
The Performance of PVM

on MPP Systems

Henri Casanova � Jack Dongarra? y Weicheng Jiang?

July 19, 1995

Abstract

PVM (Parallel Virtual Machine) is a popular standard for writing parallel programs so that

they may execute over a network of heterogeneous machines. This paper presents some perfor-

mance results of PVM on three massively parallel processing systems: the Thinking Machines

CM-5, the Intel Paragon, and the IBM SP-2. We describe the basics of the communication

model of PVM and its communication routines. We then compare its performance with native

message-passing systems on the MPPs.

�Department of Computer Science, University of Tennessee, TN 37996
yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

1

1 Introduction

PVM (Parallel Virtual Machine) is a software system that allows programmers to use a network

of heterogeneous computers, some of which may be massively parallel processing (MPP) systems,

as a single multicomputer. In this paper we brie
y describe the message-passing features of PVM

and discuss PVM's performance on several MPP systems. See [1] for more details on this software.

All the timings in this report have been obtained with the current version of PVM available at

the University of Tennessee. Speci�cally, we used version 3.3.8 of PVM on the CM-5 and the Intel

Paragon and the beta version of PVM on top of MPI on the IBM SP-2. Performance results are

summarized in table 2 at the end of this paper and details of the tests are given in appendix A.

2 The Semantics of PVM Message Passing

This section focuses on the message-passing features of PVM.

2.1 Terminology

We de�ne several terms that will be used in this paper to discuss message passing.

Synchronous Send : A synchronous send returns only when the receiver has posted a receive.

Asynchronous Send : An asynchronous send does not depend on the receiver calling a matching

receive.

Blocking Send : A blocking send returns as soon as the send bu�er is free for reuse, that is, as

soon as the last byte of data has been sent or placed in an internal bu�er.

Non-blocking Send : A non-blocking send returns as soon as possible, that is, as soon as it has

posted the send. The bu�er might not be free for reuse.

Blocking Receive : A blocking receive returns as soon as the data is ready in the receive bu�er.

Non-blocking Receive : A non-blocking receive returns as soon as possible, that is, either with

a
ag that the data has not arrived yet or with the data in the receive bu�er.

2

2.2 The Communication Model

The PVM communication model assumes that any task can send a message to any other PVM task.

There is no limit to the number of messages and no limit to their size. The communication does

not restrict itself to a particular machine's limitations and always assume that su�cient memory

is available. The message bu�ers are allocated dynamically. Therefore, the maximum message size

that can be sent or received is limited only by the amount of available memory on a given host.

PVM may give the user a cannot get memory error when the sum of incoming messages exceeds

the available memory, but PVM doesn't stop its execution and doesn't remove the host from the

con�guration.

According to our terminology, the PVM communication model provides only asynchronous blocking

sends. Therefore, the PVM user does not have to worry either about any deadlocks for nonmatching

pairs of send-receive or about rewriting into a bu�er after it has been sent. PVM provides blocking

receives and non-blocking receives.

In PVM3 the option PvmRouteDirect, that requests that data be transferred directly from task to

task, by-passing the PVM demon. However this option is ignored on the MPPs, on which PVM is

build on native systems. The PVM model also guarantees that message order is preserved.

2.3 The Message-Passing Functions in PVM

Until PVM3.3, the only message-passing function available in PVM was pvm send() -pvm recv().

Several additional functions have now been added, as discussed below.

2.3.1 pvm send()-pvm recv-pvm nrecv()

Sending a message requires three steps. First, a PVM bu�er must be initialized by a call to

pvm initsend(). Second, the message must be \packed" from the user data space into the PVM

bu�er by using any combination of the pvm pk*() routines. PVM takes care of any data encoding

and fragmentation. Third, the complete message is sent to another process with pvm send().

Receiving a message involves two steps. First, the incoming message must be accepted by pvm recv(),

the blocking receive, or by pvm nrecv(), the non-blocking receive. Second, once the message has

arrived, it must be \unpacked" into the user data space with a combination of the pvm upk*()

functions.

During the initialization of the PVM bu�er, the user can chose between three di�erent ways of

packing the data in this bu�er, depending on the parameter passed to pvm initsend(). The

default packing mode is PvmDataDefault. The data is packed from the user space into the PVM-

bu�er and is encoded according to the XDR format. This mode allows communication over a

heterogeneous network (by heterogeneous, we mean a set of computers at least two of which do not

have the same data format). A second mode is PvmDataRaw. This mode is similar to the default,

but the encoding step is skipped. Thus, PvmDataRaw can be used only between hosts of compatible

data formats. It is always more e�cient to use PvmDataRaw when running PVM on a single MPP.

3

In the experiments described in this paper, we used PvmDataDefault once on the CM-5, only to

show that it is always highly ine�cient to use this data format (see Figure 3(b)). A third option,

PvmDataInPlace, leaves the data \in place" in the user data space. During the packing step, PVM

simply keeps track of where and how much data is speci�ed. When pvm send() is called, the data

is fetched from the user space and sent over the network (the data is in fact never packed). Using

PvmDataInPlace reduces the pack time dramatically and reduces memory requirements. However,

care must be taken when using this method as the data should not be modi�ed between the pack

call and the send call. Indeed, since PVM keeps only pointers to the data, the data can be modi�ed

any time before the send. This situation cannot occur with PvmDataDefault or PvmDataInPlace.

2.3.2 pvm psend()-pvm precv()

With PVM 3.3, it is possible to send and receive messages in a single step using pvm psend()

and pvm precv(). The messages processed by these routines must be exchanged between hosts of

compatible data format. Moreover, since there is no packing, the data sent must be contiguous in

the sender memory space. In other words, pvm psend() can be used to send one array of a given

data type to one destination, which is a very common type of message in a parallel application.

Nevertheless, this feature cannot be used between hosts with incompatible data format, because it

involves no data encoding.

2.4 Summary

The Table 1 shows the limitations and possibilities of the di�erent point-to-point systems in PVM3.

2.5 Implementation on MPPs

Figure 1 shows the way the pvm psend()-pvm precv(), PvmDataInPlace, and PvmDataRaw are

implemented on the MPPs. In the rest of this paper, we will frequently refer to this �gure in order

to discuss its impact on the performance of PVM. Note that in the �gure, we have presented the

steps of pvm send() and pvm recv() for two noncontiguous data in the user space. We have also

represented the possible extra bu�ering in the native system on the receiving end. This is the way

bu�ering is done on the Intel Paragon. On the CM-5 and the SP2, however, the bu�ering is done

on the sending end for the native asynchronous blocking send.

3 The CM-5

3.1 The Native Message-Passing System

The CMMD library on the CM-5 enables the user to write message-passing programs. It provides

di�erent ways of sending and receiving messages, as we now describe. See [2] for more details.

4

pvm_psend

pvm_precv

pvm_send

pvm_recv

PvmDataInPlace

pvm_send

pvm_recv

PvmDataRaw

User Level

PVM Level

System Level

User Level

PVM Level

System Level

User Level

PVM Level

System Level

Buffer

Network communication

Data copy

Pointer

header

SENDER RECEIVER

Unpack

Pack Unpack

Build a buffer

1

2

Possible buffering
involving a possible
data copy

Figure 1: PVM implementation on MPPs

5

PVM Works on

message-passing heterogeneous Portability Functionality Motivation

routines systems

call must Can be used only -Direct use of

pvm psend() No be modi�ed to to exchange one native system

pvm precv() run on a hetero- contiguous piece of -No packing

geneous system data of one type -No unpacking

Very easy Can send and -No real packing

pvm send() No modi�cation receive -Memory saving

pvm recv() to switch to packed data on the sender

PvmDataInPlace PvmDataDefault

Very easy Can send and

pvm send() No modi�cation receive -Skip the XDR

pvm recv() to switch to packed data encoding phase of

PvmDataRaw PvmDataDefault PvmDataDefault

Can send and

pvm send() Yes Portable receive -Heterogeneous

pvm recv() packed data communication

PvmDataDefault -uses XDR

Table 1: Summary table of PVM message-passing features

CMMD send block()-CMMD receive block() :

According to the terminology de�ned in 2.1, CMMD send block() is a synchronous blocking send

and CMMD receive block() is a blocking receive.

CMMD send async()-CMMD receive async() :

CMMD send async() is an asynchronous non-blocking send and CMMD receive async() is a non-

blocking receive. CMMD provides functions to check the completion of the sending and receiving

operations.

CMMD send noblock() :

CMMD send noblock() is an asynchronous blocking send.

3.2 Comparison of the Native Routines

To assess the native bandwidth and latency, we used CMMD send block() and CMMD receive block().

We could also have used CMMD send async() and CMMD receive async(), which would have given

the same performance. The main advantage of these routines is that they provide the user with the

6

possibility of overlapping some communications by some computations. It is clear, after some exper-

iments, that CMMD send noblock() is quite ine�cient. This result is surprising for a \ping-pong"

test, since normally the receive is always posted and CMMD send noblock() should be able to send

the data without any bu�ering. Here, on the contrary, it bu�ers the data systematically, always

involving an extra data copy on the sending end. Nevertheless, CMMD send noblock has several

advantages: it cannot lead to a deadlock (as can CMMD send block()), and the user can reuse its

bu�er as soon as the call returns (unlike CMMD send async()). One pitfall in CMMD send noblock

is that it could run out of message descriptors if packets pile up at the sending end.

3.3 The Bandwidth

Figures 2(a) and 2(b) show the bandwidth obtained between two nodes of the CM-5 for

� the native message passing system CMMD send block()-CMMD receive block()

� pvm psend()-pvm precv()

� pvm send()-pvm recv() with the PvmDataRaw format

� pvm send()-pvm recv() with the PvmDataInPlace format

The �rst point to notice in Figure 2(a) is that, as expected, the native message-passing library is the

most e�cient, with an asymptotic bandwidth of 8.06 Mbytes/sec. Nevertheless, the pvm psend() -

pvm precv() bandwidth is fairly close to the performance of the native system. In fact, pvm psend()

is built on top of CMMD send async(), a con�guration that explains the good performance (see

section 3.1).

We also see that pvm send()-pvm recv()with PvmDataInPlace is much less e�cient than pvm psend()

- pvm precv(). Two factors explain this ine�ciency:

� Unlike pvm psend()-pvm precv(), it involves a real data unpacking on the receiving end (see

Figure 1).

� It is built on top of CMMD send noblock()which we showedmuch less e�cient than CMMD send async()

because of an extra data copy on the sending end (see section 3.2).

Of course, pvm send()-pvm recv() with PvmDataRaw is even less e�cient. It is built on top of

CMMD send async but involves an actual data packing-unpacking.

3.4 The Latency

Figure 3(a) shows the transfer time between two nodes for small messages (up to 1024 bytes).

We computed the latencies from Figure 3 using a least squares interpolation. They are given in

the following table.

7

CMMD_send_block

pvm_psend

PvmDataInPlace

PvmDataRaw

10
1

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

7

8

Number of Bytes sent

B
a

n
d

w
id

th
 i
n

 M
B

/s
e

c

Connection Machine 5 − (a)

CMMD_block

pvm_psend−pvm_precv

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Number of bytes sent
B

a
n

d
w

id
th

 i
n

 M
b

y
te

s
 p

e
r

s
e

c
o

n
d

Connection Machine 5 − (b)

Figure 2: Bandwidth on the CM-5: PVM3 - CMMD

CMMD_send_block

pvm_psend−pvm_precv

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

x 10
−3

Number of bytes sent

T
im

e
 i
n

 s
e

c
o

n
d

s

Connection Machine 5 (a)

PvmDataRaw
PvmDataDefault

10
1

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

Number of bytes sent

B
a

n
d

w
id

th
 i
n

 M
B

y
te

s
/s

e
c

Connection Machine 5 − (b)

Figure 3: (a) Latency on the CM-5 : PVM3 - CMMD - (b) Bandwidth : PvmDataDefault

8

System Latency (u-sec)

CMMD send block 82

pvm psend 190

PvmDataInPlace 858

PvmDataRaw 737

We observe that the latency for CMMD send block()-CMMD receive block() is the lowest. The

latency for pvm psend()-pvm precv() is higher, since these routines are built on top of the CMMD

routines. Moreover, pvm psend() is much more complex than CMMD send block(), since it uses

CMMD send async() and accepts incoming messages while waiting for its sending operation to be

completed, putting them into a queue (the semantics of pvm psend() implies that no deadlock

should occur and that the bu�er is ready for reuse when it returns).

The latency of pvm send()-pvm recv() is of course much higher than that of pvm psend()-pvm precv().

This is because of the data packing-unpacking and the use of CMMD send noblock(). We notice

that the latency is higher with PvmDataInPlace than with PvmDataRaw, which can be seen from

Figure 1. With PvmDataInPlace, pvm send() has much more \work" to do than with PvmDataRaw.

Before sending the �rst data to the receiver, a header must be sent, to inform the receiver about

the size of the messages to be expected. This header is built in the PVM space and must be sent

separately because it is not contiguous with the data. In the �gure, the sending of the header

corresponds to the blue arrow number 1. Once it has received the header, the receiver builds a

PVM bu�er according to the information contained in the header, symbolized by the dashed black

arrow on the �gure. Then it begins accepting the data in this bu�er (blue arrows 2). This process

is repeated with the next header if there is one. In our small program, we have only one header of

data to transmit. Thus, pvm send() will send a header and then the data. The extra cost of the

header is the penalty for short messages.

Note that if we use PvmDataInPlace to send n noncontiguous di�erent data, pvm send() actually

sends 2n messages. Hence, it is highly ine�cient to use PvmDataInPlace instead of PvmDataRaw to

send a large amount of noncontiguous small data.

4 The Intel Paragon

4.1 The Native Message-Passing System

On the Intel Paragon, the NX library enables the user to write message-passing programs. We

describe here shortly the di�erent protocols. See [3] for more details.

isend -irecv :

isend is an asynchronous non-blocking send and irecv is a non-blocking receive. NX provides

polling functions to check the completion of the send and receive operations.

csend()-crecv() :

9

csend() is an asynchronous blocking send and crecv() is a blocking receive.

4.2 Comparison of the Native Routines

This system is similar to CMMD on the CM-5, but it has no synchronous calls (such as CMMD send block()).

We have seen that on the CM-5, CMMD send noblock() is clearly less e�cient than the other sending

functions. On the Paragon, the performance of csend() is as high as the performance of isend()

on a \ping-pong" test. In fact, in this kind of test, the receive is always posted when the data is

to be sent. Thus, no extra bu�ering occurs. The Paragon in this respect is more e�cient than the

CM-5, which always does an extra bu�ering (see 3.2).

In the following experiments, we used csend()-crecv() to asses the native bandwidth and latency.

4.3 The Bandwidth

Figures 4(a) and 4(b) show the bandwidth obtained between two nodes of the Intel Paragon for

� The native message passing system csend()-crecv()

� pvm psend()-pvm precv()

� pvm send()-pvm recv() with the PvmDataRaw format

� pvm send()-pvm recv() with the PvmDataInPlace format

As expected, the native message-passing library is the most e�cient, with an asymptotic bandwidth

of 72 Mbytes/sec. However, the pvm psend()-pvm precv() bandwidth is almost as e�cient. In

fact, pvm psend() is built on top of isend, a con�guration that explains its good performance (see

4.1). In Figure 1, we see that there can be an extra bu�ering if the message arrives before the

receive is posted. The system bu�ers any incoming message for which no receive has been posted.

In a \ping-pong" test, however, the receive is always posted, and this extra bu�ering never occurs.

As on the CM-5, pvm send()-pvm recv() with PvmDataInPlace is much less e�cient. First, unlike

pvm psend()-pvm precv(), it involves an actual data-unpacking on the receiving end, as shown

in Figure 1. Second, There may be an extra bu�ering on the receiving end. We should, however,

realize better relative performance than on the CM-5 because csend() does not do a systematic

extra data copy, as was the case on the CM-5 with CMMD send noblock(). However, there could

be an extra data copy as a result of the PvmDataInPlace protocol. When the receiver receives the

header, it begins to build a PVM bu�er, as explained in section 3.4. Meanwhile, the data may

arrive before the receive is posted. In that case, the system does an extra bu�ering on the receiving

end. This is the reason that the relative performance of PvmDataInPlace compared with that of

pvm psend()-pvm precv() is roughly the same as it is on the CM-5. This also explains the sudden

jump when the message size crosses over 106 Bytes (1 MB). The default size of the Paragon system

bu�er is 1 MB, and 3=4 of that is used to bu�er incoming messages. The 1-MB message could

10

not �t in the bu�er, so it was held up brie
y and then copied into the PVM bu�er directly. That,

ironically, resulted in better performance.

Of course, pvm send()-pvm recv() with PvmDataRaw is even less e�cient, because it also involves

data packing and unpacking. In addition, the message must be bu�ered by the system, because

pvm recv polls to check the message length before accepting it.

The little blip in the middle of the pvm send()-pvm recv() curve corresponds to the system page

size.

4.4 The Latency

Figure 5 shows the transfer time between two nodes for small messages (up to 1024 bytes).

We computed the latencies from Figure 5 using a least squares interpolation. They are given in

the following table.

System Latency (u-sec)

csend 49

pvm psend 54

PvmDataInPlace 332

PvmDataRaw 320

5 The IBM SP-2

5.1 The Native Message-Passing System

On the IBM SP-2, there are basically three native ways of designing message-passing programs.

One can use MPL, a classic message-passing library (see [4]); one can use the private IBM imple-

mentation of MPI (Message Passing Interface) (see [6]); or one can use a private implementation

of PVM, called PVMe, which corresponds to PVM 3.2.

MPL o�ers two ways of exchanging messages:

mpc bsend()-mpc brecv() :

mpc bsend() is a synchronous blocking send and mpc brecv() is a blocking receive.

mpc send()-mpc recv() :

mpc send() is an asynchronous non-blocking send and mpc recv() is a non-blocking receive. MPL

provides polling function to check the completion of the send and receive operations.

We used mpc bsend()-mpc brecv() to do our MPL bandwidth and latency measurements.

11

csend

pvm_psend

pvm_send InPlace

pvm_send Raw

10
1

10
2

10
3

10
4

10
5

10
6

0

20

40

60

80

100

Number of Bytes sent

B
a

n
d

w
id

th
 i
n

 M
B

/s
e

c

Intel Paragon − (a)

csend−crecv

pvm_psend−pvm_precv

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

Number of bytes sent
B

a
n

d
w

id
th

 i
n

 M
b

y
te

s
 p

e
r

s
e

c
o

n
d

Intel Paragon

Figure 4: Bandwidth on the Intel Paragon: PVM3 - NX

csend

pvm_psend

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

Number of bytes sent

T
im

e
 i
n

 s
e

c
o

n
d

s

Intel Paragon

Figure 5: Latency on the Intel Paragon: PVM3, NX

12

PVMe can be used exactly as PVM 3.2 (that is, without pvm psend() or pvm precv()). It can

also be used in two di�erent execution modes:

� Interrupt: the CSS (switch) handler signals a task that a message is incoming.

� No Interrupt: the CSS handler does not signal an incoming message, and hence may cause

deadlock if a large number of messages is exchanged.

The current version of PVM on the SP-2 is built on top of the private implementation of MPI by

IBM. We also must note that MPI is implemented not on top of MPL, but at the same level (on

top of a common low-level library).

5.2 The Bandwidth

In Figures 6(a) and 6(b) we show the bandwidth obtained for

� mpc bsend()-mpc brecv()

� pvm psend()-pvm precv()

� PVMe : PvmDataInPlace Interrupt/No Interrupt

� PVMe : PvmDataRaw Interrupt/No Interrupt

� pvm send()-pvm recv() with PvmDataInPlace

� pvm send()-pvm recv() with PvmDataRaw

In Figure 6(a), the measures for PVMe using PvmDataInPlace are the same regardless of whatever

execution mode is used. The measures for PVMe using PvmDataRaw in the \No Interrupt" mode

are the same as the measures for PVMe using PvmDataInPlace.

In Figure 6(b), the measures for PVMe using PvmDataRaw are exactly the same as the measures

PVMe using PvmDataInPlace.

In Figure 6(a), we see that pvm psend - pvm precv is only slightly less e�cient than mpc bsend()-

mpc brecv(), which is of course the most e�cient. As on the CM-5 and the Paragon, PvmDataInPlace

is better than PvmDataRaw.

As with the Paragon, the little blip in the middle of the pvm send()-pvm recv() curve corresponds

to the system page size.

5.3 The Latency

Figure 7 shows the transfer time between two nodes for small messages (up to 1024 bytes). This

�gure does not show the results for PVMe with PvmDataRaw, since they are the same as the results

for PvmDataInPlace.

13

mpc_bsend

pvm_psend

PVMe InPlace

PVMe Raw Int

PvmDataInPlace

PvmDataRaw

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

Number of Bytes sent

B
a

n
d

w
id

th
 i
n

 M
B

/s
e

c

IBM SP2 − (a)

mpc_bsend

pvm_psend−pvm_precv

PVMe InPlace/Raw Int

PVMe InPlace/Raw NoInt

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

Number of bytes sent
B

a
n

d
w

id
th

 i
n

 M
b

y
te

s
 p

e
r

s
e

c
o

n
d

IBM SP2 − (b)

Figure 6: Bandwidth on the IBM SP-2: PVM3 - PVMe - MPL

mpc_bsend

pvm_psend

PVMe InPlace (Int)

PVMe InPlace (NoInt)

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

x 10
−4

Number of bytes sent

T
im

e
 i
n

 s
e

c
o

n
d

s

IBM SP2

Figure 7: Latency on the IBM SP-2: PVM3, PVMe, MPL

14

We computed the latencies from Figure 7 using a least squares interpolation. They are given in

the following table.

System Latency (u-sec)

mpc bsend 53

pvm psend 54

PvmDataInPlace 224

PvmDataRaw 202

PVMe InPlace (Int) 259

PVMe InPlace (NoInt) 804

The latency of pvm psend-pvm precv is roughly the same as that of mpc bsend-mpc brecv. For the

same reason as on the CM-5 and the Paragon, PvmDataRaw gives a lower latency than PvmDataInPlace.

6 Summary

We have assessed the costs of the di�erent PVM routines in terms of memory-to-memory copy and

network communication. By network communication, we mean one sending of one message over

the network. This message is possibly fragmented by the system. These costs are given for one

send-receive operation during our \ping-pong" test, that is with the assumption that the receive

is always posted when the send is done. By memory-to-memory copy, we mean the copy of one

message from one local bu�er to another local bu�er. The number of memory-to-memory copies

includes the extra system bu�ering.

The following table gives these costs as illustrated in Figure 1.

PVM Memory-to-memory network

routines copies communications

pvm psend() 0 on the sender

pvm precv() 0 on the receiver 1 communication

0 copies

pvm send() 0 on the sender

pvm recv() 2 on the receiver 2 communications

PvmDataInPlace 2 copies

pvm send() 1 on the sender

pvm recv() 2 on the receiver 1 communication

PvmDataRaw 3 copies

The gap between pvm send()-pvm recv() and pvm psend()-pvm precv() seems surprising. To

see how much of that can be attributed to the extra data copies, we measure the costs of memory-

to-memory copies on all three systems, the results are shown in the following table. The time in

the bcopy column is how long it takes to copy the message. The rest is the message roundtrip time

for the three encoding methods, divided by two. The message size is 800 Kbytes, and the time is

in microseconds.

15

system bcopy psend send (InPlace) send (Raw)

SP2 10528 24168 35720 53326

CM5 73729 97484 158790 192366

Paragon 16341 11428 32742 60410

For the CM5, the bcopy time accounted for most of the di�erence between pvm send()-pvm recv()

and pvm psend()-pvm precv(). For the SP2 and Paragon, it accounted for most of the di�erence

between pvm psend()-pvm precv() and pvm send()-pvm recv() PvmDataInPlace.

7 Conclusion

The philosophy of PVM has always been to keep the user interface simple and to let PVM do the

hard work in order to improve the performance. This is why all sends in PVM are asynchronous

and blocking. On the other hand, MPP systems usually provide e�cient native communication

features. PVM's goal is to use them to improve its performance while keeping its simple message-

passing semantic and interface. Therefore, in PVM 3.3, the routines pvm psend() and pvm precv()

have been added. The pvm psend() routine combines the initialize, pack, and send steps into a

single call with an orientation toward performance, while pvm precv() combines the unpacking and

the receive steps. The results in this paper clearly show that these new routines yield improved

performance and can survive the comparison with the native message-passing systems.

Users who build applications for a homogeneous con�guration and have only contiguous data to

transmit should bene�t from the pvm psend() and pvm precv() calls. These routines can provide

extremely high performance communication, as e�cient as the native communication on MPP

systems.

16

CM-5

Protocol Latency (u-sec) Bandwidth (Mbytes/sec)

CMMD CMMD send block 82 8.25

PVM pvm psend 190 8.21

PVM PvmDataInPlace 858 5.01

PVM PvmDataRaw 737 4.17

Intel Paragon

Protocol Latency (u-sec) Bandwidth (Mbytes/sec)

NX csend 49 92.05

PVM pvm psend 54 91.85

PVM PvmDataInPlace 332 79.82

PVM PvmDataRaw 320 13.45

IBM SP-2

Protocol Latency (u-sec) Bandwidth (Mbytes/sec)

MPL mpc bsend 53 34.07

PVM pvm psend 54 33.30

PVM PvmDataInPlace 224 23.16

PVM PvmDataRaw 202 15.47

PVMe PvmDataInPlace (Int) 259 20.07

PVMe PvmDataInPlace (NoInt) 80 20.07

PVMe PvmDataRaw (Int) 259 15.96

PVMe PvmDataRaw (NoInt) 80 20.61

Table 2: Summary table of the performance results

17

A Details on the tests

Test program : We used a very simple program exchanging message of given size between two

nodes of any MPP. We then measured an average round-trip time, based on 100 trials. From this

average were computed the latency and bandwidth given in this paper.

CM-5 : We used the CM-5 located at the University of Tennessee. It contains 32 processing

nodes. Each of these nodes is a 32 MHz Sparc processor with 32 MBytes of primary memory. The

interconnection network is a
at tree, theoretically capable of exchanging data between two nearby

nodes at rates up to 20 MBytes/sec.

Intel Paragon : We used the Intel Paragon XP/S 5 located at the Oak Ridge National Labora-

tory. It provides 66 i860 XP compute nodes arranged in a 11 row by 6 column rectangular mesh.

Each node has 16MB of memory.

IBM SP2 : We used the IBM SP2 located at the Cornell Theory Center. All the nodes run at

66.7 MHz The SP2 con�guration includes two types of nodes, known as thin nodes and wide nodes.

Thin nodes, roughly equivalent to an RS/6000 Model 390, have 128 MBytes memory. Wide nodes

have memories that range from 256 MBytes to 2GBytes. The Theory Center's con�guration has

48 wide nodes and 464 thin nodes.

18

B References

References

[1] G. A. Geist, A. L. Beguelin, J. J. Dongarra, W. Jiang, R. J. Manchek, and V. S.

Sunderam.,

PVM 3 User's Guide and Reference Manual,

Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee,

May, 1993

[2] CMMD Reference Manual,

Thinking Machine Corporation, Cambridge, Massachussett, May, 1993

[3] Paragon OSF/1 User's Guide,

Intel Supercomputer Systems Division, Beaverton, Oregon, April, 1993

[4] IBM AIX Parallel Environment, Parallel Programming Reference,

IBM, Kingston, New-York, September, 1993

[5] IBM AIX PVMe User's Guide and Subroutine Reference, Release 3.1,

IBM, Kingston, New-York, March, 1995

[6] Message Passing Interface Forum,

MPI A Message-Passing Interface Standard ,

International Journal of Supercomputer Applications and High Performance Computing,

vol. 8,1994

19

