
PVMPI: An Integration of the PVM and MPI Systems

Graham E. Fagg � Jack J. Dongarray

April 12, 1996

Abstract

We discuss the use of PVM as a system for controlling the execution of MPI applications,

by allowing the user access to both the MPI API and an enhanced set of the PVM API.

The intention is to give the user community
exible control over MPI applications using a

system that is both portable and familiar|without having to wait for new MPI-2 systems to

be developed. Our system, called PVMPI, uses the already proven and widely ported MPI

message-passing system within PVM to to enable interoperation with di�erent implementations

executing on distributed hardware. PVMPI also takes advantage of contexts under PVM3.4

to provide more security. Additional bene�ts will be available to those who currently already

use resource managers that interface to PVM, in that PVMPI can control MPI applications.

1 Introduction

PVM is one of a number of parallel distributed computing environments (DCEs) [16] that were
introduced to assist users wishing to create portable parallel applications [19]. The system has
been in use since 1992 [1] and has grown in popularity, leading to a large body of knowledge and a
substantial quantity of legacy code accounting for many man-years of development.

For the past several years, standardization e�orts have attempted to address many of the de�-

ciencies of the di�erent DCEs and introduce a single stable system for message passing. These e�orts
culminated in the �rst Message Passing Interface (MPI) standard, introduced in June 1994 [13].
Within a year, several di�erent implementations of MPI were available, including both commercial

and public systems.

One of MPI's prime goals was to produce a system that would allow manufacturers of high-
performance massively parallel processing (MPPs) computers to provide highly optimized and ef-

�cient implementations. In contrast, PVM was designed primarily for networks of workstations,
with the goal of portability, gained at the sacri�ce of optimal performance. PVM has been ported

successfully to many MPPs by its developers and by vendors, and several enhancements|including

in-place data packing and pack-send extensions|have been implemented with much success [3].
Nevertheless, PVM's inherent message structure has limited overall performance when compared

with that of native communications systems.

�Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301
yDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301 and Mathematical Sciences

Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6367

1

Thus, PVM has many features required for operation on a distributed system consisting of many

(possibly nonhomogeneous) nodes with reliable, but not necessarily optimal, performance. MPI, on

the other hand, provides high-performance communication and a non
exible static process model.

The aim of this work is to interface the
exible process and virtual machine control from the

PVM system with the enhanced communication system of several MPI implementations. The need

for such a system was clearly identi�ed by the �rst MPI forum and motivated the current round

of discussions by the MPI-2 forum. Indeed, MPI-2{style tools have been promised by several MPI

implementors; examples include MPIX [17] and LAM MPI-6.0 [2].

In this paper we compare the PVM and MPI systems, focusing in particular on machine de�-

nition, process control, and message-passing implementation. Then we consider how these systems

can interoperate, and we address such issues as language binding and interfaces.

2 The Dynamic World of PVM

PVM (Parallel Virtual Machine) relies on the idea that the system the software runs upon is
not �xed, but is dynamic. This dynamic approach forces application developers to avoid making

assumptions about the underlying system. Such an approach o�ers two major advantages over a
static resource world:

1. A truly portable API, supporting over twenty di�erent platform types simultaneously.

2. A
exible system that can be easily made fault tolerant in the event of node loss, as well as
being able to take advantage of addition nodes during run time.

Although to a user or application developer only the API is of utmost importance, we brie
y
discuss here the internal workings of PVM in order to illustrate the di�erence between it and related
systems.

First, PVM is generally considered as a basic message-passing system built upon a system of
generic daemons. Speci�cally, PVM API calls cause the user's application to coordinate with a
daemon pvmd to perform some operation (e.g., send a message or start some application). The dae-

mons themselves de�ne the virtual machine and provide the same consistent run-time environment
across diverse platforms, thereby allowing for a single API.

When running on a netowrk of workstations (NOW), each host becomes a member of the virtual
machine by running its own daemon. Applications become PVM applications by coordinating with

these daemons via sockets and/or pipes. Thus, applications can become enrolled into PVM and
then be controlled by it even if they were not started by it. Applications can also join and leave as

many times as they wish, allowing them to live through several di�erent virtual machines.
Shared-memory processor systems (SMPs), such as Sun MPs and SGI, require only a single

daemon per host regardless of the number of nodes they contain. This method of process control is

possible because they use the same Unix mechanisms as general workstations to initiate and signal
processes. Dedicated MPPs, on the other hand, do not always o�er such a consistent method of

initialing and controlling processes. Like SMPs, they usually have only a single daemon running
on a front end or service node. These daemons provide the same or similar facilities and services

as conventional daemons except they may use di�erent specialized system calls to interface with

the MPP's nodes. Restrictions placed upon PVM by these run-time systems may a�ect the API

2

functionality o�ered. or example, IBM's PVMe allows only an SPMD model to be used, and the

Meiko CS2 allows only barrier operations across the whole application.

An example of a system that can appear as either a NOW or an MPP is the IBM SP2. In its

NOW form it runs a daemon on each node as a conventional cluster of Unix workstations. As an

MPP, it runs only a single daemon and uses the local partition management software to control

resource allocation.

2.1 Virtual Machine De�nition

The virtual machine is de�ned by the number and location of the running daemons. Although the

number of hosts can be indicated by a �xed list at start-up time, there exists only a single point

of failure, the �rst master daemon to start. All other hosts can join, leave, or fail without a�ecting

the rest of the virtual machine.
PVM API functions allow the user to

� add or delete hosts,

� check that a host is responding,

� be noti�ed by a user-level message that a host has been deleted (intentionally or not) or has
been added, and

� shut down the entire virtual machine, killing attached processes and daemons.

2.2 Process Control

PVM API functions provide the ability to

� join or leave the virtual machine;

� start new processes by using a number of di�erent selection criteria, including external sched-
ulers and resource managers;

� kill a process;

� send a signal to a process;

� test to check that it is responding; and

� notify an arbitrary process if another disconnects from the PVM system.

2.3 Message Passing

Two types of message passing exist in PVM: (1) internal (between daemons and other daemons or

user tasks), and (2) user (between two or more user processes enrolled into PVM).

User messages are identi�ed by source address and a single user-controlled tag, which can be
used by a task to �lter incoming messages from multiple destinations. The lack of contexts prior to

PVM 3.4 made safe message passing for libraries extremely di�cult. Although the user could use
a set of reserved tags, no guarantee existed for these tags being unique across the virtual machine,

since they were user chosen and not system allocated.

3

2.4 Resource Management

PVM's comprehensive array of API routines allows the user the same level of control over the

virtual machine as the system has. This
exibility has encouraged many projects to use PVM in

di�erent distributed computing environments [14] such as Mist [12], dedicated schedulers [15], load

balancers, and process migration tools [4, 18].

2.5 PVM Group Services

PVM provides the ability for processes to form into groups identi�ed by a character string name,

which is held in a single central database process called the PVM Group Server PVMGS. Processes

can join and leave any number of groups at any time, making membership completely dynamic.

Processes are allocated instance numbers when they join, in the order that they join a group. The
�rst join operation creates the group, and the group is destroyed when the membership falls to zero
(i.e., no empty groups), although groups may have gaps in their membership as processes leave out
of order.

The group service provides a limited number of collective operations such as barrier and reduce.

Also provided is a broadcast operation that allows messages to be sent to all members of a group
(unless the sender is one). However, there are no point-to-point operations on a group. Thus, the
user must explicitly look up process addresses and use the normal point-to-point send and receive
primitives.

Until recently, the group database was centrally stored and thus had to be accessed before

each group operation took place, even if the group had not altered. This strategy led to serious
degradation in potential performance. Later versions of PVM 3.3 enabled the groups to be frozen
and their details to be cached locally. In some cases, full dynamic group caching has also been
developed [8].

3 The Static World of MPI

As previously stated, many systems provide only a static process control model. The nodes in such
a model may be �xed at compile, download, or spawn time; and once started, an application cannot
usually change size or migrate during its execution. Failure of a single program module causing the

entire application to fail by invalidating its message communicators.

Because of the wide range of possible initialization options, the MPI forum decided against
standardizing process control. This decision had several advantages:

� The process model was easy to reason about. A �xed number of processes existed: either all
processes existed or none.

� Collective operations could be optimized, since the members taking part were known before-

hand and were not subject to change.

� Contexts or application tags could be implemented e�ciently.

4

3.1 MPI Process Control

Although the MPI standard does not state how processes are started, it does state how and in

which order processes become MPI processes. All MPI processes join the MPI system by calling

MPI Init and leave by calling MPI Finalize. Processes calling MPI Init twice may have an unde�ned

behavior.

3.2 Contexts, Process Groups, and Communicators

Context is a system-de�ned tag that can be used to di�erentiate messages from one another. Con-

texts generally are used by di�erent layers in a library to eliminate possible interference between

these layers. In PVM, for example, any task can send a message to any other task, whether the

receiving task wishes to interact with the sender or not (as in the case of two separate applications).
In MPI, on the other hand, the two applications have two separate message universes or contexts,
which render this potential mistake impossible.

Processes in MPI are arranged in rank order, from 0 to N-1, where N is the number of processes
in a group. These process groups de�ne the scope for all collective operations within that group.

The process group and context, together with other information about topologies and local at-
tributes, constitute a communicator. All communications can operate only within a communicator.
Thus, this strategy gives rise to a high level of protection against rogue messages.

3.3 Static Separate Worlds

Once all the expected processes have joined the system, a common communicator is created by the
system for them. This communicator, referred to as MPI COMM WORLD, will allow all processes
to communicate to all others in their \world." From this communicator, subset communicators can
be created and duplicated for the di�erent modules in an application by using di�erent (possibly

overlapping) groups of processes.
Communications between processes within the same communicator or group are referred to as

intracommunicator communications. Communications between di�erent groups are intercommuni-

cator communications. The formation of an intercommunicator requires two separate (nonoverlap-

ping) groups and a common communicator between the leaders of each group, as shown in Figure

1.
With the current standard MPI-1 implementation it is impossible to create an intercommunicator

between two separately initiatedMPI applications. Each application has its own MPI COMM WORLD,

with no existing communicator bridging the gap between them (see Figure 2).
All internal details are hidden from the user. MPI communicators have relevance only within a

particular run-time instance. Moreover, this strategy excludes di�erent MPI implementations from

interoperating. In summary, current MPI applications are static and isolated. and communication
between them will probably not be possible via message passing, but by other mediums such as

cross-mounted �le systems.

5

MPI_COMM_WORLD

Group 1
Group 2

Inter−communicator

Figure 1: Intercommunicator formed inside a single MPI COMM WORLD

MPI_COMM_WORLD
MPI_COMM_WORLD

Ocean Model
Application Air Model

Application

Figure 2: Separate applications that are unable to create an intercommunicator because they lack
any overlapping communicator

4 Related Work

Although several MPI implementations are built upon established message-passing libraries such as

Chameleon-based MPICH [6] and the LAM system [2], Unify [5] from Mississippi State University
is the closest related project in terms of dual APIs, with LAM 6.0 being closest in dynamic support.

The MPIX project also from Mississippi State University has some bearing on this research

e�ort in that it extends the capability of current MPI intercommunicators to allow them to be used

in collective operations instead of only in point-to-point operations. Also supported are overlapping

groups, which currently are not allowed in MPI.

4.1 Unify

The Unify system was originally proposed to unify or mate together the PVM and new MPI APIs.

The intention was to enable users to take current PVM applications and slowly migrate toward

complete MPI applications, without having to make the complete conceptual jump from one system

6

to the other.

The project, which was a masters degree project, never reached full maturity in that many

MPI features (such as virtual topologies, pro�ling, attribute caching, and intercommunicators)

were not implemented. Although all the MPI intracommunicator point-to-point and collective

operations were included, Unify failed to exploit PVM's dynamic spawning capability (hence no

need for intercommunicators) and forced the user to spawn a �xed number of master-slave SPMD

processes from the command line. More speci�cally, the start-up sequence consisted of a process

that checked to see whether it was a master by the existence of a parent process and then spawned

N-1 copies of itself. If a parent existed, the process was assumed to be a slave and would block on

a receive, awaiting a TID list so that it could build its MPI COMM WORLD, MPI COMM SIZE

and MPI COMM RANK values. Thus, a Unify application could not be started by any other

PVM process (including the console). Moreover, it could not use PVM spawn to start other MPI

applications, since their MPI Init calls would wait for never-arriving start-up messages.
Unify did address the di�culty of mapping identi�ers between the PVM and MPI domains,

where each system used a di�erent scheme; PVM using a 32-bit integer and MPI using a handle to
an opaque internal structure together with a rank inside that structure. Unify provided only two
new additional calls: one from MPI to PVM tid, and vice versa (without restrictions, since all the

tasks were running within both the PVM and the MPI environments).

5 Interoperation Requirements and Membership Rules

For PVM to interconnect any two groups of processes and allow them to communicate, at least
one process in each group must be enrolled into PVM. Processes can become enrolled into PVM by
being started by PVM (i.e., implicitly) or by calling a PVM library function (i.e., explicitly). An
implicitly started applications may also wish to remain independent, for example, when PVM is used
only as a start-up facility. Thus, the system must make sure that even if PVM fails pathologically,

it must not be able to interfere with the application's life cycle in any way.
The scope of any communications will depend upon the completeness of membership, that

is, fully connected to both systems or partially connected. If full connectivity is not possible,

intercommunicator operations could use point-to-point only communications between subsets of
nodes. Alternatively, by using extra calls, such operations could use the connected nodes as relays
to complete connections.

Another factor in membership is its duration. MPI applications may interact with each other

only in a server-client behavior pattern, as in the case of computational steering and visualization,
and may not wish to be part of the PVM system continuously. Hence the PVMPI membership is

required to be dynamic, as with the current PVM group services, although many PVMPI operations
may be required to be blocking and collective to aid correctness, as with current MPI practice.

6 Prototype Systems

A prototype system has been developed to ease the interconnection of MPI and PVM. Four separate

issues have been addressed:

1. mapping identi�ers or managing MPI and PVM IDs,

7

2. start-up facilities and process management,

3. MPI-style PVM message passing and collective operations, and

4. improved security and performance with attribute locking.

6.1 Mapping Identi�ers

Processes in an MPI application are identi�ed by referencing a tuple pair such as fprocess group,

rankg or fcommunicator, rankg. PVM also has this capability when using the group library, in the

form of fgroup name, instanceg.

In the simplest case, where all the processes in an MPI application group have access to PVM,

a single pair of calls can be used to register a process group with the current PVM group server.

The functions are available in both C and Fortran bindings:

info = pvmpi_register(char *group, MPI_Comm comm, int *options);

info = pvmpi_leave(char *group);

call pvmpifregister(group, comm, options)

call pvmpifleave (group)

Both functions are collective: all processes in the MPI communicator have to call them together.
The pvmpi leave command is used to clean up MPI data structures and to leave the PVM

system in an orderly way if required.
Processes can register in multiple groups, although currently separate applications cannot regis-

ter into a single group with this call. The register call takes each member of the context and makes
it join a named PVM group so that its instance number within that group matches its MPI rank.
Since any two MPI applications may be executing on di�erent systems using di�erent implemen-

tations of MPI (or even di�erent instances of the same version), the communicator usually has no

meaning outside of any application callable library. The PVM group server, however, can be used
to resolve identity when the groups names are unique.

Once the application has registered, an external process can now access any registered process

by using that processes group name and instance via the library calls pvm gettid and pvm getinst.

When the groups have been fully formed without any errors occurring, they are frozen and all their
details are cached locally so that there are very few system over-heads for accessing them using the

group library.
Figure 3 shows the previous example applications using the register group call, and �gure 4

shows the new groups communicating using conventional PVM calls.

Client-server interactions often require waiting for applications partners to start. To handle this

situation, an additional blocking call has been provided that waits until a group has completely

registered before returning its size and caching its addresses locally:

groupsize = pvmpi_waitfor (char* group);

call pvmpifwaitfor (group)

8

MPI_COMM_WORLD
MPI_COMM_WORLD

0

1

1
0

2
PVMGS

PVM

Figure 3: Two separate MPI applications register their process groups by using pvmpi register().

0

1

1
0

2
PVMGS

PVM

Ocean Model

Air Model

Figure 4: The zeroth rank \Air Model" process sending a PVM message to the �rst rank \Ocean

Model" process with pvm send(pvm gettid(\Ocean Model",1), tag)

This routine not only removes the need for a user to poll the group server, but also helps
prevent races caused by the dynamic nature of PVM groups [8]. If two applications are started

separately, they may not have �xed sizes, and so they may not know when it was safe to start
communicating with each other without additional handshaking. This routine eliminates the need

for such additional handshaking.

6.2 Start-up Facilities and Process Management

The spawning of MPI jobs requires di�erent procedures depending upon the target system and the

MPI implementation. The situation is complicated by the desire to avoid adding many spawn calls
(the current intention of the MPI-2 forum). Instead, a number of di�erent resource managers and

MPI implementation speci�c taskers have been developed. This work has been the impetus behind
a simpli�cation of the current resource management hooks so that expansion of the PVM system

itself is more modular.

9

Three basic schemes are available:

1. An application schemer is created, and the system forks the required version of MPIRUN to

start the MPI job.

2. Taskers intercept the calls and modify either the arguments passed to the new processes or

the working environment.

3. Current default: Processes are started as normal Unix tasks.

The �rst method is being used on various MPP versions of PVM, such as for the SP2 when using

the SP2MPI variate. In these cases the resource manage and taskers must work closely together to

ensure that the created groups of processes have the \correct" PVM parent ID. This method is also

used for MPIF applications and for MPICH and LAM applications depending on circumstances.
The second method is used for MPICH applications running under the ch p4 device on work-

station clusters. This method currently alters the argument list passed to the processes. When
MPI-2 eliminates the mandatory passing of fargc,argvg to MPI Init, this will be changed to alter

the environment as required.
The third method is applicable to LAM processes when the user requests a single process per

LAM/PVM node.
These systems require the user to adhere to some super�cial constraints, such as placing MPI

executables in user-con�gurable directories so that their nature can be determined from their loca-

tion. The declaration of available nodes in the case of LAM5.X and MPICH is also required before
spawn time. Since LAM 6.0 can alter its virtual machine, this has to be polled at spawn time by a
specialized tasker running on one of its nodes.

The spawn command has not altered, although when interfacing to a resource manager, it is
allowed to be called with one of the following additional
ags|PVMPI LAM or PVMPI MPICH|

in place of the current spawn
ag options. If a specialized tasker is used, spawning is identical to
spawning on a MPP front-end or service node:

pvm_spawn("MPI_APP",..,PvmTaskHost,"Host_in_MPI_system", N, ..)

6.2.1 SP2 Process Spawning

The SP2 version of PVM that uses MPI for internal communications appeared initially not to require

any alteration. Unfortunately, when required to spawn N processes, it spawned an extra process

to manage communication with the daemon, e�ectively allowing true nonblocking communication

between on and o� machine nodes, as shown in Figure 5 for a four-task application. In other
words, MPI applications have one extra process that they cannot communicate with, because it is

dedicated to relaying messages for the PVM system.
The library also had other shortcomings in its ability to handle re-entrance of MPI Init. In

particular, its default failure mode was pathological, and it did not use a private communicator
internally, but instead used MPI Comm World. Two separate systems [7] are currently being eval-

uated that resolve these problems:

1. A modi�ed SP2MPI port that creates the required number of tasks, each of which individually

opens a socket to the spawning PVM daemon for out of application communication. This

10

Other PVM tasksPVMD

MPI_COMM_WORLD

appl.host

process

0 1

2 3

4

Figure 5: SP2MPI PVM using an application host task to manage nonapplication message routing

version works for both PVMPI and conventional PVM applications and may replace the
currently used method.

2. An SP2 viewed as a cluster of RS/6000 workstations, but with the application spawned
as in the SP2MPI version using the IBM POE[11] called from a special tasker. The tasks
individually connect to their local host daemon, after an extra layer of handshaking that

correctly sets up their task data structures (including the parent task identity).

6.3 MPI-style Message Passing and Collective Operations

Using two di�erent styles of API for message passing as opposed to process control may in itself

cause di�culties for users, especially if they have never used PVM or the MPI bu�ered pack routines
before. Thus, some basic send and receive operations are provided in a similar form to the original
MPI bu�ered operations. For example, the routines

pvmpi_send(void* buf, int count, MPI_Datatype dtype, int destination, int tag,

char* group)

pvmpi_recv(void* buf, int count, MPI_Datatype dtype, int destination, int tag,

char* group)

are used in the same way as the current MPI point-to-point operations except that a group name

is given instead of a communicator handle. They support basic continuous data types with more
advanced derived data types (see the PVM CCL project [9]).

The need for collective operations across communicators has been identi�ed by other research

groups and has led to an experimental library, based upon MPICH, called MPIX (MPI eXten-

sions) [17]. The library allows many of the current intracommunicator operations to work across

intercommunicators such as All Gather and All to all.
The current PVM group services, based upon the pvm bcast function, be used to link di�erent

implementations of MPI. Again, PVMPI operations to ease the use of groups can be created and are

currently being investigated. One operation of particular interest is an intercommunicator sendrecv

call. This call assists the synchronization of two independent applications and allows them to

11

exchange data in a convenient way that matches many domain decomposition models (see Figure

6).

0
1

2

3
4

0

1

2

3

4
Ocean Model

Air Model

Figure 6: Passing boundary values between two separately initiated applications using

pvmpi sendrecv

6.4 Improved Security and Performance with Attribute Locking

PVM 3.4 [10] includes many enhancements such as contexts and a mailbox-style user-accessible
database. These features can be used to add a level of protection on a par with that of MPI.
Thus, by enrolling in PVMPI, an MPI application can still be protected from rogue messages. The
second implementation of the PVMPI system uses some of the PVM 3.4 features to stores group

attributes in the mailbox. Attributes include group size, node architectures, context tag, and access
permissions, which are set by using the options entry in the pvmpi register call. Once a process has
registed under PVM 3.4, it is issued with a context for its group. External processes cannot access
details about that group, such as size or membership, unless it matches the permission criteria set

during the registration.

The permission options for registration include the following:

� PVMPI ANY: Any process can look up a groups details and attributes. This is the default

for the PVM 3.3 group services.

� PVMPI SIBLIN: Any process that shares a common parent can access details. The number
of levels up the process tree searched can be varied.

� PVMPI CHILD: Only this process's children can �nd details about it.

� PVMPI PRIVATE: Access to process's identity and context for any external processes is

disallowed.

Processes may change their access permission at any time, noting that this is a collective operation
across the entire group.

Once a group has registered, its context is set and stored in the system mailbox. If a process

attempts to communicate with these processes, it must obtain the context from the process itself,

12

or it can use one of the PVMPI communication routines such as pvmpi send, which will look up

and use the correct context if it is available. This arrangement enables processes to communicate

with each other without the user having to explicitly pass the context to other processes.

An advantage of having �xed groups with known attributes is that PVM is able to choose the

correct encoding scheme when message passing, thereby enhancing performance on homogeneous

systems automatically.

7 Conclusions

The PVMPI system is not just a solution to di�culties of static MPI-1 applications. Rather, it is

a system that allows more
exible control over MPI applications than is currently indicated by the

MPI-2 forum.
More important, it allows the user to construct sections of an application from di�erent MPI

implementations that match di�erent hardware systems. Thus, the user is not forced to run the
whole application upon a single system with a single implementation.

In its most simplistic mode of operation, only two or three additional calls are required to

fully interoperate entirely di�erent systems. Upgrading the PVMPI system to support new MPI
implementations requires only simple changes to current tasker and resource management processes.

The intercommunication operations make using the PVMPI system more akin to the spirit of
the original MPI system, especially when it uses contexts in PVM3.4.

References

[1] A. L. Beguelin, J. J. Dongarra, A. Geist, R. J. Manchek, and V. S. Sunderam. Heterogeneous
Network Computing. Sixth SIAM Conference on Parallel Processing, 1993.

[2] Greg Burns, Raja Daoud and James Vaigl. LAM: An Open Cluster Environment for MPI.
Technical report, Ohio Supercomputer Center, Columbus, Ohio, 1994.

[3] Henri Casanova, Jack Dongarra and Weicheng Jiang. The Performance of PVM on MPP Sys-

tems. Department of Computer Science Technical Report CS-95-301. University of Tennessee

at Knoxville, Knoxville, TN. August 1995.

[4] J. Casas, R. Konuru, S. Otto, R. Prouty, and J. Walpole. Adaptive Load Migration Systems for
PVM. Supercomputing'94 Proceedings , pp. 390-399, IEEE Computer Society Press, 1994.

[5] Fei-Chen Cheng. Unifying the MPI and PVM 3 Systems. Technical report, Department of
Computer Science, Mississippi State University, May 1994.

[6] Nathan Doss, William Gropp, Ewing Lusk and Anthony Skjellum. A model implementation of

MPI. Technical report MCS-P393-1193, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL 60439, 1993.

[7] Graham E. Fagg and Jack J. Dongarra. The Restructuring of SP2MPI PVM. Department of
Computer Science Technical Report CS-96-323. University of Tennessee at Knoxville, Knoxville,

TN. Febuary 1996.

13

[8] G.E. Fagg, R.J. Loader, P.R. Minchinton and S.A. Williams. ImprovedGroup Services for PVM.

Proceeding of 1995 PVM Users Group Meeting, Pittsburgh, pp.6, May 1995.

[9] Graham E. Fagg, Roger J. Loader and Shirley A. Williams. Compiling for Groups. Proceeding

of EuroPVM 95, pp. 77-82, Hermes, Paris, 1995.

[10] G. Geist, J. Kohl, R. Manchek, and P. Papadopoulos. New Features of PVM 3.4 and Beyond.

Proceeding of EuroPVM 95, pp. 1-10, Hermes, Paris, 1995.

[11] IBM AIX Parallel Environment, Parallel Programming Reference, IBM, Kingston, New-York,

September, 1993

[12] R. Konuru, J. Casas, S. Otto, R. Prouty and J. Walpole. A User-Level Process Package for

PVM. Scalable High Performance Computing Conference, pp. 48-55, IEEE Computer Society
Press, 1994.

[13] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. International
Journal of Supercomputer Applications, 8(3/4), 1994. Special issue on MPI.

[14] Jim Pruyne and Miron Livny. \Providing Resource Management Services to Parallel Appli-
cations" Proceedings of the Second Workshop on Environments and Tools for Parallel Scienti�c

Computing, May 1994.

[15] Jim Pruyne and Miron Livny. \Parallel Processing on Dynamic Resources with CARMI",
Workshop on Job Scheduling Strategies for Parallel Processing, IPPS 95, April 25, 1995.

[16] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O'Reilly & Associates, Inc.,
Sebastopol, CA, 1992.

[17] Anthony Skjellum, Nathan E. Doss and Kishore Viswanathan. Inter-communicator extensions
to MPI in the MPIX (MPI eXtension) Library. Department of Computer Science Technical
Report. Mississippi State University, Mississippi State, pp. 18, August 1994.

[18] Georg Stellner and JimPruyne. Resource Management and Checkpointing for PVM Proceeding
of EuroPVM 95, pp. 130-136, Hermes, Paris, 1995.

[19] Louise Turcotte. \A Survey of Software Environments for Exploiting Networked Computing
Resources", MSSU-EIRS-ERC-93-2, Enginerring Research Center, Mississippi State University,

Febryray 1993.

14

