
1

.

Problem Solving Environments for

Parallel Scienti�c Computation

Jack Dongarra

Univ. of Tenn./Oak Ridge National Lab

dongarra@cs.utk.edu

2

History

� 1960s - First Organized Collections

� 1970s - Advent of Libraries Plotting Packages, Statistical Pack-

ages, \Prototype" Interactive Packages,

� 1980s - Continued Development of Libraries, Emergence of Com-

putational Packages, Emergence of Graphical Systems (data vi-

sualization)

� 1990s - Development of libraries and packages, Integration, inter-

product links

� 2000+ - A \Software Parts" Industry

3

History

� 1960s - Little or no standardization

� 1970s - Uniform subprogram interfaces, Prototype Command-

line systems, Move toward portability.

� 1980s On-line documentation, emerging graphical standards, Pro-

totype WIMP.

� 1990s Hypertext, Point and Click, Move towards Inter-operability

4

Problems with Current HPCC

Software and Technologies

� Incompatible tools use di�erent data formats, programmingmod-

els, protocols, and user interfaces.

� Users may be unable to di�erentiate between large number of

functionally di�erent but super�cially similar tools or software

modules.

� Use of tools and software often requires in depth knowledge of

parallel programming or numerical analysis.

� Application scientist may be at early stage of problem solving

process and be unsure how to proceed to next stage.

� Large scale Grand Challenge and National Challenge problems

are multidisciplinary and involve both information processing

and computation.

� User may not have appropriate hardware and software or may

lack expertise to install software.



5

Desirable Properties of Problem

Solving Environments

� Support for all stages of problem solving process

� Integration of di�erent tools and process stages

� Interface with user in terms of user's language and level of ab-

straction

� Domain-speci�c adaptation and customization of tools

� Support for collaborative work

6

Enabling Technologies for Problem

Solving Environments

� Taxonomic and conceptual domain models and ontologies

� Semantic information retrieval with relevance feedback

� Expert and experienced-based systems

� Network-accessible computational servers

� Agent and applet technologies

� Safe execution environments for mobile code

7

Proposed Research on PSEs for High

Performance Computing

� Increased support for information retrieval and information pro-

cessing aspects of complex problem solving

� Development of taxonomic and conceptual domain models for

subdomains within HPCC

� Integration and domain-speci�c adaptation of problem solving

tools and software

� Resolution of security issues for and development of agent and

applet technologies

� Support for collaborative solution of complex multi-disciplinary

problems

8

In
fo

rm
at

io
n 

an
d 

S
of

tw
ar

e 
S

up
po

rt
 fo

r 
th

e
P

ro
bl

em
 S

ol
vi

ng
 P

ro
ce

ss

N
um

er
ic

al
F

or
m

ul
at

io
n

H
ig

h 
Le

ve
l

S
of

tw
ar

e 
S

ol
ut

io
n

Lo
w

 L
ev

el
 

S
of

tw
ar

e
S

ol
ut

io
n

T
ra

ct
ab

le
 

M
od

el
T

he
or

y 
or

A
pp

ro
ac

h
B

as
ic

Q
ue

st
io

n

S
em

an
tic

 s
ea

rc
hi

ng
,

N
at

ur
al

 la
ng

ua
ge

 p
ro

ce
ss

in
g

La
te

nt
 S

em
an

tic
 in

de
xi

ng

S
im

pl
ify

as
su

m
pt

io
ns

 b
as

ed
on

 p
er

fo
rm

an
ce

 
pr

ed
ic

tio
n

S
ym

bo
lic

m
an

ip
lu

at
io

n,
S

ea
rc

h 
fo

r 
is

om
or

ph
ic

or
 s

im
ila

r 
fo

rm
ul

at
io

ns

D
om

ai
n−

sp
ed

ifi
c

m
od

ul
e 

lib
ra

rie
s 

an
d

he
lp

 s
ys

te
m

s.
C

od
e 

ge
ne

ra
tio

n 
fr

om
 te

m
pa

lte
s.

D
at

a 
pa

ra
lle

l
co

m
pi

le
rs

 w
ith

 
ex

te
ns

io
ns

 to
 h

an
dl

e
co

ar
se

−
gr

ai
ne

d 
ta

sk
pa

ra
lle

lis
m

.



9

Application Development

Methodology

� Adhere to accepted standards wherever possible

� Tool supported application development

� Develop tools and libraries to render parallelization more e�ec-

tive and less error-prone

MPI / PVM

Dense

Linear

Algebra

Applications

BLACS

Scalapack

F
77

 / 
C

 / 
C

++
 &

 M
P

I/P
V

M

A
pp

lic
at

io
ns

Message Passing 

Applications

HPF

ite
ra

tiv
e

so
lv

er
s

Ir
re

gu
la

r 
ap

pl
ic

at
io

ns

C
om

pu
ta

tio
na

l F
lu

id
 D

yn
am

ic
s

. . .

10

End-User Requirements on Parallel

Application Development

� E�cient parallelization

� Portability

� Minimization of software development e�orts

� Development of an application engineering environment for par-

allel and distributed systems

� User-centered and application-driven

� Easy-to-use in scienti�c and engineering domains

11

� PSEs have been developed for certain areas of mathematics, for

example Matlab for linear algebra computations, and commerce,

sophisticated PSEs for computational scientists are generally

lacking.

� Most current PSEs are designed to run on PCs and worksta-

tions, rather than on massively parallel computers or networks

of workstations.

� PSE proposed will encapsulate expertise, enhance scienti�c pro-

ductivity, and lead to a more e�ective use of computational re-

sources.

� The PSE will be a complete environment, assisting scientists in

developing applications, formulating input, and executing pro-

grams.

� The compilation, job control, and execution components of the

proposed PSE will be based on a meta-computing environment.

12

Library Advisory System

� Purpose

{ Advising users about which algorithms, libraries, and/or tools

are most appropriate for their speci�c problems

{ World Wide Web (WWW) interface to a knowledge base

holding information about software libraries

{ Applicable in the �elds of scienti�c computing and commer-

cial applications

� Two di�erent expert systems proposed for investigation

{ Driven by manually entered evaluation functions

{ Driven by supervised learning



13

Ongoing Activities and Future

Directions

� Parallelization of Algorithms and Applications

{ Parallelization of Templates for systems and eigenvalue prob-

lems

{ Take advantage of international collaboration in HPC

{ integrate and coordinate between academic institutes, soft-

ware and hardware vendors, and business enterprises

{ Library related issues

{ Evaluation of tools and applications

{ Tools to support the software development cycle

� Tool Environment Development

{ NetSolve

{ Performance modeling and estimation

{ User interface

{ Incorporate in production software tools

14

Information Structuring Toolkit

� Purpose

{ Browsable information systems like the WWW are very labor

intensive to install and maintain

{ We propose development of a web based groupware toolkit

that help communities of people to create structured infor-

mation systems

� Features

{ Basic units of information are the object and object attribute

value

{ Tools for transforming/�ltering/merging information

{ Use of related techniques from IR and conceptual data anal-

ysis

{ Facilities for developing custom groupware IS applications

{ Written in Java, hence portable, and easily extendible

15

Research Questions Addressed

� How can easy programming be achieved (in particular for non-

experts)?

� How can a powerful software reuse mechanisms be realized?

� How can good portability, scalability, and parallel e�ciency be

ensured?

16

Examples Heterogeneous Networks

Even on IEEE machines results may di�er between machines, com-

pilers and compiler switches.

� An iteration where the stopping criterion depends on the ma-

chine precision. Stopping criteria for iterative methods { may

not be satis�ed on each processor simultaneously

� Processors sharing a distributed vector v compute its two-norm,

and depending on that either scale v by a constant much di�erent

from 1, or do not.

� Bisection for �nding eigenvalues of symmetric matrices.

� Eigenproblem for a tridiagonal matrix { run QR on each proces-

sor and each processor �nds k eigenvectors. But each processor

may compute a di�erent QR sequence

� Adaptive quadrature { [a; b+ �1]; [b + �2; c]



17

Heterogeneous Networks

� Challenges associated with writing reliable numerical software

on networks containing heterogeneous processors

� Processors which may do oating point arithmetic di�erently

� Even supposedly identical machines running with di�erent com-

pilers or even just di�erent compiler options

� The basic problem lies in making data dependent branches on

di�erent processors

18

Heterogeneous Networks

� Defensive programming

� Machine parameters

� Communication and representation between processors

� Controlling processor

� Additional communication

� Testing strategies

19

Summary

� The PSE is evolutionary in terms of the computing resources

used.

� The proposed PSE will also allow incremental additions to the

software resources of the environment.

� As new numerical methods are developed it will be a simple

matter to incorporate them into the software resources accessible

by the PSE.

� The PSE will feature not only complete applications, but also

an application editor that allows a user to graphically modify an

existing application, or to build a new application from scratch.

� The application editor will be fully integrated with an on-line

documentation system, and context-sensitive help.

20

Perspectives

� Software reuse mechanisms

� Human-machine interfaces

� Interactive guidance mechanisms

� Distributed computing environments



21

Methods

� Formal speci�cation languages

� Knowledge-based systems

� Automatic program synthesis techniques

22

Key Results

� Two problem classes addressed

{ Stencil-based problems

{ Numerical linear algebra problems

� Features of prototype environments developed for both classes

{ Application-class speci�c problem description formalisms

{ Reusable software components

{ Knowledge-based system to support selection of the most

appropriate software components

{ Interactive user guidance mechanism

{ Automatic program synthesis techniques to ensure an e�ec-

tive and transparent coding process

� Portability, Scalability, and parallel e�ciency addressed at the

level of high-level, reusable software components

23

An Environment for Stencil-Based

Problems

� Graphical user interface to support easy speci�cation of the prob-

lem

� Design skeletons used as reusable software components

24

Three Layers

� The top level is an intelligent graphical user interface for appli-

cation use and development.

� The lowest level are software libraries and modules for mathe-

matical and scienti�c computation.

� The intermediate software layer consists of \middleware" for co-

ordinating the upper and lower software layers, for job compi-

lation, execution, and monitoring, and for managing the on-line

documentation and help subsystems.

� The PSE will be designed so that creating a new application-

speci�c PSE a�ects only the upper and lower software levels,

leaving the middle layer unchanged.



25

Intelligent User Interface

� A graphical editor for creating and modifying applications;

� A set of computational templates for rapidly prototyping new

applications;

� Tools for composing application modules;

� Job submission and control interface

26

Application editor

� Also facilitate the building of new codes by graphically editing

existing codes and incorporating user-written modules.

� A user can build their own application from the ground up using

the software libraries supplied by the PSE or by using their own

software.

� The graphical editor graphically displays an application as an

hierarchical ow chart.

� At the highest level the ow chart displays the complete appli-

cation.

� Clicking on a component of the ow chart will display a ow

chart for that component.

� At the lowest level of the ow chart hierarchy actual code is

displayed.

� A user can edit the application by modifying the ow chart hi-

erarchy at any level.

� The application editor will incorporate extensive online, context-

sensitive help.

� Users can query the help system to get a description of what any

component of a ow chart does, together with a summary of the

input and output variables for that subprogram.

� At the lowest level of the hierarchy, clicking on a variable will

display information about it.

27

Application templates

� An application template is a ow chart hierarchy in which some

of the nodes must be supplied by the user subject to certain

interface constraints.

� The user may either make use of existing modules supplied by

the PSE or insert their own.

� Application templates are provided for the rapid prototyping of

new applications.

28

Complete application programs

example

� Many material science application codes are scienti�cally and

computationally complex.

� As part of the proposed PSE, several of these advanced codes

will be provided. These codes include:

{ the only �rst principles local density approximation based

(LDA) O(N ) (where N is the number of atoms compris-

ing the system), locally self-consistent multiple scattering

method (LSMS),

{ the LDA-based linearized mu�n-tin orbital method (LMTO),

{ an LDA-based pseudo-potential method that includes relax-

ation e�ects,

{ the semi-empirical tight binding molecular dynamics code,

{ a set of classical molecular dynamics codes.

� These will serve not only as useful complete application codes,

but will also be made available in template form so that scientists

can modify them and/or implement additional modules in order

to treat physical phenomenon that are not currently contained

in these models.



29

Middleware Components

� The middle layer of software in the PSE has two main compo-

nents.

� Architecture for designing and building system services that pro-

vide the illusion of a single virtual machine to users, a virtual

machine that provides secure shared object and shared name

spaces, application adjustable fault-tolerance, improved response

time, and greater throughput.

� A system for examining online documentation on the PSE itself

and the various applications and modules embedded in the PSE.

30

Middleware Components

� Parallel object-oriented language and compiler

� Support for PVM/MPI

� Support for legacy and other language codes

� Resource management

� Transparent �le and data access

� Fault-Tolerance

� Post-mortem debugger

� Online documentation subsystem

31

Low-Level Software Components

� Compilers,

� Debuggers,

� Performance

� Analysis tools,

� Application software,

� Libraries, and

� Files accessed by the online help and documentation systems.

� These resources are managed by the higher software levels, and

are not directly accessible from by the user.


