),1)

T = T/A(K,K)
AK,J) =T
S =8 + T*T
10 CONTINUE
20 CONTINUE

S =A@, -8

c L EXIT

IF (S .LE. 0.0EO) GO TO 40
A(J,J) = SQRT(S)
30 CONTINUE

BLAS - BASICS

Level 1 BLAS Vector Operations (Late "70s)

y<—ytax, y<x, Y < ax,
a+ zly, a |z, ye

Example: SAXPY operate with vectors:
Yy~ y+ax
e 2 vector loads
e 2 vector operations

e 1 vector store

Too much memory traffic: little chance to use the memory hierarchy,
o O(n) memory references,

o O(n) floating point operations.

10
Loop Unrolling
In scalar case

doi=1,n,4 y(1:n) = y(1:n) + alfa*x(1:n)
y(i) = y(i) + alfa*x(i)
y(i+1) = y(i+1) + alfa*x(i+1)

y(i+2) = y(i+2) + alfa*x(i+2)
y(i+3) = y(i+3) + alfa*x(i+3)
continue
o WHY?

— Reduce the loop overhead
— Allow pipelined functional units to operate
— Allow independent functional units to operate
— Vector instructions
e Operation to data reference
— 2n operations
— 3n data transfer
o Machines that might benefit?

— Thought would work well on all scalar machines, but... vector
machines

11

Other Tricks for Performance...

Algorithm for factoring a tridiagonal matrix

T ox
T T
x

B R oA

R

o Algorithm is sequential in nature.
e Not much scope for pipelining.

e [n an attempt to increase the speed of execution the BABE algorithm
was adopted.

Burn At Both Ends (BABE)

With the BABE algorithm the factoerization is started at
the top of the matrix as well as the bottom of the matrix
at the same time.

z x T T
0z 0z
r T ow 0z 2
T x x T oz oz
T x o T x o
T r o z oz 0
z z 0 z z 0
T T w
I
0z 2
0 = =
0 =z =
0 = 0
x x 0
@ x 0
T oz

e Reduce loop overhead by a factor of 2
e Scope for independent operations

o Resulted in 25% faster execution

13

14
Level 1, 2, and 3 BLAS Why Higher Level BLAS?
IBM SP2 Memory Hierarchy
e Level 1 BLAS vector-vector operations
Smallest Largest
— + O
2568 2128 MBIs
20Ke 2128 MBIs
y < y + a, also dot product, ...
2468 a2 veis
e Level 2 BLAS matrix-vector operations wees oels
Largest Slowest
o Can only do arithmetic on data at top
— keep active data as close to top of hierarchy as possible
— + o Higher level BLAS lets us do this:
‘ mem ref flops flops/mem ref
Level LBLAS y « y + ax 3n 2 2/3
2 2
y ¢ y + Auxz, also triangular solve, rank-1 update Level 2 BLAS y <y + Ax v 2“1 2
. i . Level 3 BLAS A « A + BC in” 2n n/2
e Level 3 BLAS-matrix-matrix operations
o On parallel machines
higher level BLAS —sincrease granularity — lower synchronization cost
- +
A « A + BC. also block triangular solve, rank-k update
15 16

Matrix-vector product

DOT version-25 Mflops in cache
(Model 530, 50 Mflop/s peak)

+ A(I,1)*X(3)
10 CONTINUE
20 CONTINUE

From Cache 22.7 Mflops
Memory 12.4 Mflops

Loop unrolling

D020 I =1, N, 2
T1 = Y(I)
T2 = Y(I+1)
D010 J =1, N
T1 = T1 + ACL,J)*X(J)
T2 = T2 + A(I+1,3)*X(J)
10 CONTINUE
Y(I) =T1
Y(I+1) = T2
20 CONTINUE

3 loads, 4 flops

Speed of y ¢« y+ ATz, N =48

Model 530 (50 Mflop/s peak) Depth| 1 | 2 | 3 1

Speed | 25 |33.3

Measured | 22.7 | 30.5
(Memory) | 12.4 | 12.7

Matrix-matrix multiply

DOT version - 25 Mflops in cache

D030 J=1,M

DO 20T =1, M
DO 10K=1, L
C(I,3) = C(I,3) + A(I,K)*B(K,J)
10 CONTINUE

20 CONTINUE
30 CONTINUE

How to get 50 Mflops!

D030 J =1, M, 2
D020 T +1, M, 2

Ti1 = C(I, J)
Ti2 = C(I, J+1)
T21 = C(I+1,J)
T22 = C(I+1,J+1)

DO 10 K =1, L
Ti1 = Ti1 + A(I, K)*B(K,J)
T12 = T12 + A(I, K)*B(K,J+1)
T21 = T21 + A(I+1,K)*B(K,J)
T22 = T22 + A(I+1,K)*B(K,J+1)

10 CONTINUE
(I, J) =Tt
c(1, J+1) = T12
C(I+1,]) = T21

C(I+1,J+1) = T22
20 CONTINUE
30 CONTINUE

Inner loop: 4 loads, 8 operations, optimal.
In practice we have measured 48.1

(M=N=16, L=128)

19

BLAS - BASICS

Level 1, 2 and 3 BLAS Performance on RS/6000-550
80 T T T T

T
Level 3

70 B

60 b

3
=}
T
L

Level 2

Speed in Megaflops
8
T

w
S
T
L

Level 1
20+

101 B

. . . .
0 100 200 300 400 500 600
Order of vectors/matrices

e Development of blocked algorithms using Level 3

BLAS,
e = LAPACK, high performance, portability.

BLAS - REFERENCES

e BLAS software and documentation can be obtained
via:

— WWW: http://www.netlib.org/blas,

— (anonymous) ftp netlib2.cs.utk.edu:
cd blas; get index

— email netlib@ornl. gov with the message:

send index from blas

e Comments and questions can be addressed at

lapack@cs.utk.edu

e C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic Linear
Algebra Subprograms for Fortran Usage, ACM 'Transactions on
Mathematical Software, 5:308-325, 1979.

e J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, An FEz-
tended Set of Fortran Basic Linear Algebra Subprograms, ACM
Transactions on Mathematical Software, 14(1):1-32, (1988).

e J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, A Set of Level
& Basic Linear Algebra Subprograms, ACM Transactions on Math-
ematical Software, 16(1):1-17, 1990.

Block Algorithms and their Derivation

AH aj A13 Uﬂ 0 0 U]] Uj U]g
aj aj | =] u w; 0 1) 0wy op
Ags Uly p; U 0 0 U

and equating coefficients of the 7% column, we obtain:

_ T, .
aj = Ujuy;

T 2
ajj = ujuj+ujj.

Hence, if Upp has already been computed, we can compute u; and wuj;
from the equations:

T - q-

Uhu; = a;
2 . T, .
uj; = i —ujug

22

Here is the body of the code of the LINPACK routine SPOFA, which
implements the above method:

DO 30 J=1, N

INFO = J
S = 0.0EO
JM1 =J -1

IF (JM1 .LT. 1) GO TO 20
DO 10 K = 1, JM1
T = A(K,J) - SDOT(K-1,A(1,K),1,A(1,),1)

T = T/A(K,K)
AK,J) =T
S =8 + T*T
10 CONTINUE
20 CONTINUE
S=40,)) -5
c L EXIT

IF (S .LE. 0.0EO) GO TO 40
A(J,J) = SQRT(S)
30 CONTINUE

DO 10 J =1, N
CALL STRSV(’Upper’, °’Transpose’, °’Non-unit’, J-1, A, LDA,
$ ACL,3), 1)
S = A(J,J) - SDOT(J-1, A(1,J), 1, A(1,J), 1)
IF(S.LE.ZERO) GO TO 20
A(J,J) = SQRT(S)
10 CONTINUE

o change by itself is sufficient to make big gains in performance on a
number of machines

o from 24 to 34 megaflops for a matrix of order 500 on an IBM RS/6000
model 550.

e from 72 to 251 megaflops for a matrix of order 500 on one processor
of a CRAY Y-MP

To derive a block form of Cholesky factorization, we write the defining
equation in partitioned form thus:

A A Agp U1[1 0 0 Uy Uy U
Agp Ay | =| UL UL 0 0 Uy Uy
Asy UL UL U 0 0 Us

Equating submatrices in the second block of colummns, we obtain:

Ap = ULU,
Ay U1T2U12 + U»gT-zUzz-

Hence, if U has already been computed, we can compute Uy as the
solution to the equation

UlUss = Ap

by a call to the Level 3 BLAS routine STRSM; and then we can compute
U, from

o
&

Speed in megaflops of Cholesky factorization A = UTU for n = 500

Machine: RS/6000 - 500
j-variant: LINPACK 24
j-variant: using Level 2 BLAS 34
j-variant: using Level 3 BLAS 69

DO 10 J =1, N, NB
JB = MIN(NB, N-J+1)
CALL STRSM(’Left’, ’Upper’, ’Transpose’, ’Non-unit’, J-1, JB,

$ ONE, A, LDA, A(1,J), LDA)
CALL SSYRK(’Upper’, ’Transpose’, JB, J-1, -ONE, A(1,J), LDA,
$ ONE, A(J,J), LDA)

CALL SPOTF2(’Upper’, JB, A(J,J), LDA, INFO)
IF(INFO.NE.O) GO TO 20
10 CONTINUE

Blocked Algorithms have been developed for:

o LU factorization
o Cholesky factorization
e Factorization of symmetric indefinite matrices
o Matrix inversion
e Banded LU and Cholesky factorization
o QR factorization
e Form () or QTB
o Orthogonal reduction to:
— Hessenberg
— symmetric tridiagonal
— bidiagonal

e Block QR iteration for nonsymmetric eigenvalue problems

)
=

IBM RS/6000 550 LU variants
80 T T T

/\/_/—\

70+ Dashed: line - : = -matrix-muitiply =

Dashed-dot line = blocked LU

60 B
0 50 1
o
[e]
-
T S S
| L Solid line - - = matrix vector 4
Dotted line = point LU IR
sof R 1

Pl | RIS SREITTIIEI SNNNNENIEEE S

Solid line =: Linpack LU

10 I I I I I
200 300 400 500 600 700 800

Problem Size

[
@

Performance Numbers Comparing Various RISC Processors
Using the Linpack Benchmark

(All based on actual runs.)
Linpack n=100 based on Fortran code only.

Ax=b n=1000 is based on a blocked algorithm (LAPACK routine)
using the Level 3 BLAS as provided by the vendor.

Cycle | Linpack Ax=h Theor
time | n=100 % | n=1000 % Peak
Machine MHz nsec | Mflops peak | Mflops peak | Mflops
DEC Alpha 300 3.3 140 23% 11 69% 600
IBM Power2 66 15 130 48% 236 89% 266
SGI Power 75133 101 33% 260 87% 300
HP 735 100 10 61 31% 107 54% 198
DEC Alpha 200 5 43 2% 155 78% 200
DEC Alpha 182 5 39 21% 141 7% 182
IBM RS-580 66 15 38 30% 104 83% 125
DEC Alpha 160 6 36 23% 114 11% 160
DEC Alpha 150 7 30 20% 107 71% 150
IBM RS-550 42 24 26 31% 70 83% 84
HP 730/750 66 15 24 36% 47 1% 66
100 10 15 30% 32 64% 50
25 40 15 30% 42 84% 50
KSR (1 proc) 40 25 15 38% 31 78% 40
Intel i860 40 25 10 25% 34 85% 40
CRAY T90 154 2.2 522 29% 1576 88%
CRAY (90 238 4.2 387 41% 902 95%
CRAY J90 100 10 115 51% 193 96%
CRAY Y-MP 166 6 161 48% 324 97%
CRAY X-MP 118 8.5 121 51% 218 93%
CRAY 3 481 2.1 241 25%
CRAY 2 244 41 120 25% 384 9%
CRAY 1 80 125 27 1% 110 69%

29 30
Table 1: Multiprocessor Latency and Bandwidth. Table 2: Computation Performance.
Latency Bandwidth m,/, | Theoretical
Machine 0s n=0 (us) n=10°(MB/s) bytes | Bandwidth Clock cycle Linpack 100 Linpack 1000 Latency
(MB/s) Machine 0S MHz (nsec) | Mfls (ops/cl) | Mfls (ops/cl) | us (cl)
Convex SPP1200 (PVM) SPP-UX 3.0.4.1 63 15 1000 250 Convex SPP1200 (PVM) SPP-UX 3.0.4.1 100 (8.33) 65 (54) | 123 (1.02) | 63 (7560)
Convex SPP1200 (sm m-n) 11 71 1000 250 SPP1200 (sm m-n) 11 (1260)
Cray T3D (sm) 3 128 363 300 Cray T3D (sm) MAX 1.2.0.2 150 (6.67)| 38 (25)| 94 (62| 3 (450)
Cray T3D (PVM) X 1. 21 27 1502 300 Cray T3D (PVM) 21 (3150)
Intel Paragon OSF 1.0.4 29 154 7236 175 Intel Paragon OSF 1.0.1 50 (20)| 10 (20| 314 (68)| 29 (1450)
Intel Paragon SUNMOS 1.6.2 25 171 5856 175 Intel Paragon SUNMOS 1.6.2 25 (1250)
Intel Delta NX 3.3.10 v 8 900 22 Intel Delta 10 (25) 9.8 (-25) 34 (.85) | 77 (3080)
Intel iPSC/860 65 3 340 3 Intel iPSC/860 10 (25)] 98 (25)| 34 (85)| 65 (2600)
Intel iPSC/2 370 28 1742 3 Intel iPSC/2 16 (63) | .37 (.01) () |370 (5920)
IBM SP-1 270 71904 10 IBM SP-1 62.5 (16) 38 (.61) | 104 (1.66) | 270 (16875)
IBM SP-2 MPI 35 35 326: 10 IBM SP-2 66 (15.15) | 130 (1.97) | 236 (3.58) | 35 (2310)
KSR-1 OSF R1.2.2 73 8 32 KSR-1 00 (25) | 15 (3%)| 31 (78| T3 (2920
Meiko ('S2 (sm) Sol. 1 10 50 Meiko CS2 (MPI) 90 (11.11) | 20 (27)| 97 (1.08)| 83 (7470)
Meiko ('S2 Solari 83 13 50 Meiko CS2 (sm) 11)
nCUBE 2 Verte: 154 7 25 nCUBE 2 Vertex 2.0 20 (50) | .78 (.04) 2 (.10) | 154 %0)
nCUBE 1 Vertex 384 1 nCUBE 1 Vertex 2.3 8 (25| a0 (o) | - () | 384 72)
NEC Cenju-3 Env. 10 1 10 NEC Cenju-3 Env Rev 1.5d 75 (13.3) 23 (.31) 39 .52) 10)
NEC Cenju-3 (sm) Env. 34 25 10 NEC Cenju-3(sm) Env Rev 1.5 75 (133)| 23 (31)] 39 52) | 34 50)
SGI IRIX 6.1 10 64 799 1200 SGI Power Challenge IRIX 6.1 90 (11.11) | 126 (14) | 308 3.42) 10)
TMC CM-5 CMMD 2.0 95 9 962 10 TMC CM 5 CMMD 2.0 32 (31.25) () () 95)
Ethernet TCP/IP 500 0.9 1.2
FDDI TCP/IP 900 9.7 12
ATM-100 TCP/IP 900 3.5 12
31 32

100 -

10

Bandwidth (MB/s)

M essage-passing Space

M T3D(3,128) ® Paragon (25,171)
H SPP1200(3.90
I)(10,64)

CR(1L40) M o @CSABTAI)

SP2(38,34
MESEHE Smoneoas)
| NEC Cenju-3(40,13)@ ® CM5(959)
@ Ddta(70,8)

iPSC/860 (70,3) ® @ iPSC/2(370,3)

® Ncube2 (154,2)
= @ Ether (500,1)

1 10 100 1000
Latency (us)

Challenges in developing distributed memory libraries

e How to integrate libraries?

no standard software

many parallel languages

— many flavors of message passing

— various parallel programming models

— assumptions made about parallel environment

% granularity

% topology

% overlapping of communication / computation

% development tools

o Where is the data?

— who owns it?

— optimal data distribution not a function of individual routines but of

overall integration of components
e Who determines data layout and/or transformations?
— determined by user?
— determined by library developer?

— choose from a small set?

allow for dynamic data distributions?

load balancing?

PBLAS - INTRODUCTION

Parallel Basic Linear Algebra Subprograms for distributed
memory MIMD computers.

e Similar functionality as the BLAS: distributed vector-vector,
matrix-vector and matrix-matrix operations,

e Simplification of the parallelization of dense linear algebra
codes: especially when implemented on top of the BLAS,

e Clarity: code is shorter and easier to read,

e Modularity: gives programmer larger building blocks,

e Program portability: machine dependency are confined to the

PBLAS (BLAS and BLACS).

PBLAS - STORAGE CONVENTIONS

e AnM -by-N_matrix is block partitionned and these MB_-by-NB_
blocks are distributed according to the

2-dimensional block-cyclic scheme
= load balanced computations, scalability,

o Locally, the scattered columns are stored contiguously (FOR-
TRAN “Column-major”)

= re-use of the BLAS (leading dimension LLD_).
a,a,a,a, 0
a.a,8.8.0 (330 (22
A, Ay Ay Ay, a,a,a.|a.a.,
a,a a,a a,.a
a,a a,.a

42 a 3 a44
a51 a52 a53 a54 a-55

5 x 5 matrix partitioned in 2 x 2 blocks

2 x 2 process grid point of view

Descriptor DESC : 8-Integer array describing the matrix layout, con-
taining M_, N_, MB_, NB_, RSRC_, CSRC_, CTXT_ and LLD_, where (RSRC_,
CSRC.) are the coordinates of the process owning the first matrix entry in
the grid specified by CTXT ..

Ex: M_=N_=5, MB_=NB_=5, RSRC_=CSRC_= 0, LLD_ > 3 (in process row
0), and 2 (in process row 1).

PBLAS - ARGUMENT CONVENTIONS

o Global view of the matrix operands, allowing global address-
ing of distributed matrices (hiding complex local indexing),

JA N

N

M_| M A(IAIA+M-1, JAJA+N-1)

e Code reusability, interface very close to sequential BLAS:

CALL DGEXXX(M, N, A(IA, JA), LDA)

CALL DGEMM(’No Transpose’, ’No Transpose’,
$ M-J-JB+1, N-J-JB+1, JB, -ONE, A(J+JB,J),
$ LDA, A(J,J+JB), LDA, ONE, A(J+JB,J+JB),
$ LDA)

4

CALL PDGEXXX(M, N, A, IA, JA, DESCA)

CALL PDGEMM(’No Transpose’, ’No Transpose’,
$ M-J-JB+1, N-J-JB+1, JB, -ONE, A, J+JB,
$ J, DESCA, A, J, J+JB, DESCA, ONE, A,

$ J+JB, J+JB, DESCA)

PBLAS —- SPECIFICATIONS

DGEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX,
BETA, Y, INCY)
)

PDGEMV(TRANS, M, N, ALPHA, A, IA, JA, DESCA,
X, IX, JX, DESCX, INCX,
BETA, Y, IY, JY, DESCY, INCY)

o In the PBLAS, the increment specified for vectors is always global.
So far only INCX=1 and INCX=DESCX (1) are supported.

BLAS PBLAS
INTEGER LDA INTEGER IA, JA, DESCA(8)
INTEGER INCX | INTEGER INCX, IX, JX, DESCX(8)
A, LDA A, IA, JA, DESCA
X, INCX X, IX, JX, DESCX, INCX

e PBLAS matrix transposition routine (REAL):

PDTRAN(M, N, ALPHA, A, IA, JA, DESCA, BETA,
¢, Ic, JC, DESCC)

e Level 1 BLAS functions have become PBLAS subroutines. Ouput
Scalar correct in operand scope.

>> SPMD PROGRAMMING MODEL <<

Parallel Level 2 and 3 BLAS: PBLAS
Goal

e Port sequential library for shared memory machine that use the BLAS
to distributed memory machines with little effort.

o Reuse the existing software by hiding the message passing in a set of
BLAS routines.

o Parallel implementation of the BLAS that understands how the matrix
is layed out and when called can perform not only the operation but
the required data transfer.

LAPACK — ScaLAPACK

BLAS — PBLAS (BLAS, BLACS)
o Quality (maintenance)
e Portability (F77 - C)
o Efficiency - Reuseability (BLAS, BLACS)
o Hide Parallelism in (P)BLAS

SEQUENTIAL LU FACTORIZATION CODE PARALLEL LU FACTORIZATION CODE

D20J=1, MECK, 1), 1B D010 J = JA, JSHIN(H,I)-1, DESCA(4)
38 = NINCKINC K, 0)-J44, 1B) 1B = NIN(KIN(H,1)-0434, DESCA(4))
T=Dh+1- 0k
Factor diagonal and subdiagonal blocks and test for exact Factor diagonal and subdiagonal blocks and test for exact
singularity. singularity.

CALL DGETF2(K-J#1, JB, A(J, 1), LDA, IPIV(J), CALL PDGETF2(M-J+JA, JB, A, 1, J, DESCA, IPIV, ITIF0)

§ 1100)
Ajust THFD and the pivot indices. Adjust TOFD and the pivot indices.
TF(THFD.EQ.0 .ATD. TINFO.GT.0) TNFD = TTNFO +J - 1 TF(TNFD.EQ.0 .AID. TTNFO.GT.0)

D040 1=1J, KINC K, J4IB-1)
PIVCI) =) -1+ IPIV(I)
10 CONTINVE

IHFD = IT0F0 + J - Jk

Apply interchanges to columns 1:3-1. Apply interchanges to coluans JA:J-TK

CALL DLASKP(J-1, 4, [DA, J, J+JB-1, TPIV, 1) CALL POLASKP(*Forward’, Rous, J-J, &, Tk, Jh, DESCA,

§ 1, 3411, IPIV)
IF(J4IB.LE.T) THER TFC J-JA+JB+1.LE.T) THED
kpply interchanges to coluans J+JB:I Apply interchanges to colusns J+IB:JKHI.

CALL DLASYP(B--B#1, AC 1, J+JB), LDA, J, J+JB-1, CALL PDLASKP(*Forward’, Rous’, I-I-IB+IA, A, IA,
§ IV, 1) 3 J43B, DESCA, J, J4JB-1, IPIV)

Compute block ros of U. Compute block row of U.

CALL DTRSK(Left?, *Lover’, Mo transpose’, "Unit’, CALL PDTRSH('Left!, "Lover’, 'lo transpose’, "Unit’,

§ 38, T-0-0B+1, OIE, 4(J, J), DDA, 3 1B, I-J-JB+JA, OIE, A, 1, J, DESCA, A, I,
§ (T, 348), 104 § J41B, DESCH)
TF(J+IB.LE.) THER IF(J-Jk+JB+1.LE.) THED
Update trailing submatrix. Update trailing subnatrix

CALL DGENN('No transpose’, 'No transpose’, CALL PDGEMH("o transpose’, o transpose’,

§ ¥-J-JB+1, I-J-JB, JE, -OIE, $ W-J-0B+IA, I-J-JB434, JB, -OIE, 4,
§ (348, T), LDE, ACJ, J4IB), LD, $ 1418, J, DESCA, A, 1, J+B, DESCH,
§ OIE, A(J43B, J+B), DK) $ OIE, 4, 1+JB, J41B, DESCH)
B IF ED IF
BID IF ED IF
20 CONTINE 10 CONTINVE

SCALAPACK - ONGOING WORK

« HPF

— HPF supports the 2D-block-cyclic distri-
bution used by ScaLAPACK

— HPF like calling sequence (Global index-
ing scheme)

e Portability: MPI implementation of the
BLACS

e More flexibility added to the PBLAS
e More testing and timing programs
e Condition estimators

e Iterative refinement of linear system
solutions

e SVD
e Linear Least Square solvers
e Banded systems

e Non symmetric eigensolvers

SCALAPACK - REFERENCES

e ScaLAPACK software and documentation can be ob-
tained via:
— WWW: http://wuw.netlib.org/scalapack,
— WWW: http://www.netlib.org/lapack/lawns,
— (anonymous) ftp net1lib2.cs.utk.edu:
x cd scalapack; get index
* cd la‘pa‘('](/]mvns; get index
— email netlib@ornl.gov with the message:

send index from scalapack
e Comments and questions can be addressed at
scalapack@cs.utk.edu

e LAPACK Working Notes:

#£43, #55, #57, #58, #61, #65, #73, #80, #86,
#91,

492, #93, #94, #95, #96, #100.

e J. Dongarra and D. Walker, Software Libraries for
Linear Algebra Computations on High Performance
Computers, SIAM Review, Vol. 37, (2), pp. 151 —
180, 1995.

LU Factorization on Intel Paragon

Gflops

Divide
e Important on Tridiagonal Solver for ADI Schemes.

e 9n floating point operations in the inner loop, n are
floating-point divide instructions.

e Also important on block tridiagonal and pentadiagonal
solvers.

e Newton’s iteration usually used

e Not typically pieplined

Clock Divide Cache BW Memory BW Peak Perf. Linpack

Problem size Processor (Mhz) (CP) (MW/s) (MW/s) (MF/s) (MF/s)
o Cray C-90/1 210 | 7 1440 960 387
LU Factorization on IBM SP-2 Cray Y-MP/1 166 4 - 500 333 161
RS/6000-500 66 19 266 266 261 130
B 4nodes [gnodes M 16 nodes DEC Alpha 150 63 150 37 150 30
HP PA-RISC 99 20 99 33 198 41
Intel i860 0 190 S0 16 60 10
SGI (R1400) 100 36 100 50 50 17
Super SPARC 10 7 10 10 10 7
1%2]
8
o
O]
S
3
Problem size -
13 1
Conclusion

Sparse Matrix Algorithms

e Based on iterative methods

e Important for many large applications

— Krylov subspace methods
— Multigrid

o Attempts to solve Az = b, where A is large and sparse.

— A too large for cache

— Generates a sequence of iterates, z; converging to
solution.

— Requires accessing A for each iteration.
— Thus, computation runs at main memory speeds, not

cache speeds.

¢ Method may not converge.

e RISC has had an impact on basic software design
¢ Exploiting memory heirarchy in the algorithm

¢ Blocking is now taken for granted

