
Practical Experience in the Dangers of Heterogeneous

Computing

L. S. Blackford�, A. Clearyy, J. Demmelz, I. Dhillonz, J. Dongarrax,

S. Hammarling{, A. Petitety, H. Renz, K. Stanleyz, R. C. Whaleyy

Abstract

Special challenges exist in writing reliable numerical library software for heteroge-

neous computing environments. Although a lot of software for distributed memory

parallel computers has been written, porting this software to a network of workstations

requires careful consideration. The symptoms of heterogeneous computing failures can

range from erroneous results without warning to deadlock. Some of the problems are

straightforward to solve, but for others the solutions are not so obvious, or incur an un-

acceptable overhead. Making software robust on heterogeneous systems often requires

additional communication.

This paper addresses the issue of writing reliable numerical software for networks of

heterogeneous computers. We describe and illustrate the problems encountered during

the development of ScaLAPACK and the NAG Numerical PVM Library. Where possi-

ble, we suggest solutions to avoid potential pitfalls, or if that is not possible, recommend

that the software is not used on heterogeneous networks.

1 Introduction

There are special challenges associated with writing reliable numerical software on net-

works containing heterogeneous processors, that is processors which may do oating point

arithmetic di�erently. This includes not just machines with completely di�erent oating

point formats and semantics, such as Cray vector computers running Cray arithmetic versus

workstations running IEEE standard oating point arithmetic, but even supposedly iden-

tical machines running with di�erent compilers, or even just di�erent compiler options or

runtime environments.

The basic problem occurs when making data dependent branches on di�erent processors.

The ow of an algorithm is usually data dependent and so slight variations in the data may

lead to di�erent processors executing completely di�erent sections of code.

This paper represents the experience of the ScaLAPACK and NAG teams in developing

numerical software for distributed memory message-passing systems, and the awareness

�(formerly L. S. Ostrouchov) University of Tennessee, Knoxville, USA
yUniversity of Tennessee, Knoxville, USA
zUniversity of California at Berkeley, USA
xUniversity of Tennessee, Knoxville, and Oak Ridge National Laboratory, Oak Ridge, TN, USA
{University of Tennessee, Knoxville, and Numerical Algorithms Group Ltd., Oxford, UK

1

that the software being developed may not be as robust on heterogeneous systems as on

homogeneous systems. We briey describe the work of these teams in Section 2, and Section

3 de�nes our use of the terms homogeneous and heterogeneous computing, and discusses

the considerations leading to the de�nitions.

In Sections 4, 5 and 8 we look at three areas that require attention in developing soft-

ware for heterogeneous networks: machine parameters, where we discuss what the values

of machine parameters, such as machine precision should be; checking global arguments

and communicating oating point values; and algorithmic integrity, that is, how can we

ensure that algorithms perform correctly in a heterogeneous setting. The particular case

of communicating oating point values on IEEE machines is briey discussed in Section

6. Some additional considerations arising from what we regard as poor arithmetic, ranging

from lack of full IEEE arithmetic support to unnecessary overow in complex arithmetic,

are discussed in Section 7.

This report is an updated version of [5], which takes into account problems encountered

during the preparation of Version 1.2 of ScaLAPACK [2].

2 Motivation and Background

The challenges of heterogeneous computing discussed in this paper came to light during the

development of ScaLAPACK and the NAG Numerical PVM Library ([17]).

ScaLAPACK is a library of high performance linear algebra routines for distributed

memory MIMD machines. It is a continuation of the LAPACK project, which has designed

and produced an e�cient linear algebra library for workstations, vector supercomputers and

shared memory parallel computers ([1]). Both libraries contain routines for the solution of

systems of linear equations, linear least squares problems and eigenvalue problems. The

goals of the LAPACK project, which continue into the ScaLAPACK project, include e�-

ciency so that the computationally intensive routines execute as fast as possible; reliability,

including the return of condition estimates and error bounds; portability across machines;

exibility so that users may construct new routines from well designed components; and

ease of use. Towards this last goal the ScaLAPACK software has been designed to look as

much like the LAPACK software as possible. ScaLAPACK is naturally also concerned with

scalability as the problem size and number of processors grow.

Many of these goals have been attained by developing and promoting standards, espe-

cially speci�cations for basic computational and communication routines. Thus LAPACK

relies on the BLAS ([16, 7, 6]), particularly the Level 2 and 3 BLAS for computational

e�ciency, and ScaLAPACK relies upon the BLACS ([8]) for e�ciency of communication

and uses a set of parallel BLAS, the PBLAS ([3]), which themselves call the BLAS and the

BLACS. LAPACK and ScaLAPACK will run on any machines for which the BLAS and the

BLACS are available. A PVM ([9]) version of the BLACS has been available for some time

and the portability of the BLACS has recently been further increased by the development

of a version that uses MPI ([18]).

As the BLACS are perhaps not so widely known as the BLAS and LAPACK, we now give

a brief description. The BLACS, which stands for Basic Linear Algebra Communication

Subprograms, form a message passing library, speci�cally designed for dense linear algebra,

in which the computational model consists of a one or two dimensional grid of processes,

2

where each process stores matrices and vectors. The BLACS include synchronous send and

receive routines to send a matrix or submatrix from one process to another, to broadcast

submatrices to many processes, or to compute global reductions such as sums, maxima and

minima. There are also routines to set up, change, or query the process grid. The BLACS

permit a process to be a member of more than one, possibly overlapping, grids, each one

labeled by a context. Some message passing systems also include the idea of a context; in

MPI it is termed a communicator. See [8] and [18] for further details.

The NAG Numerical PVM Library is a library of numerical routines, also for distributed

memory MIMD machines, that contains routines for dense and sparse linear algebra, in-

cluding ScaLAPACK routines, quadrature, optimization, random number generation and

various utility routines for operations such as data distribution and error handling. This

library owes much to the ScaLAPACK development, uses essentially the same model for

distributed memory computing as ScaLAPACK and was developed with the same goals

in mind ([11]). Since the development of an MPI version the NAG Library is now known

generically as the NAG Parallel Library.

Both ScaLAPACK and the NAGNumerical PVM Library use the BLACS computational

model and utilize the BLACS context. In addition they both use an SPMD programming

model.

ScaLAPACK and the NAG Numerical PVM Library were developed with heterogeneous

environments in mind, as well as standard homogeneous machines. But during development

it was realized that we could not guarantee the safe behavior of all our routines in a het-

erogeneous environment and so, for the time being, both libraries are only fully supported

on homogeneous machines. ScaLAPACK, though, is tested on networks of IEEE machines

and is believed to work correctly in such environments, and it is intended to be able to fully

support other heterogeneous environments in the near future. Any known heterogeneous

failures are documented in the �le errata.scalapack on Netlib1 . It is intended that the

NAG Parallel Libraries should also support heterogeneous environments in the future.

In this report we concentrate primarily on the ScaLAPACK experience.

3 Homogeneous and Heterogeneous Computing

The de�nition of a heterogeneous computing environment depends to some extent on the

application. Here we attempt a de�nition that is relevant to numerical software. The three

main issues determining the classi�cation are the hardware, the communication layer, and

the software (operating system, compiler, compiler options). Any di�erences in these areas

can potentially a�ect the behavior of the application. Speci�cally, the following conditions

must be satis�ed before a system can be considered homogeneous:

1. The hardware of each processor guarantees the same storage representation and the

same same results for operations on oating point numbers.

2. If a oating point number is communicated between processors, the communication

layer guarantees the exact transmittal of the oating point value.

1http://www.netlib.org/scalapack/index.html

3

3. The software (operating system, compiler, compiler options) on each processor also

guarantees the same storage representation and the same same results for operations

on oating point numbers.

We regard a homogeneous machine as one which satis�es condition (1.); a homo-

geneous network as a collection of homogeneous machines which additionally satis�es

condition (2.); and �nally, a homogeneous computing environment as a homogeneous

network which satis�es condition (3.). We can then make the obvious de�nition that a het-

erogeneous computing environment is one that is not homogeneous. The requirements

for a homogeneous computing environment are quite stringent and are frequently not met

in networks of workstations, or PCs, even when each computer in the network is the same

model.

Some areas of distinction are quite obvious, such as a di�erence in the architecture of

two machines, or the type of communication layer implemented. Communication issues

are discussed in more detail in Section 6. Some hardware and software issues, however,

can potentially a�ect the behavior of the application and be di�cult to diagnose. For

example, the determination of machine parameters such as machine precision, overow,

and underow; or the implementation of complex arithmetic such as complex division; or

the handling of NaNs and subnormal numbers could di�er. Some of these subtleties may

only become apparent when the arithmetic operations occur on the edge of the range of

representable numbers. Section 4 discusses arithmetic issues in more detail.

The di�cult question that remains unanswered for developers of library software is:

when can we guarantee that heterogeneous computing is safe? There is also the question

of just how much additional programming e�ort we should expend to gain the additional

robustness. Unless we can incorporate a reliable test for homogeneity, we are also in danger

of imposing a considerable additional performance penalty on homogeneous systems in order

to perform safely on heterogeneous systems.

To illustrate the potential problems consider the iterative solution of a system of linear

equations where the stopping criterion depends upon the value of some function, f , of the

relative machine precision2, �. The test for convergence might well include a test of the

form:

If kerk2=kxrk2 < f(�) then converged

In a heterogeneous setting the value of f may be di�erent on di�erent processors and er
and xr may depend upon data of di�erent accuracies, and thus one or more processes may

converge in a fewer number of iterations. Indeed the stopping criterion used by the most

accurate processor may never be satis�ed if it depends on data computed less accurately by

other processors. If the code contains communication between processors within an itera-

tion, it may not complete if one processor converges before the others. In a heterogeneous

environment, the only way to guarantee termination is to have one processor make the

convergence decision and broadcast that decision.

This is a strategy we shall see again in later sections.

2A common de�nition of the relative machine precision, or unit roundo�, is the smallest positive oating

point value, �, such that (1+ �) > 1, where (x) is the oating point representation of x. See [12, Chapter

2] for further details.

4

4 Machine Parameters

Machine parameters such as the relative machine precision, the underow and overow

thresholds, and the smallest value which can be safely reciprocated (which in LAPACK is

called sfmin), are frequently used in numerical linear algebra computations, as well as in

many other numerical computations. Without due care, variations in these values between

processors can cause problems, such as those mentioned above.

Many such problems can be eliminated by using the largest machine precision among

all participating processors. In LAPACK routine DLAMCH returns the (double precision)

machine precision (as well as other machine parameters). In ScaLAPACK this is replaced

by PDLAMCH which returns the largest value over all the processors, replacing the unipro-

cessor value returned by DLAMCH. Similarly, one should use the smallest overow threshold

and largest underow threshold over the processors being used. The ScaLAPACK routine

PDLAMCH runs the LAPACK routine DLAMCH on each process in the context and communi-

cates the relevant maximum or minimum value. We refer to these machine parameters as

the multiprocessor machine parameters. DLAMCH can also return the base, b, which

nowadays is invariably b = 2, but what we would do for PDLAMCH if we ever had a mixture

of binary and decimal machines in a network we leave as an open question!

Note that since PDLAMCH requires communication to each process in the context, it su�ers

from the weakness that it cannot be called by a subset of the processes (as might for example

happen when a conditional statement such as an IF statement is being executed), because

processes will be waiting for a communication which will never take place. There are many

examples in ScaLAPACK codes, however, where only a subset of nodes (for instance one

column or one row of the process grid) is performing a given computation, such as pivot

selection. ScaLAPACK has to avoid calling PDLAMCH from such computations. Section 8

contains a speci�c example of this case.

For this reason, it is expected that the next release of the BLACS will support caching

based on the BLACS context. We will then be able to perform the communication just once

for each context and cache the values on the context. Subsequent PDLAMCH calls within the

context will then access strictly local data, so will be more e�cient, and thus may be safely

called from code performing computations on grid subsets.

5 Global Arguments and Floating Point Values

In a homogeneous environment we think of a global variable as having the same value on

each process, but of course this may not be true of oating point values in a heterogeneous

environment.

Where possible, the high level routines in the ScaLAPACK and NAG Libraries check

arguments supplied by users for their validity in order to aid users and provide as much

reliability as possibility. In particular, global arguments are checked. When these global

arguments are oating point values they may of course, for the reasons previously discussed,

have di�erent values on di�erent processors.

This raises the question of how, and even whether, such arguments should be checked,

and what action should be taken when a failure occurs. If we compare the values, they

may not be the same on each process, so we need to allow a tolerance based upon the

5

multiprocessor machine precision. Alternatively, we can check a global argument on just

one process and then, if the value is valid, broadcast that value to all the other processes.

Of course this alternative approach has extra overhead, but it may be the most numerically

sound solution, since the library routine has algorithmic control, and puts slightly less

burden on the user.

Similar issues occur whenever we communicate a oating point value from one processor

to another. Unless we have special knowledge, and one such case will be discussed in the

next section, we should not assume that the target processor will have exactly the same

value as the sending processor and we must write the code accordingly.

6 Communicating Floating Point Values on IEEE Machines

The IEEE standard for binary oating point arithmetic ([13]) speci�es how machines con-

forming to the standard should represent oating point values. We refer to machines con-

forming to this standard as IEEE machines3. Thus, when we communicate oating point

numbers between IEEE machines we might hope that each processor has the same value.

This is a reasonable hope and will often be realized.

For example, XDR (External Data Representation, [19]) uses the IEEE representation

for oating point numbers and so a message passing system that uses XDR will communicate

oating point numbers without change4. PVM is an example of a system that uses XDR.

MPI suggests the use of XDR, but does not mandate its use ([18, Section 2.3.3]). Unless

we have additional information about the implementation we cannot assume that oating

point numbers will be communicated without change on IEEE machines when using MPI.

Note that there is also an IEEE standard concerned with standardizing data formats to

aid data conversion between processors ([15]).

7 Considerations Due to Poor Arithmetic

As we expand the ScaLAPACK test suite to encompass more rigorous testing, particularly

for oating point values close to the edge of representable numbers (as is present in the

LAPACK test suite), we are reminded of additional dangers which must be avoided in

oating point arithmetic. For example, it is a sad reection that some compilers still do

not implement complex arithmetic carefully. In particular, unscaled complex division still

occurs on certain architectures, leading to unnecessary overow5. To handle this di�culty

ScaLAPACK, as LAPACK, restricts the range of representable numbers by a call to rou-

tine PDLABAD (in double precision), the equivalent of the LAPACK routine DLABAD, which, if

desired, takes the square root of the smallest and largest representable numbers for the com-

putation to protect from unnecessary underow or overow. PDLABAD calls DLABAD locally

on each process and then communicates the minimum and maximum value respectively.

Arguably we should have separate routines for real and complex arithmetic, but since we

3It should be noted that there is also a radix independent standard ([14]).
4It is not clear whether or not this can be assumed for subnormal (denormalized) numbers.
5At the time of testing ScaLAPACK version 1.2, the HP9000 exhibited this behavior

6

hope that the need for DLABAD will eventually disappear we have so far resisted taking that

step.

This is particularly irritating if one machine in a network is causing us to impose un-

necessary restrictions on all the machines in the network, but without this, catastrophic

results can occur during computations near the overow or underow thresholds.

Another problem that we have encountered during testing is in the way that subnormal

(denormalized) numbers are handled on certain (near) IEEE architectures. By default,

some architectures ush subnormal numbers to zero6. Thus, if the computation involves

numbers near underow and a subnormal number is communicated to such a machine, the

computational results may be invalid and the subsequent behavior unpredictable. Often

such machines have a compiler switch to allow the handling of subnormal numbers, but it

can be non-obvious and we cannot guarantee that users will use such a switch.

This behavior occurred during the heterogeneous testing of the linear least squares

routines when the input test matrix was a full-rank matrix scaled near underow. During

the course of the computation a subnormal number was communicated, this value was

unrecognized on receipt, and a oating point exception was agged. The execution on the

processor was killed, subsequently causing the execution on the other processors to hang. As

we expand the test suite we expect to discover such behavior in other parts of ScaLAPACK,

since we do not believe that there was anything special about the least squares routines.

A solution would be to replace subnormal numbers either with zero, or with the nearest

normal number, but we are somewhat reluctant to implement this within ScaLAPACK,

since this does not seem to be the right software level at which to do this.

A simple example program to illustrate this problem is given in Appendix A.

8 Algorithmic Integrity

The suggestions we have made so far certainly do not solve all of the problems. We are still

left with major concerns for problems associated with varying oating point representations

and arithmetic operations between di�erent processors, di�erent compilers and di�erent

compiler options. We have given one example at the end of Section 3 and we now illustrate

the di�culties with three further examples from ScaLAPACK, the second example giving

rather more severe di�culties than the �rst and third.

Many routines in LAPACK and hence also in ScaLAPACK, scale vectors and matrices.

The scaling is done to equilibrate or balance a matrix in order to improve its condition, or

to avoid harmful underow, or overow, or even to improve accuracy by scaling away from

subnormal numbers. When scaling occurs we naturally have to ensure that all processes

containing elements of the vector or matrix to be scaled, take part in the scaling. Consider

the case of a four element vector

xT =
�
x1 x2 x3 x4

�
distributed over two processors, with the following test for scaling:

if kxk
2
< � then x �x

6The DEC Alpha, at the time of writing, is an example.

7

As illustrated below, if we let each processor make the decision independently then we risk

the danger of one processor scaling, while the other does not.

x1
x2

!

?
�x1
�x2

!

x3
x4

!

?
x3
x4

!

If this situation occurred the computation would now proceed with the meaningless

vector

xT =
�
�x1 �x2 x3 x4

�
:

One way to ensure correct computation is to put one process in control of whether or not

scaling should take place, and for that process to communicate the decision to the other

processes. Having a controlling process is a common way to solve such problems on

heterogeneous networks.

An example of a routine that scales to improve accuracy is the LAPACK routine DLARFG,

which computes an elementary reector (Householder transformation matrix) H such that

Hx = �e1;

where � is a scalar, x is an n element vector and e1 is the �rst column of the unit matrix.

H is represented in the form

H = I � �vvT ;

where � is a scalar and v is an n element vector. Since H is orthogonal we see that

j�j = kxk
2
:

If j�j is very small (subnormal or close to being subnormal), DLARFG scales x and recomputes

kxk
2
. This computation is at the heart of the LAPACK QR, and other, factorizations (see

for example [10]).

In the case of the equivalent ScaLAPACK routine PDLARFG, x will typically be dis-

tributed over several processors, each of which participates in the computation of kxk
2
and,

if necessary, scales its portion of the vector x and recomputes kxk
2
. From the previous

discussion we can see that we clearly need to take care here, or else, in close cases, some

processors may attempt to recompute kxk
2
, while others do not, leading to completely er-

roneous results, or even deadlock. This care will be exercised when ScaLAPACK is able

to call the version of the BLACS that support caching, as discussed at the end of Section

8

4. The hope is that this will occur for Version 2.0 of ScaLAPACK. We could of course

solve the problem now by using the idea mentioned above of a controlling process, but this

would involve a rather heavy communication burden, and we prefer to wait until we can use

the more e�cient solution based upon the BLACS. Although failure is very unlikely and

indeed we have not yet been able to �nd an example that fails without arti�cially altering

the PDLARFG code, the possibility of failure exists.

Whilst we could not �nd an example that failed without altering the code, we were

able to experimentally simulate such a heterogeneous failure, using the current version of

ScaLAPACK7, by performing the QR factorization of a 6 by 6 matrix A such that

A = �

0
B@

1 : : : 1
...

...

1 : : : 1

1
CA ; � small

We took � = sfmin, which is � 10�38 on an IEEE machine. The value of sfmin is used in

PDLARFG to determine whether or not to scale the vector, and we arti�cially adjusted the

value so that sfmin 2 � sfmin on one of the processes involved in the scaling decision.

As expected, the execution of the factorization hung.

As the second, and somewhat harder problem consider the method of bisection for �nd-

ing the eigenvalues of symmetric matrices performed by the ScaLAPACK routine PDSYEVX.

In this algorithm, the real axis is broken into disjoint intervals to be searched by di�erent

processes for the eigenvalues contained in each interval. Disjoint intervals are searched in

parallel. The algorithm depends on a function, say count(a,b), that counts the number

of eigenvalues in the half open interval [a, b). Using count, intervals can be subdivided

into smaller intervals containing eigenvalues until the intervals are narrow enough to declare

the eigenvalues they contain as being found. The problem here is that two processors may

not agree on the boundary between their intervals. This could result in multiple copies of

eigenvalues if intervals overlap, or missing eigenvalues if there are gaps between intervals.

Furthermore, the count function may count di�erently on di�erent processors, so an inter-

val [a, b) may be considered to contain 1 eigenvalue by processor A, but 0 eigenvalues by

processor B, which has been given the interval by processor A during load balancing. This

can happen even if processors A and B are identical in hardware terms, but if the compilers

on each one generate slightly di�erent code sequences for count. In this example we have

not yet decided what to do about all these problems, so we currently only guarantee correct-

ness of PDSYEVX for networks of processors with identical oating point formats (but slightly

di�erent oating point operations turn out to be acceptable). See [4] for further discussion.

Assigning the work by index rather than by range and sorting all the eigenvalues at the

end may give the desired result with modest overhead. Of course, if oating point formats

di�er across processors, sorting is a problem in itself. This requires further investigation.

The symmetric eigensolvers, PDSYEVX and PZHEEVX, may also have trouble on heteroge-

neous networks when a subset of eigenvalues is chosen by value (i.e. RANGE='V') and one

of the limits of that range (VL or VU) is within a couple of units in the last place (ulps) of

an actual eigenvalue. The two processors may then disagree on the number of eigenvalues

speci�ed by the range VL and VU and the code breaks with each process returning INFO 6= 0

7Version 1.2

9

(which is the LAPACK and ScaLAPACK failure indicator). This situation can happen

when running the test code and should again be corrected in the next release. In every case

that we have seen, the answer is correct despite the spurious error message. This is not a

problem on homogeneous systems.

The third example is based upon the idea that some algorithms can perform redundant

work in order to gain parallelism. While redundant work on di�erent processors is intended

to yield identical results, this may not be the case in a heterogeneous environment. For

instance, one approach for parallelizing the symmetric eigenproblem is to perform the tridi-

agonal QR algorithm to reduce the tridiagonal matrix to diagonal form redundantly on all

processors, save the plane rotations, and then accumulate the resulting Givens rotations in

parallel into the relevant columns of the unit matrix. This results in O(n2) redundant work,

but O(n3) parallel work, and requires no communication. Since the QR algorithm is not in

general forward stable, slight di�erences in the underlying arithmetic can lead to completely

di�erent rotations and hence the danger of obtaining quite inconsistent eigenvectors. This

problem can be solved by having a controlling process that runs the QR algorithm and

then broadcasts the plane rotations to the other processes, but the communication cost is

substantial: O(n2).

9 Closing Remarks

We have tried to illustrate some of the potential di�culties concerned with oating point

computations on heterogeneous networks. Some of these di�culties are straightforward to

address, while others require considerably more thought. All of them require some additional

level of defensive programming to ensure the usual standards of reliability that users have

come to expect from packages such as LAPACK and the NAG Libraries.

We have suggested reasonably straightforward solutions to the problems associated with

oating point machine parameters and global values, and have suggested the use of a con-

trolling process to solve some of the di�culties of algorithmic integrity. This can probably

be used to solve most of these problems, but in some cases at the expense of considerable

additional overhead, usually in terms of additional communication, which is also imposed

on a homogeneous network unless we have separate code for the homogeneous case. Unless

we can devise a satisfactory test for homogeneity and hence have separate paths within the

code, separate code would defeat the aim of portability.

A topic that we have not discussed is that of the additional testing necessary to give

con�dence in heterogeneous environments. The testing strategies that are needed are similar

to those already employed in reputable software packages such as LAPACK, but it may be

very hard to produce actual test examples that would detect incorrect implementations of

the algorithms because, as we have seen, the failures are likely to be very sensitive to the

computing environment, and in addition may be non-deterministic.

The LAPACK and ScaLAPACK software is available from Netlib8, as is the documenta-

tion and the LAPACKWorking Notes. A number of the other references in the bibliography

can also be found via Netlib, particularly [1], [9] and [18].

8http://www.netlib.org/

10

10 Acknowledgments

We wish to thank all of our ScaLAPACK and NAG colleagues for a number of useful

discussions on heterogeneous computing and their valuable input to this paper.

Appendix A { Example Program

The following code is intended to illustrate possible failure when a processor receives a

subnormal number, but may not itself (by default) handle such numbers.

The example constructs a one by two grid with process identi�ers (0,0) and (0,1), and

assumes that process (0,0) is running on a processor that generates IEEE subnormal num-

bers. For (possible) failure to occur process (0,1) should be running on a processor that

does not support subnormal numbers.

We have observed failure when (0,0) is running on a Sun4 (which handles subnormal

numbers correctly), and process (0,1) is running on a DEC Alpha under Unix, which by

default ushes subnormal numbers to zero. (The non-default compiler ag -fpe1 will trap

to software emulation.)

The program utilizes the BLACS. See [8] for further details on the BLACS.

PROGRAM SUBNRM

*

* .. Local Scalars ..

INTEGER IAM, ICNTXT, MYCOL, MYROW, NPCOL, NPROCS, NPROW

REAL TWO

* .. Local Arrays ..

REAL X(1)

* .. External Subroutines ..

EXTERNAL BLACS_EXIT, BLACS_GET, BLACS_GRIDINFO,

$ BLACS_GRIDINIT, BLACS_PINFO, BLACS_SETUP,

$ SGERV2D, SGESD2D

* ..

*

* Determine my process number and the number of processes in

* machine

*

* .. Executable Statements ..

CALL BLACS_PINFO(IAM, NPROCS)

*

* If underlying system needs additional setup, do it now

*

IF(NPROCS.LT.1) THEN

IF(IAM.EQ.0) THEN

NPROCS = 2

END IF

CALL BLACS_SETUP(IAM, NPROCS)

11

END IF

*

* Set up a 1 by 2 process grid

*

NPROW = 1

NPCOL = 2

*

* Get default system context, and initialize the grid

*

CALL BLACS_GET(0, 0, ICNTXT)

CALL BLACS_GRIDINIT(ICNTXT, 'Row-major', NPROW, NPCOL)

CALL BLACS_GRIDINFO(ICNTXT, NPROW, NPCOL, MYROW, MYCOL)

*

* If I am in the grid perform some computation

*

IF(MYROW.GE.0 .AND. MYROW.LT.NPROW) THEN

*

TWO = 2.0E+0

IF(MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN

X(1) = 7.52316390E-37

X(1) = X(1) / 128.0E+0

* X(1) = 0.58774718E-38, which is subnormal on IEEE machines

*

* This call to SGESD2D sends X(1) to process (0,1)

CALL SGESD2D(ICNTXT, 1, 1, X, 1, 0, 1)

WRITE(*, FMT = '(A,E16.8)')'X00 = ', X(1)

X(1) = X(1) / TWO

WRITE(*, FMT = '(A,E16.8)')'X00 / 2 = ', X(1)

*

ELSE IF(MYROW.EQ.0 .AND. MYCOL.EQ.1) THEN

*

* This call to SGERV2D receives X(1) from process (0,0)

CALL SGERV2D(ICNTXT, 1, 1, X, 1, 0, 0)

WRITE(*, FMT = '(A,E16.8)')'X01 = ', X(1)

X(1) = X(1) / TWO

WRITE(*, FMT = '(A,E16.8)')'X01 / 2 = ', X(1)

*

END IF

END IF

*

* Exit the BLACS cleanly

*

CALL BLACS_EXIT(0)

*

STOP

12

END

References

[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. LAPACK

Users' Guide. SIAM, Philadelphia, PA, USA, 2nd edition, 1995. (Also available in

Japanese, published by Maruzen, Tokyo, translated by Dr Oguni).

[2] J. Choi, J. Demmel, I. Dhillon, J. J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,

D. W. Walker, and R. C. Whaley. ScaLAPACK: A portable linear algebra library for

distributed memory computers - design issues and performance. In J. J. Dongarra,

K. Masden, and J. Wa�sniewski, editors, Applied Parallel Computing, pages 95{106.

Springer-Verlag, Berlin, Germany, 1995. (Proceedings of the Second International

Workshop, PARA '95, Lyngby, Denmark. See also LAPACK Working Note No.95).

[3] J. Choi, J. J. Dongarra, S. Ostrouchov, A. Petitet, D. W. Walker, and R. C. Whaley.

A proposal for a set of parallel basic linear algebra subprograms. In J. J. Dongarra,

K. Masden, and J. Wa�sniewski, editors, Applied Parallel Computing, pages 107{114.

Springer-Verlag, Berlin, Germany, 1995. (Proceedings of the Second International

Workshop, PARA '95, Lyngby, Denmark. See also LAPACK Working Note No.100).

[4] J. Demmel, I. Dhillon, and H. Ren. On the correctness of parallel bisection in oating

point. ETNA, 3:116{149, 1995. (See also LAPACK Working Note No.70).

[5] J. Demmel, J. J. Dongarra, S. Hammarling, S. Ostrouchov, and K. Stanley. The dangers

of heterogeneous network computing: Heterogenous networks considered harmful. In

Proceedings Heterogeneous Computing Workshop '96, pages 64{71. IEEE Computer

Society Press, Los Alamitos, CA, USA, 1996.

[6] J. J. Dongarra, J. Du Croz, I. S. Du�, and S. Hammarling. A set of Level 3 Basic

Linear Algebra Subprograms. ACM Trans. Math. Software, 16:1{28, 1990. (Algorithm

679).

[7] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of

FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 14:1{32,

399, 1988. (Algorithm 656).

[8] J. J. Dongarra and R. C.Whaley. A users' guide to the BLACS v1.0. LAPACKWorking

Note No.94. Technical Report CS-95-281, Department of Computer Science, University

of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA, 1995.

[9] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel Virtual Machine. A Users' Guide and Tutorial for Networked Parallel

Computing. MIT Press, Cambridge, MA, USA, 1994.

[10] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University

Press, Baltimore, MD, USA, 2nd edition, 1989.

13

[11] S. Hammarling. Parallel library work at NAG. In J. J. Dongarra and B. Tourancheau,

editors, Environments and Tools for Parallel Scienti�c Computing, pages 172{182.

SIAM, Philadelphia, PA, USA, 1994. (Proceedings of the Second Workshop, Townsend,

TN, USA).

[12] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,

PA, USA, 1996.

[13] IEEE. ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754-1985.

IEEE Press, New York, NY, USA, 1985.

[14] IEEE. ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic: Std

854-1987. IEEE Press, New York, NY, USA, 1987.

[15] IEEE. IEEE Standard for Shared-Data Formats Optimized for Scalable Coherent In-

terface (SCI) Processors: Std 1596.5-1993. IEEE Press, New York, NY, USA, 1994.

[16] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra

Subprograms for FORTRAN usage. ACM Trans. Math. Software, 5:308{323, 1979.

[17] K. McDonald. The NAG numerical PVM library. In J. J. Dongarra, K. Masden, and

J. Wa�sniewski, editors, Applied Parallel Computing, pages 419{428. Springer-Verlag,

Berlin, Germany, 1995. (Proceedings of the Second International Workshop, PARA

'95, Lyngby, Denmark).

[18] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. J. Dongarra. MPI: The

Complete Reference. MIT Press, Cambridge, MA, USA, 1996.

[19] SunSoft. The XDR Protocol Speci�cation. Appendix A of \Network Interfaces Pro-

grammer's Guide". SunSoft, 1993.

14

