
Tools for Heterogeneous Network Computing
�

Adam Begueliny, Jack Dongarraz, Al Geistx, Robert Manchek{,

Keith Moore{, and Vaidy Sunderamk

December 13, 1996

Abstract

Wide area computer networks have become a basic part of today's computing
infrastructure. These networks connect a variety of machines, presenting an enormous
computing resource. In this project we focus on developing methods and tools which
allow a programmer to tap into this resource. In this paper we describe PVM and
HeNCE, tools and methodology under development that assists a programmer in
developing programs to execute on a networked group of heterogeneous machines.

HeNCE is implemented on top of a system called PVM (Parallel Virtual Machine).
PVM is a software package that allows the utilization of a heterogeneous network
of parallel and serial computers as a single computational resource. PVM provides
facilities for spawning, communication, and synchronization of processes over a network
of heterogeneous machines. While PVM provides the low level tools for implementing
parallel programs, HeNCE provides the programmer with a higher level abstraction for
specifying parallelism.

1 Introduction

Heterogeneous networks of computers are becoming commonplace in high-performance

computing. Systems ranging from workstations to supercomputers are linked together

by high speed networks. Until recently each computing resource on the network remained

a separate unit, but now over 100 institutions worldwide are writing and running truly

heterogeneous programs utilizing multiple computer systems to solve applications through

the use of a software package called PVM.

PVM stands for Parallel Virtual Machine [13, 11, 3]. PVM is designed from the ground

up with heterogeneity and portability as primary goals. As such it is one of the �rst

software systems that allows machines with wildly di�erent architectures and 
oating point

representations to work together on a single computational task.

The Heterogeneous Network Project, being worked on by researchers at Oak Ridge

National Laboratory, the University of Tennessee, and Emory University, is involved in

the research and development of two software packages speci�cally designed to facilitate

heterogeneous parallel computing. The �rst package is PVM, which can be used on

�This work was supported in part by the Applied Mathematical Sciences subprogram of the O�ce of

Energy Research, U.S. Department of Energy, under Contract DE-AC05-84OR21400, and in part by the the

National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615.
yCarnegie-Mellon University
zUniversity of Tennessee and Oak Ridge National Laboratory
xOak Ridge National Laboratory
{University of Tennessee
kEmory University

1



2 Beguelin, Dongarra, Geist, Manchek, Moore, and Sunderam

its own or as a foundation upon which other heterogeneous network software can be

built. The second package is called HeNCE, which stands for Heterogeneous Network

Computing Environment [2, 1]. HeNCE is being built on top of PVM with the intention of

simplifying the task of writing, compiling, running, debugging, and analyzing programs on

a heterogeneous network. The goal is to make network computing accessible to scientists

and engineers without the need for extensive training in parallel computing and allowing

them to use resources best suited for a particular phase of the computation.

What follows is a description of the basic features of these two packages.

2 PVM

PVM is a software package that permits a heterogeneous collection of serial, parallel and

vector computers hooked together by a network to appear as one large computer. Thus,

PVM allows a user to exploit the aggregate power of workstations and supercomputers

distributed around the world to solve computational grand challenges.

The user views PVM as a loosely coupled distributed-memory computer programmed

in C or Fortran with message-passing extensions. The hardware that composes the user's

personal PVM may be any UNIX based machine on which the user has a valid login and is

accessible over some network.

PVM may be con�gured to contain various machine architectures including sequential

processors, vector processors, multicomputers, etc. The present version of the software has

been tested with various combinations of the following machines: Sun3, SPARCstation,

Microvax, DECstation, IBM RS/6000, HP-9000, Silicon Graphics IRIS, NeXT, Sequent

Symmetry, Alliant FX, IBM 3090, Intel iPSC/860, Thinking Machines CM-2 and CM-5,

KSR-1, Convex, Cray Y-MP, and Fujitsu VP-2000. In addition, users can port PVM to

new architectures by simply modifying a generic `make�le' supplied with the source and

recompiling.

Using PVM, each user can con�gure his own parallel virtual computer, which can

overlap with other users' virtual computers. Con�guring a personal parallel virtual

computer involves simply listing the names of the machines in a �le that is read when

PVM is started. Several di�erent physical networks can co-exist inside a virtual machine.

For example, a local ethernet, HIPPI, and a �ber optic network can all be a part of a user's

virtual machine. While each user can have only one virtual machine active at a time, PVM

is multitasking so several applications can run simultaneously on a parallel virtual machine.

The PVM package is small (less than 400 Kbytes of C source code) and easy to install.

It needs to be installed only once on each machine to be accessible to all users. Moreover,

the installation does not require special privileges on any of the machines and thus can be

done by any user.

Application programs that use PVM are composed of subtasks at a moderately large

level of granularity. The subtasks can be generic serial codes, or they can be speci�c to

a particular machine. In PVM, resources may be accessed at three di�erent levels: the

transparent mode in which subtasks are automatically located at the most appropriate

sites, the architecture-dependent mode in which the user may indicate speci�c architectures

on which particular subtasks are to execute, and the machine-speci�c mode in which

a particular machine may be speci�ed. Such 
exibility allows di�erent subtasks of a

heterogeneous application to exploit particular strengths of individual machines on the

network.

The PVM user-interface requires that all message data be explicitly typed. PVM



Tools for Heterogeneous Network Computing 3

performs machine-independent data conversions when required, thus allowing machines

with di�erent integer and 
oating point representations to pass data. Applications access

PVM resources via a library of standard interface routines. These routines allow the

initiation and termination of processes across the network as well as communication

and synchronization between processes. Communication constructs include those for the

exchange of data structures as well as high-level primitives such as broadcast, barrier

synchronization, and rendezvous.

Application programs under PVM may possess arbitrary control and dependency

structures. In other words, at any point in the execution of a concurrent application, the

processes in existence may have arbitrary relationships between each other and, further,

any process may communicate and/or synchronize with any other.

3 HeNCE

While PVM provides low-level tools for implementing parallel programs, HeNCE provides

the programmer with a higher level environment for using heterogeneous networks. The

HeNCE philosophy of parallel programming is to have the programmer explicitly specify

the parallelism of a computation and to automate, as much as possible, the tasks of

writing, compiling, executing, debugging, and analyzing the parallel computation. Central

to HeNCE is an X-Window interface that the programmer uses to perform these functions.

(see Figure 2).

The HeNCE environment contains a compose tool that allows the user to explicitly

specify parallelism by drawing a graph of the parallel application. If an X-window interface

is not available, then textual graph descriptions can be input.

Each node in a HeNCE graph represents a procedure written in either Fortran or C.

HeNCE is designed to enhance procedure reuse. The procedure can be a subroutine from

an established library or a special purpose subroutine supplied by the user. Arcs between

nodes represent data dependency and control 
ow. A dependency arc from one node to

another represents the fact that the tail node of the arc must run before the head of the

arc. Data is sent to a node from its ancestors in the graph (usually its parents).

In addition to simple nodes, four types of control constructs are available in the HeNCE

graph language. One represents looping; a second represents conditional dependency;

a third represents a fan-out to a variable number of identical subgraphs; and a fourth

represents pipelining. The graph can contain loops around subgraphs that execute a

variable number of times based on the expression in the loop construct. Using a conditional

construct, a section of the graph can be executed or bypassed based on an expression that

will be evaluated at run time. A variable fan-out (and subsequent fan-in) construct is

available while composing the graph. The width of the fan-out is speci�ed as an expression

that is evaluated at run time. This construct is similar to a parallel-do construct found in

several parallel Fortrans. In pipelined sections, when a node �nishes with one set of input

data, it reruns with the next piece of pipelined data.

Once the dynamic graph is speci�ed, a con�guration tool in the HeNCE environment

can be used to specify the con�guration of machines that will compose his parallel virtual

machine. The con�guration tool also assists the user in setting up a cost matrix. The cost

matrix allows the user to describe which machine can perform which task and can give

priority to certain machines. HeNCE will use this cost matrix at run time to determine the

most e�ective machine on which to execute a particular procedure in the graph.

The HeNCE environment also contains a build tool to perform three tasks. First,



4 Beguelin, Dongarra, Geist, Manchek, Moore, and Sunderam

by analyzing the graph, HeNCE automatically generates the parallel program using PVM

calls for all the communication and synchronization required by the application. Second,

by knowing the desired PVM con�guration, HeNCE automatically compiles the node

procedures for the various heterogeneous architectures. Finally, the build tool installs the

executable modules on the particular machines in the PVM con�guration.

The execute tool in the HeNCE environment starts up the requested virtual machine

and begins execution of the application. During execution, HeNCE automatically maps

procedures to machines in the heterogeneous network based on the cost matrix and the

HeNCE graph. Trace and scheduling information that is saved during the execution can

be displayed in real time or replayed later.

The HeNCE environment has a trace tool that allows visualization of the parallel

run. The trace tool is X-window based and consists of two windows. One window shows

a representation of the network and machines underlying PVM. In this window icons of

the active machines are illuminated with di�erent colors depending on whether they are

computing or communicating. Under each icon is a list of the node procedures mapped

to this machine at any given instant. The second window displays the user's graph of the

application, which changes dynamically to show the actual paths and parameters taken

during a run. The nodes in the graph change colors to indicate the various activities going

on in each procedure.

4 The HeNCE Paradigm

In HeNCE, the programmer is responsible for explicitly specifying parallelism by drawing

graphs which express the dependencies and control 
ow of a program. HeNCE provides a

class of graphs as a usable yet 
exible way for the programmer to specify parallelism. The

user directly inputs the graph using a graph editor which is part of the HeNCE environment.

Each node in a HeNCE graph represents a subroutine written in either Fortran or C. Arcs

in the HeNCE graph represent dependencies and control 
ow. An arc from one node to

another represents the fact that the tail node of the arc must run before the node at the head

of the arc. During the execution of a HeNCE graph, procedures are automatically executed

when their predecessors, as de�ned by dependency arcs, have completed. Functions are

mapped to machines based on a user de�ned cost matrix.

There are six types of constructs in HeNCE graphs; subroutine nodes, simple depen-

dency arcs, conditional, loop, fan, and pipe constructs. Subroutine nodes represent a

particular subroutine and parameter list that will be invoked during the execution of the

program graph. A subroutine node has no state other than its parameter list. That is, it

cannot read any global information from other subroutine nodes, nor can can it write any

global variables (outside its parameter list) that will be read by other subroutine nodes.

Dependency arcs represent dependencies between subroutine nodes in a HeNCE graph. The

bottom window of the trace tool in Figure 1 shows a simple HeNCE graph containing only

subroutine nodes and dependency arcs. This graph represents a simple fractal computation.

(In the convention for drawing HeNCE graphs, they are shown to execute from bottom to

top.) The initialize node, at the bottom of the graph, reads input parameters describing

which part of the complex plane to use for the computation. After the initializing node

(mkwork) completes, the dependency arcs from it to the compute nodes are satis�ed and

they may begin execution. In this case they are invoked on di�erent parts of the com-

plex plane. Once all of the compute nodes are �nished the display procedure (kollekt) can

execute and display the resulting fractal.



Tools for Heterogeneous Network Computing 5

Fig. 1. Trace mode of the HeNCE graphical interface.

In addition to simple dependency arcs, HeNCE provides constructs which denote four

di�erent types of control 
ow: conditionals, loops, fans, and pipes. These four constructs

can be thought of as graph rewriting primitives. These constructs add subgraphs to the

current program graph based upon expressions which are evaluated at runtime. Using the

conditional construct the programmer may specify a subgraph to be executed conditionally.

If the boolean expression attached to the begin-conditional node evaluates to true then the

subgraph contained between the begin- and end-conditional nodes is added to the program

graph. If the expression evaluates to false then the contained subgraph is not added. The

loop construct is similar to the conditional in that it speci�es a subgraph to be conditionally

executed. However, the loop construct also allows iteration on a subgraph as a loop body.

In other words, the subgraph making up the loop body is repeatedly added to the program

graph based upon a boolean expression that is evaluated each time through the loop. The

fan construct in HeNCE allows the programmer to specify a parallel fanning out and in of

control 
ow to a dynamically created number of subgraphs. The integer expression attached

to the begin-fan node is evaluated to determine how many subgraphs will be created. Each

subgraph created by the fan construct executes in parallel. The pipe construct in HeNCE

provides for pipelined execution of a subgraph. The expression attached to the begin-

pipe node indicates whether another data item is to be piped though the subgraph. If

the expression evaluates to true then another subgraph is added to the graph in order to

execute the additional data item in a pipelined fashion. Thinking of these constructs as

graph rewriting primitives not only provides a mechanism for specifying parallelism but

also a natural way of viewing the dynamic parallelism as a graph unfolds at runtime.



6 Beguelin, Dongarra, Geist, Manchek, Moore, and Sunderam

The parameter passing interface is one of the strengths of HeNCE. HeNCE programmers

need only specify which parameters are to be used to invoke each subroutine node. These

parameters are speci�ed when the programmer attaches a subroutine to a node in the

graph. By automatically passing parameters, HeNCE programs are easier to build from

pieces of code that have already been written. Thus, re-usability is enhanced. Based on

the user input graph, HeNCE automatically distributes the parameters to the subroutines

at runtime using PVM for data transmission and conversion.

5 Summary

The focus of this work is to provide a paradigm and graphical support tool for programming

a heterogeneous network of computers as a single resource. HeNCE is the graphical

based parallel programming paradigm. In HeNCE the programmer explicitly speci�es

parallelism of a computation by drawing graphs. The nodes in a graph represent user

de�ned subroutines and the edges indicate parallelism and control 
ow. The HeNCE

programming environment consists of a set of graphical modes which aid in the creation,

compilation, execution, and analysis of HeNCE programs. The main components consist

of a graph editor for writing HeNCE programs, a build tool for creating executables, a

con�gure tool for specifying which machines to use, an executioner for invoking executables,

and a trace tool for analyzing and debugging a program run. These steps are integrated

into a window based programming environment.

HeNCE is an active research project. A prototype of the HeNCE environment has been

built and is being used.

6 Future Work

Both the paradigm and the tool are being addressed in the ongoing work on HeNCE. The

HeNCE graphs are restrictive. It may be possible to develop less restrictive graphs. The

current graph constructs need to be evaluated as to their usefulness. It may be that some

constructs are not needed and that new ones need to be developed. This can be addressed

through implementing examples in the HeNCE paradigm. There are also interesting areas

to explore with respect to the HeNCE tool. The editor could be extended to support

hierarchy in the graphs. This would allow the programmer to create larger programs. The

trace animation tool could also use these techniques when animating a program run. More

debugging and pro�ling need to be added. Allowing breakpoints to be placed on the graph

and parameter contents examined or altered at runtime would be useful. Multiple trace

�les could be displayed in a comparative manner, showing the relative times for executing

a program on di�erent virtual machines. It would also be useful to have the HeNCE

tool coordinate the execution of source level debuggers over the con�gured machines.

HeNCE could be extended so that during program execution, it takes into account the

load and speed of the machines and network when mapping subroutines to machines. This

information could be experimentally determined by the HeNCE tool.

7 Availability

PVM and HeNCE are available by sending electronic mail to netlib@ornl.gov containing

the line \send index from pvm" or \send index from hence". Instructions on how to receive

the various parts of the PVM and HeNCE systems will be sent by return mail.



Tools for Heterogeneous Network Computing 7

8 References

References

[1] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. Heterogeneous
network supercomputing. Supercomputing Review, August 1991.

[2] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. Solving computa-
tional grand challenges using a network of heterogeneous supercomputers. In D. Sorensen, ed-
itor, Proceedings of Fifth SIAM Conference on Parallel Processing, Philadelphia, 1991. SIAM.

[3] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. A users' guide
to PVM parallel virtual machine. Technical Report ORNL/TM-11826, Oak Ridge National
Laboratory, July 1991.

[4] A. Beguelin and G. Nutt. Collected papers on Phred. Technical Report CU-CS-511-91,
University of Colorado, Department of Computer Science, Boulder, CO 80309-0430, January
1991.

[5] A. Beguelin and G. Nutt. Examples in Phred. In D. Sorensen, editor, Proceedings of Fifth

SIAM Conference on Parallel Processing, Philadelphia, 1991. SIAM.
[6] Kenneth Birman and Keith Marzullo. Isis and the META project. Sun Technology, pages 90{

104, Summer 1989.
[7] Jim Browne, Muhammad Azam, and Stephen Sobek. CODE: A uni�ed approach to parallel

programming. IEEE Software, 6(4):10{18, July 1989.
[8] Nicholas Carriero and David Gelernter. Linda in context. Communications of the ACM,

32(4):444{458, 1989.
[9] J. J. Dongarra and D. C. Sorensen. SCHEDULE: Tools for Developing and Analyzing

Parallel Fortran Programs. In D. B. Gannon L. H. Jamieson and R. J. Douglass, editors,
The Characteristics of Parallel Algorithms, pages 363{394. The MIT Press, Cambridge,
Massachusetts, 1987.

[10] J. Flower, A. Kolawa, and S. Bharadwaj. The express way to distributed processing.
Supercomputing Review, pages 54{55, May 1991.

[11] G. A. Geist and V. S. Sunderam. Experiences with network based concurrent computing on
the pvm system. Technical Report ORNL/TM-11760, Oak Ridge National Laboratory, January
1991.

[12] Charles L. Seitz. Multicomputers: Message-Passing Concurrent Computers. Computer, pages
9{24, August 1988.

[13] V. S. Sunderam. PVM : A framework for parallel distributed computing. Concurrency:

Practice and Experience, 2(4):315{339, December 1990.



8 Beguelin, Dongarra, Geist, Manchek, Moore, and Sunderam

?

?

Stop(k)

Start(k)

(k < 0)

B(k)

A(k)
A(k)

B(k)

Stop(k)

Start(k)

Stop(k)

Start(k)

B(k)

A(k)

A(k)

B(k)

A(k)

B(k)

Stop(k)

Start(k)

Stop(k)

Start(k)

i; (i < 2)

i; (2)

Start(k)

Stop(k)

Start(k)

Stop(k)

B(k)

A(k)

B(k)

A(k)
A(k)

B(k)

i; (i<2)

B(k)

A(k) A(k)

B(k)

A(k)

B(k)

Stop(k)

Start(k)

Stop(k)

Start(k)

Fig. 2. HeNCE loop, fan, pipe, and conditional graph constructs.


