
Heterogeneous MPI Application Interoperation

and Process Management under PVMPI ?

Graham E. Fagg1, Jack J. Dongarra1;2 and Al Geist2

1 Department of Computer Science, University of Tennessee, Knoxville, TN

37996-1301
2 Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN

37831-6367

Abstract. Presently, di�erent vendors' MPI implementations cannot
interoperate directly with each other. As a result, performance of dis-

tributed computing across di�erent vendors' machines requires use of

a single MPI implementation, such as MPICH. This solution may be
sub-optimal since it cannot utilize the vendors' own optimized MPI im-

plementations. PVMPI, a software package currently under development

at the University of Tennessee, provides the needed interoperability be-
tween di�erent vendors' optimized MPI implementations. As the name

suggests PVMPI is a powerful combination of the proven and widely

ported Parallel Virtual Machine (PVM) system and MPI. PVMPI is
transparent to MPI applications thus allowing intercommunication via

all the MPI point-to-point calls. Additionally, PVMPI allows
exible con-

trol over MPI applications by providing access to all the process control
and resource control functions available in the PVM virtual machine.

1 Introduction

The past several years have seen numerous e�orts to address the de�ciencies of
the di�erent message passing systems and to introduce a single standard for such
systems. These e�orts culminated in the �rst Message Passing Interface (MPI)
standard, introduced in June 1994 [15]. Within a year, various implementations
of MPI were available, including both commercial and public domain systems.

One of MPI's prime goals was to produce a system that would allow manu-
facturers of high-performance massively parallel processing (MPPs) computers
to provide highly optimized and e�cient implementations. In contrast, systems
such as PVM [1] were designed for clusters of computers, with the primary goals
of portability, and ease-of-use. These have been achieved with little loss of per-
formance [4] and with greater
exibility than the native communications system.

? This work was supported in part by the NSF under grant ASC-9214149, the Math-

ematical, Information and Computer Sciences subprogram of the O�ce of Energy

Research, DOE, under Contract DE-AC05-84OR21400, ,Rice University and The

State of Tennessee.

The aim of PVMPI is to interface the
exible process and virtual machine
control from the PVM system with several optimized MPI communication sys-
tems thus allowing MPI applications the ability to interoperate transparently
across multiple heterogeneous hosts.

2 Virtual Machine Resource and Process Control

The PVM virtual machine is de�ned to be a dynamic collection of parallel and
serial hosts. With the exception of one host in the PVM virtual machine, any
number of hosts can join, leave, or fail without a�ecting the rest of the virtual
machine. In addition, the PVM resource control API allows the user to add or
delete hosts, check that a host is responding, shut down the virtual machine
or be noti�ed by a user-level message that a host has been added or deleted
(intentionally or not).

The PVM virtual machine is very
exible in its process control capabilities.
It can start serial, or parallel processes that may or may not be PVM appli-
cations. For example, PVM can spawn an MPI application as easily as it can
spawn a PVM application. The PVM process control API allows any process to
join or leave the virtual machine, start new processes by using a number of dif-
ferent selection criteria (including external schedulers, resource managers and/or
taskers), signal or kill a process, test to check that a process is responding and,
notify an arbitrary process if another disconnects from the PVM system.

In addition to the above virtual machine control functions, PVM provides
plug-in interfaces for expanding its resource and process control capabilities.
This extendibility has encouraged many projects to use PVM in di�erent dis-
tributed computing environments such as Mist [14], dedicated schedulers [10],
load balancers and process migration tools [5, 16].

2.1 PVM Group Services

PVM provides the ability to group processes within the virtual machine. Groups
are identi�ed by a character string name. Processes can join and leave any num-
ber of groups at any time, thus making group membership completely dynamic.
Processes are allocated instance numbers when they join a group, in the or-
der of membership. The �rst join operation creates the group, and the group
is destroyed when the membership falls to zero. Groups may have gaps in their
membership as processes leave out of order. To improve performance, PVM
allows group membership to be frozen by caching group details locally. Fully
dynamic group caching is also available[11][12]. Many users only use the PVM
group functions as a convenient naming/binding service.

3 MPI Communicators

Although the MPI standard does not specify how processes are started, it does
dictate how MPI processes enroll into the MPI system. All MPI processes join the

MPI system by calling MPI Init and leave it by calling MPI Finalize. Calling
MPI Init twice causes unde�ned behavior. Processes in MPI are arranged in
rank order, from 0 to N-1, where N is the number of processes in a group.
These process groups de�ne the scope for all collective operations within that
group. Communicators consist of a process group, context, topology information
and local attribute caching. All MPI communications can only occur within a
communicator.

Once all the expected MPI processes have started a common communica-
tor is created by the system for them called MPI COMM WORLD. Commu-
nications between processes within the same communicator or group are re-
ferred to as intra-communicator communications. Communications between dis-
joint groups are inter-communicator communications. The formation of an inter-
communicator requires two separate (non overlapping) groups and a common
communicator between the leaders of each group, as shown in Figure 1.

MPI_COMM_WORLD

Group 1
Group 2

Inter−communicator

Fig. 1. Inter-communicator formed inside a single MPI COMM WORLD

The MPI-1 standard does not provide a way to create an inter-communicator
between two separately initiated MPI applications since no global communica-
tor exists between them. The scope of each application is limited by its own
MPI COMM WORLD which by its nature is distinct from any other applica-
tions' MPI COMM WORLD. Since all internal details are hidden from the user
and MPI communicators have relevance only within a particular run-time in-
stance, MPI-1 implementations cannot inter-operate.

4 Related Work

Although several MPI implementations are built upon other established message-
passing libraries such as Chameleon-based MPICH [7], LAM [3] and Unify [6],

none allow true inter-operation between separate MPI applications across di�er-
ent MPI implementations.

LAM 6.X does allow some limited interaction between LAM only applications
using a subset of functions from the dynamic process chapter of the proposed
MPI-2 standards document.

Unify system was originally proposed to unify or mate together the PVM and
new MPI APIs. The intention was to enable users to take current PVM applica-
tions and slowly migrate toward complete MPI applications, without having to
make the complete conceptual jump from one system to the other. The project
never reached full maturity although it did address the di�culty of mapping
identi�ers between the PVM and MPI domains which it solved using additional
function calls.

The only project known to the authors that attempts to directly intercon-
nect MPI applications in a way similar to PVMPI is currently under way at
the Computer Centre of the Rechenzentrum Universitaet in Stuttgart[2]. This
project attempts to interconnect pairs of MPPs via specialist processes that use
standard TCP/IP for communications.

5 The PVMPI System

We developed a prototype system[9] to study the issues of interconnecting MPI
and PVM. Three separate issues were addressed:

1. mapping identi�ers and managing MPI and PVM IDs
2. transparent MPI message passing
3. start-up facilities and process management

5.1 Mapping Identi�ers

A process in an MPI application is identi�ed by a tuple pair either fprocess
group, rankg or fcommunicator, rankg. PVM provides similar functionality through
use of the group library. The PVM tuple is fgroup name, instanceg. PVMPI pro-
vides address mapping from the MPI tuple space to the PVM tuple space and
vice versa. An initial prototype version of PVMPI[8] used such a system without
any further translation (or hiding of mixed identi�ers).

The association of this tuple pair is achieved by registering each MPI process
into a PVM group by a user level function call. A matching dis-associate or leave
call is also provided.

The functions are available in both C and Fortran bindings:

info = PVMPI_Register(char *group, MPI_Comm comm, int *handle);

info = PVMPI_Leave(char *group);

call pvmpi_register(group, comm, handle, info)

call pvmpi_leave (group, info)

Both register and leave functions are collective and blocking: all processes in
the speci�ed MPI communicator have to participate. The PVMPI Leave com-
mand is used to clean up MPI data structures and to leave the PVM system in
an orderly way if required.

Processes can register in multiple groups, although currently separate ap-
plications cannot register into a single group with this call (i.e. take the same
named group). The register call takes each member of the communicator and
makes it join a named PVM group so that its instance number within that
group matches its MPI rank. Since any two MPI applications may be executing
on di�erent systems using di�erent implementations of MPI (or even di�erent
instances of the same version), the communicator usually has no meaning out-
side of any application callable library. The PVM group server, however, can be
used to resolve identity when the groups names are unique.

Once the application has registered, an external process can access it by
using that process' group name and instance via the library calls pvm gettid
and pvm getinst. When the groups have been fully formed, they are frozen and
all their details are cached locally to reduce system over-head.

5.2 Transparent Messaging

The mixing of MPI and PVM group calls requires the understanding of two
di�erent message passing systems, their APIs, semantics and data formats. A
better solution is to transparently provide interoperability of MPI application
by utilizing only the MPI API.

As previously stated, MPI uses communicators to identify message universes,
and not PVM group names or TIDs. Thus the PVMPI could not allow users to
utilize the original MPI calls for inter-application communication. The solution
is to allow the creation of virtual communicators that map either onto PVM
and hence remote applications or onto real MPI intra-communicators for local
communication.

In order to provide transparency and handle all possible uses of communi-
cators, all MPI routines using communicators were re-implemented using MPIs
pro�ling interface. This interface allows user library calls to be intercepted on a
selective bases so that debugging and pro�ling tools can be linked into applica-
tions without any source code changes.

Creating dual role communicators within MPI would require altering MPI's
low level structure. As this was not feasible, an alternative approach was taken.
PVMPI maintains its own concept of a communicator using a hash table to store
the actual communication parameters. As communicators in MPI are opaque
data structures this behavior has no impact on end user code. Thus PVMPI

communicator usage is completely transparent as shown in �gure 2.

Intra and inter communicator communications within a single application
(MPI COMM WORLD) proceeds as normal, while inter-application communi-
cation proceed by the use of a PVMPI inter-communicator formed by using the
PVMPI Intercomm create function:

MPI Library

MPI_Funct(MPI comm)

MPI Library

PVM Library

MPI_Funct(MPI comm)
Look up comm

PMPI_Funct

call PMPI_ with
Real MPI comm

 call PVM comms

else

If comm is MPI then

Fig. 2. MPI pro�ling interface controlling communicator translation.

info = PVMPI_Intercomm_create (int handle, char *gname, MPI_Comm *intercom);

call pvmpi_intercomm_create (handle, gname, intercom, info)

This function is almost identical to the normal MPI inter-communicator cre-
ate call except that it takes a handle from the register function instead of a
communicator to identify the local group, and a registered name for the remote
group. The handle is used to di�erentiated between local groups registered under
multiple names.

The default call is blocking and collective, although a non-blocking version
has been implemented that can time-out or warn if the requested remote group
has attempted to start and then failed, so that appropriate action can be taken
to aid fault tolerance.

PVMPI inter-communicators are freed using the typical MPI function calls.
They can be formed, destroyed and recreated without restriction. Once formed,
they can be used exactly the same as a normal MPI inter-communicator except
in the present version of PVMPI there is a restriction that they cannot be used
in the formation of any new communicators.

PVMPI inter-communicators allow the full range of point-to-point message
passing calls inside MPI. Also supported is a number of data formating and
(un)packing options, including user derived data types (i.e. mixed striding and
formats). Receive operations across inter-communicators relies upon adequate
bu�ering at the receiving end, in-line with normal PVM operation.

5.3 Low-level Start-up Facilities

The spawning of MPI jobs from PVM requires di�erent procedures depending
upon the target system and the MPI implementation involved. The situation

is complicated by the desire to avoid adding many additional spawn calls (the
current intention of the MPI-2 forum). Instead, a number of di�erent MPI imple-
mentation speci�c taskers have been developed that intercept the internal PVM
spawn messages and then correctly initiate the MPI applications as required.

5.4 Process Management under a General Resource Manager

The PVM GRM[10] can be used with specialized PVMPI taskers to manage
MPI applications in an e�cient and simple manner. This provides improved
performance [13] and better
exibility than that of a simple host �le utilized by
most MPIRUN systems.

When a user's spawn request is issued it is intercepted by the GRM and
an attempt is made to optimize the placement of tasks upon available hosts. If
the placement is specialized then appropriate taskers are used. Figure 3 shows a
system with three clusters of machines: one each for MPICH, LAM and general
purpose jobs. In this �gure the start request causes two MPICH nodes to be
selected by the GRM, then the actual processes are started by the MPICH
tasker.

MPICH hosts LAM hosts Other Nodes

Users spawn / start application
request

MPICH
Tasker

LAM
Tasker

General Resource Manager

Fig. 3. General Resource Manager and Taskers handling process management

6 Conclusions

The PVMPI system solves the lack of interoperability between MPI-1 implemen-
tations. It allows the user to run applications across di�erent hardware systems,
while still utilizing the vendors' optimized MPI implementations on each system.
PVMPI usage is transparent to the end user and it's usage requires only three

additional calls (PVMPI register, PVMPI leave and PVMPI Intercom create).
Additionally, it provides
exible process management and assists in e�cient use
of networked resources.

References

1. A. L. Beguelin, J. J. Dongarra, A. Geist, R. J. Manchek, and V. S. Sunderam.

Heterogeneous Network Computing. Sixth SIAM Conference on Parallel Processing,
1993.

2. Thomas Beisel. \Ein e�zientes Message-Passing-Interface (MPI) fuer HiPPI",

Diploma thesis, University of Stuttgart, 1996.
3. Greg Burns, Raja Daoud and James Vaigl. LAM: An Open Cluster Environment

for MPI. Technical report, Ohio Supercomputer Center, Columbus, Ohio, 1994.

4. Henri Casanova, Jack Dongarra and Weicheng Jiang. The Performance of PVM
on MPP Systems. Department of Computer Science Technical Report CS-95-301.

University of Tennessee at Knoxville, Knoxville, TN. August 1995.

5. J. Casas, R. Konuru, S. Otto, R. Prouty, and J. Walpole. Adaptive Load Migration
Systems for PVM. Supercomputing'94 Proceedings , pp. 390-399, IEEE Computer

Society Press, 1994.

6. Fei-Chen Cheng. Unifying the MPI and PVM 3 Systems. Technical report, Depart-
ment of Computer Science, Mississippi State University, May 1994.

7. Nathan Doss, William Gropp, Ewing Lusk and Anthony Skjellum. A model imple-

mentation of MPI. Technical report MCS-P393-1193, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL 60439, 1993.

8. Graham E. Fagg and Jack J. Dongarra, PVMPI: An Integration of the PVM and

MPI Systems. Calculateours Paralle`les, Paris, Vol 8/2, pp. 151-166, June 1996.
9. Graham E. Fagg, Jack J. Dongarra and Al Geist, PVMPI provides Interoperability

between MPI Implementations Proceedings of Eight SIAM conference on Parallel

Processing March 1997
10. Graham E. Fagg, Kevin London and Jack J. Dongarra, Taskers and General Re-

source Manager: PVM supporting DCE Process Management, Proceeding of the

third EuroPVM group meeting, Munich, Springer Verlag, October 1996.
11. G.E. Fagg, R.J. Loader, P.R. Minchinton and S.A. Williams. Improved Group

Services for PVM. Proceeding of 1995 PVM Users Group Meeting, Pittsburgh,

pp.6, May 1995.
12. Graham E. Fagg, Roger J. Loader and Shirley A. Williams. Compiling for Groups.

Proceeding of EuroPVM 95, pp. 77-82, Hermes, Paris, 1995.

13. Graham E. Fagg and Shirley A. Williams. Improved Program Performance using
a cluster of Workstations. Parallel Algorithms and Applications, Vol 7, pp. 233-236,

1995.

14. R. Konuru, J. Casas, S. Otto, R. Prouty and J. Walpole. A User-Level Process
Package for PVM. Scalable High Performance Computing Conference, pp. 48-55,

IEEE Computer Society Press, 1994.

15. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.

International Journal of Supercomputer Applications, 8(3/4), 1994. Special issue on

MPI.

16. Georg Stellner and Jim Pruyne. Resource Management and Checkpointing for

PVM Proceeding of EuroPVM 95, pp. 130-136, Hermes, Paris, 1995.

This article was processed using the LaTEX macro package with LLNCS style

