Problem Solving Environments for
Parallel Scientific Computation

Jack Dongarra
Univ. of Tenn./Oak Ridge National Lab

dongarra@cs.utk.edu

History

® 1960s - First Organized Collections

® 1970s - Advent of Libraries Plotting Packages, Statistical Pack-
ages, “Prototype” Interactive Packages,

o 1980s - Continued Development of Libraries, Emergence of Com-
putational Packages, Emergence of Graphical Systems (data vi-
sualization)

® 1990s - Development of libraries and packages, Integration, inter-

product links

® 2000+ - A “Software Parts” Industry

History

e 1960s - Little or no standardization

e 1970s - Uniform subprogram interfaces, Prototype Command-
line systems, Move toward portability.

o 1980s On-line documentation, emerging graphical standards, Pro-

totype WIMP.

e 1990s Hypertext, Point and Click, Move towards Inter-operability

Problems with Current HPCC
Software and Technologies

o [ncompatible tools use different data formats, programming mod-
els, protocols, and user interfaces.

e Users may be unable to differentiate between large number of
functionally different but superficially similar tools or software
modules.

e Use of tools and software often requires in depth knowledge of
parallel programming or numerical analysis.

o Application scientist may be at early stage of problem solving
process and be unsure how to proceed to next stage.

e Large scale Grand Challenge and National Challenge problems
are multidisciplinary and involve both information processing
and computation.

e User may not have appropriate hardware and software or may
lack expertise to install software.

o

Desirable Properties of Problem Enabling Technologies for Problem

Solving Environments Solving Environments
e Support for all stages of problem solving process o Taxonomic and conceptual domain models and ontologies
o Integration of different tools and process stages e Semantic information retrieval with relevance feedback
o Interface with user in terms of user’s language and level of ab- o Expert and experienced-based systems

straction . . .
e Network-accessible computational servers

o Domain-specific adaptation and customization of tools .
e Agent and applet technologies

o Support for collaborative work . . .
e Safe execution environments for mobile code

|

Proposed Research on PSEs for High
Performance Computing

Low Level
Software
Solution

D¢
. 5%
o Increased support for information retrieval and information pro- 58
. . o c<a@
cessing aspects of complex problem solving s TE2E |
88 Tvf55
. . B = o So2 =
o Development of taxonomic and conceptual domain models for 3 SEE32
. o 88 SESGO
subdomains within HPCC r 88388
SEc
. . e . - ‘ o
o Integration and domain-specific adaptation of problem solving 2823 E
2585 goc
A] o EQ D 385
tools and software s8c? 222
2583
o Resolution of security issues for and development of agent and

applet technologies

Theory or

Approach
Domain-spedific
module libraries and

help systems.

Code generation
from tempaltes.

Information and Software Support for the
Problem Solving Process

o Support for collaborative solution of complex multi-disciplinary 29
Q.=
problems -3
coc
o
§2¢ 5
089 s 0w
S0 L2
&S g £8
1E £] g8
nz3 52
et
LBy
5 225
o ESEG
D ©
& FENS

»

Application Development
Methodology

o Adhere to accepted standards wherever possible
o Tool supported application development

e Develop tools and libraries to render parallelization more effec-
tive and less error-prone

8
Dense E
Linear z
s g w Message Passing
Algebra z 3 5
g [2
Applications | Z 5 8 Applications
@ 2] g
T 5 g g
5 ®] 5
o 8 3 £
S e |3 g
2 & S £
N
N
ry
Scalapack S
25
s
23
BLACS HPF
MPI/ PVM

10

End-User Requirements on Parallel
Application Development

e Efficient parallelization
o Portability

o Minimization of software development efforts

e Development of an application engineering environment for par-
allel and distributed systems

o User-centered and application-driven

o Easy-to-use in scientific and engineering domains

11

o PSEs have been developed for certain areas of mathematics, for
example Matlab for linear algebra computations, and commerce,
sophisticated PSEs for computational scientists are generally
lacking.

Most current PSEs are designed to run on PCs and worksta-
tions, rather than on massively parallel computers or networks
of workstations.

PSE proposed will encapsulate expertise, enhance scientific pro-
ductivity, and lead to a more effective use of computational re-
sources.

The PSE will be a complete environment, assisting scientists in
developing applications, formulating input, and executing pro-
grams.

o The compilation, job control, and execution components of the
proposed PSE will be based on a meta-computing environment.

Library Advisory System

e Purpose
— Adpvising users about which algorithms, libraries, and / or tools
are most appropriate for their specific problems
— World Wide Web (WWW) interface to a knowledge base

holding information about software libraries
— Applicable in the fields of scientific computing and commer-
cial applications
o T'wo different expert systems proposed for investigation
— Driven by manually entered evaluation functions

— Driven by supervised learning

13

Ongoing Activities and Future
Directions

o Parallelization of Algorithms and Applications
— Parallelization of Templates for systems and eigenvalue prob-
lems
— Take advantage of international collaboration in HPC
— integrate and coordinate between academic institutes, soft-
ware and hardware vendors, and business enterprises
— Library related issues
— Evaluation of tools and applications
— Tools to support the software development cycle
e Tool Environment Development

— NetSolve
— Performance modeling and estimation
— User interface

— Incorporate in production software tools

Information Structuring Toolkit

e Purpose
— Browsable information systems like the WWW are very labor
intensive to install and maintain

— We propose development of a web based groupware toolkit
that help communities of people to create structured infor-
mation systems

o Features
— Basic units of information are the object and object attribute
value
— Tools for transforming/filtering/merging information
— Use of related techniques from IR and conceptual data anal-
ysis
— Facilities for developing custom groupware IS applications

— Written in Java, hence portable, and easily extendible

Research Questions Addressed

o How can easy programming be achieved (in particular for non-
experts)?

e How can a powerful software reuse mechanisms be realized?

e How can good portability, scalability, and parallel efficiency be

ensured?

Examples Heterogeneous Networks
Even on IEEE machines results may differ between machines. com-
pilers and compiler switches.

An iteration where the stopping criterion depends on the ma-
chine precision. Stopping criteria for iterative methods — may
not be satisfied on each processor simultaneously

Processors sharing a distributed vector v compute its two-norm,
and depending on that either scale v by a constant much different
from 1, or do not.

Bisection for finding eigenvalues of symmetric matrices.

Eigenproblem for a tridiagonal matrix — run QR on each proces-
sor and each processor finds & eigenvectors. But each processor
may compute a different) R sequence

Adaptive quadrature [a,b+ €], [b + €,]

17 18
Heterogeneous Networks Heterogeneous Networks
o Challenges associated with writing reliable numerical software o Defensive programming
on networks containing heterogeneous processors .
o Machine parameters
o Processors which may do floating point arithmetic differently . . .
e Communication and representation between processors
o Even supposedly identical machines running with different com- . .
) o K X o Controlling processor
pilers or even just different compiler options
. L . o Additional communication
e The basic problem lies in making data dependent branches on
different processors o Testing strategies
19 20

Summary

e The PSE is evolutionary in terms of the computing resources
used.

The proposed PSE will also allow incremental additions to the
software resources of the environment.

As new numerical methods are developed it will be a simple
matter to incorporate them into the software resources accessible
by the PSE.

The PSE will feature not only complete applications, but also
an application editor that allows a user to graphically modify an
existing application, or to build a new application from scratch.

The application editor will be fully integrated with an on-line
documentation system, and context-sensitive help.

Perspectives

o Software reuse mechanisms
o Human-machine interfaces
o Interactive guidance mechanisms

e Distributed computing environments

Methods

o Formal specification languages
o Knowledge-based systems

o Automatic program synthesis techniques

o
[N

Key Results

o Two problem classes addressed
— Stencil-based problems
— Numerical linear algebra problems
e Features of prototype environments developed for both classes

— Application-class specific problem description formalisms

— Reusable software components

— Knowledge-based system to support selection of the most
appropriate software components

— Interactive user guidance mechanism

— Automatic program synthesis techniques to ensure an effec-
tive and transparent coding process

o Portability, Scalability, and parallel efficiency addressed at the
level of high-level, reusable software components

An Environment for Stencil-Based
Problems

o Graphical user interface to support easy specification of the prob-
lem

o Design skeletons used as reusable software components

Three Layers

o The top level is an intelligent graphical user interface for appli-
cation use and development.

The lowest level are software libraries and modules for mathe-
matical and scientific computation.

The intermediate software layer consists of “middleware” for co-
ordinating the upper and lower software layers, for job compi-
lation, execution, and monitoring, and for managing the on-line
documentation and help subsystems.

The PSE will be designed so that creating a new application-
specific PSE affects only the upper and lower software levels,
leaving the middle layer unchanged.

o
S

Intelligent User Interface

o A graphical editor for creating and modifying applications;

o A set of computational templates for rapidly prototyping new
applications;

o Tools for composing application modules;

e Job submission and control interface

Application editor

o Also facilitate the building of new codes by graphically editing
existing codes and incorporating user-written modules.

o A user can build their own application from the ground up using
the software libraries supplied by the PSE or by using their own
software.

e The graphical editor graphically displays an application as an
hierarchical flow chart.

o At the highest level the flow chart displays the complete appli-
cation.

o Clicking on a component of the flow chart will display a flow
chart for that component.

o At the lowest level of the flow chart hierarchy actual code is
displayed.

e A user can edit the application by modifying the flow chart hi-
erarchy at any level.

e The application editor will incorporate extensive online, context-
sensitive help.

e Users can query the help system to get a description of what any
component of a flow chart does, together with a summary of the
input and output variables for that subprogram.

o At the lowest level of the hierarchy, clicking on a variable will
display information about it.

o
=

Application templates

o An application template is a flow chart hierarchy in which some
of the nodes must be supplied by the user subject to certain
interface constraints.

o The user may either make use of existing modules supplied by
the PSE or insert their own.

o Application templates are provided for the rapid prototyping of
new applications.

Complete application programs
example

e Many material science application codes are scientifically and
computationally complex.

o As part of the proposed PSE, several of these advanced codes
will be provided. These codes include:

— the only first principles local density approximation based
(LDA) O(N) (where N is the number of atoms compris-
ing the system), locally self-consistent multiple scattering
method (LSMS),

— the LDA-based linearized muffin-tin orbital method (LMTO),

— an LDA-based pseudo-potential method that includes relax-
ation effects,

— the semi-empirical tight binding molecular dynamics code,
— a set of classical molecular dynamics codes.
o These will serve not only as useful complete application codes,
but will also be made available in template form so that scientists
can modify them and/or implement additional modules in order

to treat physical phenomenon that are not currently contained
in these models.

Middleware Components

o The middle layer of software in the PSE has two main compo-

nents.

Architecture for designing and building system services that pro-
vide the illusion of a single virtual machine to users, a virtual
machine that provides secure shared object and shared name
spaces, application adjustable fault-tolerance, improved response
time, and greater throughput.

A system for examining online documentation on the PSE itself
and the various applications and modules embedded in the PSE.

30

Middleware Components

o Parallel object-oriented language and compiler
o Support for PVM/MPI

o Support for legacy and other language codes

e Resource management

o Transparent file and data access

o Fault-Tolerance

o Post-mortem debugger

e Online documentation subsystem

Low-Level Software Components

o Compilers,

o Debuggers,

o Performance

o Analysis tools,

o Application software,

o Libraries, and

o Files accessed by the online help and documentation systems.

o These resources are managed by the higher software levels, and
are not directly accessible from by the user.

