
THE DESIGN AND IMPLEMENTATION OF THE

PARALLEL OUT-OF-CORE SCALAPACK LU, QR AND CHOLESKY

FACTORIZATION ROUTINES
�

ED F. D'AZEVEDOy
AND JACK J. DONGARRAz

Abstract. This paper describes the design and implementation of three core LU, QR and

Cholesky factorization routines included in the out-of-core extension of ScaLAPACK. These routines

allow the factorization and solution of a very large dense system that is too large to �t entirely in

physical memory. An image of the full matrix is maintained on disk and the factorization routines

transfer sub-matrices to be operated in memory. A `left-looking' column-oriented variant of the

factorization algorithm is implemented to reduce the disk I/O tra�c. The routines are implemented

using a portable I/O interface and uses high performance ScaLAPACK factorization routines as

in-core computational kernels.

We present the details of the implementation of the out-of-core ScaLAPACK factorization rou-

tines as well as performance and scalability results on the Intel Paragon.

Key words. Linear solver, out-of-core solver, LU factorization, numerical library

1. Introduction. This paper describes the design and implementation of three
core LU, QR and Cholesky factorization routines included in the out-of-core extensions
of ScaLAPACK. These routines allow the factorization and solution of a very large
dense system that is too large to �t entirely in physical memory.

Although current computers have unprecedented memory capacity, out-of-core
solvers are still needed to tackle ever larger applications. A modern workstation is
commonly equipped with 64 to 128Mbytes of memory and capable of performing over
100 Mops/sec. Even on a large problem that occupies all available memory, the
in-core solution of dense linear problems typically takes less than an hour. On a
network of workstations (NOW) with 100 processors, each with 64Mbytes, it may
require about 30 minutes to factor and solve at 64-bit precision a dense linear system
of order 30,000. This suggests that the processing power of such high performance
machines are under utilized and much larger systems can be tackled before run time
becomes prohibitively large. Therefore, it is natural to develop parallel out-of-core
solvers to tackle large dense linear systems. Such dense problems arise from high
resolution three-dimensional electromagnetic scattering problems or in modeling uid
ow past complex objects.

The development e�ort has the objective of producing portable software that
achieves high performance on distributed memory multiprocessors, shared memory
multiprocessors and NOW. The implementation is based on modular software building
blocks such as PBLAS (Parallel Basic Linear Algebra Subroutines), and BLACS (Ba-
sic Linear Algebra Communication Subroutines). Proven and highly e�cient ScaLA-
PACK factorization routines are used for in-core computations.

One key component of an out-of-core library is an e�cient and portable I/O
interface. We have implemented a high level I/O layer to encapsulate machine or
architecture speci�c characteristics to achieve good throughput. The I/O layer eases
the burden of manipulating out-of-core matrices by directly supporting the reading
and writing of unaligned sections of ScaLAPACK block cyclic distributed matrices.

� Research supported by DARPA / NFS / DOE and CCS-ORNL for the use of the computing

facilities.
yMathematical Sciences Section, Oak Ridge National Laboratory, e6d@ornl.gov
zDepartment of Computer Science, University of Tennessee, Knoxville, dongarra@cs.utk.edu

1

2 E. D'Azevedo and J. Dongarra

Section 2 describes the design and implementation of the portable I/O Library.
The implementation of the `left-looking' column-oriented variant of LU, QR and
Cholesky factorization is described in x3. Finally, x4 summarizes the performance
on the Intel Paragon.

2. I/O Library. This section describes the overall design of the I/O Library
including both the high level user interface, and the low level implementation details
to achieve good performance.

2.1. Low-level Details. Each out-of-core matrix is associated with a device
unit number (between 1 and 99), much like the familiar Fortran I/O subsystem. Each
I/O operation is record-oriented, where each record is conceptually a MMB�NNB ScaLA-
PACK block-cyclic distributed matrix. Moreover if this record/matrix is distributed
with (MB,NB) as the block size on a MP�NB processor grid, then mod(MMB; MB�MP) = 0
and mod(NNB; NB � NP) = 0, i.e. MMB (and NNB) are exact multiples of MB � MP (and
NB�NP). Data to be transfered is �rst copied or assembled into an internal temporary
bu�er (record). This arrangement reduces the number of lseek() system calls and
encourages large contiguous block transfers, but incurs some overhead in memory-
to-memory copies. All processors are involved in each record transfer. Individually,
each processor writes out a (MMB/MP) by (NNB/NP) matrix block. MMB and NNB can be
adjusted to achieve good I/O performance with large contiguous block transfers or to
match RAID disk stripe size. A drawback of this arrangement is that I/O on narrow
block rows or block columns will involve only processors aligned on the same row or
column on the processor grid and thus may not obtain full bandwidth from the I/O
subsystem.

The MIOS (Matrix Input-Output Subroutines) used in SOLAR (Scalable Out-of-
Core Linear Algebra Routines) [5] is less exible in requiring that (MMB; NNB) equals
(MB; NB). An optimal block size for I/O transfer may not be equally e�cient for in-
core computations. On the Intel Paragon, MB (or NB) can be as small as 8 for good
e�ciency but requires at least 64Kbytes I/O transfers to achieve good performance to
the parallel �le system. A 2-dimensional cyclically-shifted block layout that achieves
good load balance even when operating on narrow block rows or block columns was
proposed in MIOS. However, this scheme is more complex to implement, (SOLAR does
not yet use this scheme). Moreover, another data redistribution is required to maintain
compatibility with in-core ScaLAPACK software. A large data redistribution would
incur a large message volume and a substantial performance penalty, especially in a
NOW environment.

The I/O library supports both a `shared' and `distributed' organization of disk
layout. In a `distributed' layout, each processor opens a unique �le on its local disk
(e.g `/tmp' partition on workstations) to be associated with the matrix. This is most
applicable on a NOW environment or where a parallel �le system is not available.
On systems where a shared parallel �le system is available (such as M ASYNC mode for
PFS on Intel Paragon), all processors open a common shared �le. Each processor can
independently perform lseek/read/write requests to this common �le. Physically,
the `shared' layout can be the concatenation of the many `distributed' �les. Another
organization is to `interlace' contributions from individual processors into each record
on the shared �le. This may lead to better pre-fetch caching by the operating system,
but requires an lseek() operation by each processor, even on reading sequential
records. On the Paragon, lseek() is an expensive operation since it generates a
message to the I/O nodes. Note that most implementation of NFS (Networked File
System) do not correctly support multiple concurrent read/write requests to a shared

Out-of-core Library Extension for ScaLAPACK 3

�le.

Unlike MIOS in SOLAR, only a synchronous I/O interface is provided for reasons
of portability and simplicity of implementation. A fully portable (although possibly
not the most e�cient) implementation of the I/O layer using Fortran record-oriented
I/O is also possible1. The current I/O library is written in C and uses standard
POSIX I/O operations. System dependent routines, such as NX-speci�c gopen() or
eseek() system calls may be required to access �les over 2Gbytes. Asynchronous I/O
that overlaps computation and I/O is most e�ective only when processing time for
I/O and computation are closely matched. Asynchronous I/O provides little bene�ts
in cases where in-core computation or disk I/O dominates overall time. Asynchronous
pre-fetch reads or delayed bu�ered writes also require dedicating scarce memory for
I/O bu�ers. Having less memory available for factorization may increase the number
of passes over the matrix and increase overall I/O volume.

2.2. User Interface. To maintain ease of use and compatibility with existing
ScaLAPACK software, the ScaLAPACK matrix descriptor �eld is extended to encap-
sulate and hide implementation-speci�c information such as the I/O device associated
with an out-of-core matrix and the layout of data on disk.

The in-core ScaLAPACK calls for performing an LU factorization may consist of:

!

! initialize descriptor for matrix A

!

CALL DESCINIT(DESCA,M,N,MB,NB,RSRC,CSRC,ICONTXT,LDA,INFO)

!

! perform Cholesky factorization

!

CALL PDPOTRF(UPLO,N,A,IA,JA,DESCA,INFO)

The out-of-core version is very similar:

!

! initialize extended descriptor for out-of-core matrix A

!

CALL PFDESCINIT(DESCA,M,N,MB,NB,RSRC,CSRC,ICONTXT,IODEV,

`SHARED',MMB,NNB,ASIZE, `/pfs/a.data'//CHAR(0),INFO)

!

! perform out-of-core Cholesky factorization

!

CALL PFDPOTRF(UPLO,N,A,IA,JA,DESCA,INFO)

Here ASIZE is amount of in-core bu�er storage available in array `A' associ-
ated with the out-of-core matrix. A `Shared' layout is prescribed and the �le
`/pfs/A.data' is used on unit device IODEV. Each I/O record is a MMB by NNB ScaLA-
PACK block-cyclic distributed matrix.

The out-of-core matrices can also be manipulated by read/write calls. For exam-
ple:

CALL ZLAREAD(IODEV, M,N, IA,JA, B, IB,JB, DESCB, INFO)

reads in a M by N sub-matrix starting at (IA,JA) position into an in-core ScaLAPACK

1We are not aware of any implementation of fully portable asynchronous I/O short of using

threads. However, a portable thread library may not be available and greatly complicates the code.

4 E. D'Azevedo and J. Dongarra

Panel X Panel Y

Fig. 3.1. Algorithm requires 2 in-core panels.

matrix B(IB:IB+M-1,JB:JB+N-1). Best performance is achieved with data transfer
aligned to local processor and block boundary; otherwise message passing is performed
for unaligned non-local data transfer to matrix B.

3. Left-looking Algorithm. The three factorization algorithms, LU, QR, and
Cholesky, all use a similar `left-looking' organization of computation. The left-looking
variant is �rst described as a particular choice in a block-partitioned algorithm in x3.1.

The actual implementation of the left-looking factorization uses two full column
in-core panels (call these X, Y; see Figure 3.1). Panel X is NNB columns wide and
panel Y occupies the remaining memory but should be at least NNB columns wide.
Panel X acts as a bu�er to hold and apply previously computed factors to panel Y.
Once all updates are performed, panel Y is factored using an in-core ScaLAPACK
algorithm. The results in panel Y are then written back out to disk.

The following subsections describe in more detail the implementation of LU, QR
and Cholesky factorization.

3.1. Partitioned Factorization. The `left-looking' and `right-looking' variants
of LU factorization can be described as particular choices in a partitioned factoriza-
tion. The reader can easily generalize the following for a QR or Cholesky factorization.

Let an m � n matrix A be factored into PA = LU where P is a permutation
matrix, and L and U are the lower and upper triangular factors. We treat matrix A
as a block partition matrix

A =

�
A11 A12
A21 A22

�
;

where A11 is a square k � k sub-matrix.
1. The assumption is that the �rst k columns are already factored

P1

�
A11
A21

�
=

�
L11
L21

�
(U11) ;(3.1)

where

A11 = L11U11; A21 = L21U11 :(3.2)

Out-of-core Library Extension for ScaLAPACK 5

If k � n0 is small enough, a fast non-recursive algorithm such as ScaLAPACK PxGETRF

may be used directly to perform the factorization; otherwise, the factors may be
obtained recursively by the same algorithm.

2. Apply the permutation to the unmodi�ed sub-matrix

�
~A12
~A22

�
= P1

�
A12
A22

�
:(3.3)

3. Compute U12 by solving the triangular system

L11U12 = ~A12(3.4)

4. Perform update to ~A22

~A22 ~A22 � L21U12(3.5)

5. Recursively factor the remaining matrix

P2 ~A22 = L22U22(3.6)

6. Final factorization is

P2P1

�
A11 A12
A21 A22

�
=

�
L11 0
~L21 L22

��
U11 0
U12 U22

�
; ~L21 = P2L21 :(3.7)

Note that the above is the recursively-partitioned LU factorization proposed by
Toledo [4] if k is chosen to be n=2. A right-looking variant results if k = n0 is always
chosen where most of the computation is the updating of

~A22 ~A22 � L21U12 :

A left-looking variant results if k = n� n0.
The in-core ScaLAPACK factorization routines for LU, QR and Cholesky factor-

ization, all use a right-looking variant for good load balancing [1]. Other work has
shown [2, 3] that for out-of-core factorization, a left-looking variant generates less I/O
volume compared to the right-looking variant. Toledo [5] shows that the recursively-
partitioned algorithm (k = n=2) may be more e�cient than the left-looking variant
for very large matrices and solved with minimal in-core storage.

3.2. LU Factorization. The out-of-core LU factorization PxGETRF involves the
following operations:

1. If no updates are required in factorizing the �rst panel, all available storage
is used as one panel,

(i) LAREAD: read in part of original matrix
(ii) PxGETRF: ScaLAPACK in-core factorization

�
L11
L21

�
(U11) P1

�
A11
A21

�

(iii) LAWRITE: write out factors
Otherwise, partition storage into panels X and Y.

2. We compute updates into panel Y by reading in previous factors (NNB columns
at a time) into panel X. Let panel Y hold (A12; A22)

t
,

6 E. D'Azevedo and J. Dongarra

(i) LAREAD: read in part of factor into panel X
(ii) LAPIV: physically exchange rows in panel Y to match permuted ordering in

panel X

�
~A12
~A22

�
 P1

�
A12
A22

�

(iii) PxTRSM: triangular solve to compute upper triangular factor

U12 L�1
11

~A12

(iv) PxGEMM: update remaining lower part of panel Y

~A22 ~A22 � L21U12

3. Once all previous updates are performed, we apply in-core ScaLAPACK
PxGETRF to compute LU factors in panel Y

L22U22 P2 ~A22 :

The results are then written back out to disk.
4. A �nal extra pass over the computed lower triangular L matrix may be

required to rearrange the factors in the �nal permutation order

~L12 P2L12 :

Note that although GETRF can accept a general rectangular matrix, a column-
oriented algorithm is used. The pivot vector is held in memory and not written out
to disk. During factorization, factored panels are stored on disk with only partially
or `incompletely' pivoted row data, whereas factored panels were stored in original
unpivoted form in [2] and repivoted `on-the-y'. The current scheme is more complex
to implement but reduces the number of row exchanges required.

3.3. QR Factorization. The out-of-core QR factorization GEQRF involves the
following operations

1. If no updates are required in factorizing the �rst panel, all available memory
is used as one panel,

(i) LAREAD: read in part of original matrix
(ii) PxGEQRF: in-core factorization

Q1

�
R11
0

�

�
A11
A21

�

(iii) LAWRITE: write out factors
Otherwise, partition storage into panels X and Y.

2. We compute updates into panel Y by bringing in previous factors NNB columns
at a time into panel X.

(i) LAREAD: read in part of factor into panel X
(ii) PxORMQR: apply Householder transformation to panel Y

�
R21
~A22

�
 Qt

1

�
A12
A22

�

Out-of-core Library Extension for ScaLAPACK 7

3. Once all previous updates are performed, we apply in-core ScaLAPACK
PxGEQRF to compute QR factors in panel Y

Q2R22 ~A22

The results are then written back out to disk.
Note that to be compatible with the encoding of Householder transformation in

the TAU(*) vector as used ScaLAPACK routines, a column-oriented algorithm is used
even for rectangular matrices. The TAU(*) vector is held in memory and is not written
out to disk.

3.4. Cholesky Factorization. The out-of-core Cholesky factorization PxPOTRF

factors a symmetric matrix into A = LLt without pivoting. The algorithm involves
the following operations

1. If no updates are required in factorizing the �rst panel, all available memory
is used as one panel,

(i) LAREAD: read in part of original matrix
(ii) PxPOTRF: ScaLAPACK in-core factorization

L11 A11

(iii) PxTRSM: modify remaining column

L21 A21L
�t

11

(iv) LAWRITE: write out factors
Otherwise, partition storage into panels X and Y. We exploit symmetry by operating
on only the lower triangular part of matrix A in panel Y. Thus for the same amount
of storage, the width of panel Y increases as the factorization proceeds.

2. We compute updates into panel Y by bringing in previous factors NNB
columns at a time into panel X.

(i) LAREAD: read in part of lower triangular factor into panel X
(ii) PxSYRK: symmetric update to diagonal block of panel Y
(iii) PxGEMM: update remaining columns in panel Y
3. Once all previous updates are performed, we perform a right-looking in-core

factorization of panel Y. Loop over each block column (width NB) in panel Y,
(i) factor diagonal block on one processor using PxPOTRF

(ii) update same block column using PxTRSM

(iii) symmetric update of diagonal block using PxSYRK

(iv) update remaining columns in panel Y using PxGEMM

Finally the computed factors are written out to disk.
Although, only the lower triangular portion of matrix A is used in the compu-

tation, the code still requires disk storage for the full matrix to be compatible with
ScaLAPACK. ScaLAPACK routine PxPOTRF accepts only a square matrix distributed
with square sub-blocks, MB=NB.

4. Numerical Results. The prototype code is still under active development
and testing2. The double precision version was tested on the Intel Paragon systems at
the Center for Computational Sciences, Oak Ridge National Laboratory. The xps35
has 512 GP nodes organized in a 16 row by 32 column rectangular mesh. Each GP

2The prototype code is available from http://www.netlib.org/scalapack/prototype

8 E. D'Azevedo and J. Dongarra

Table 4.1

Performance of out-of-core LU factorization on 64 processors using MB=NB=50.

size of lwork update fact reorder total in-core

matrix (doubles) (sec) (sec) (sec) (sec) (processors)

5000 130000 38 28 18 151 59 (64)

8000 250000 126 60 49 389 180 (64)

10000 375000 231 95 74 640 130 (256)

16000 1000000 858 301 192 1946 388 (256)

20000 1000000 1782 377 290 3502 681 (256)

Table 4.2

Performance of out-of-core QR factorization on 64 processors using MB=NB=50.

size of lwork update fact total in-core

matrix (doubles) (sec) (sec) (sec) (processors)

5000 130000 78 41 176 92 (64)

8000 260000 271 98 516 310 (64)

10000 410000 496 161 900 200 (256)

16000 1000000 1816 536 2893 647 (256)

20000 1000000 3805 680 5466 1176 (256)

node has 32MBytes of memory. The xps150 has 1024 MP nodes organized in a 16 row
by 64 column rectangular mesh. Each MP node has at least 64MBytes of memory.
The MP node has 2 compute cpu's to support multi-threaded code, but to make
results comparable to xps35, only one cpu was utilized in the test. The runs were
performed in a multiuser (non-dedicated) environment. Runs on 64 (256) processor
were performed on xps35 (xps150) using a 8� 8 (16� 16) logical processor grid. The
xps150 was used to ensure in-core solves of the large matrices are resident in memory
without page faults to disk.

Initial experiments suggest that I/O performance may vary by a wide margin and
depends on the I/O and paging requests in other applications. The double precision
version was tested with block size of MB = NB = 50, MMB = 800 and NNB = 400. A
shared �le was used on `/pfs' parallel �le system (16-way interleaved RAID system
with 64Kbyte stripes). The shared �le was opened with NX-speci�c M ASYNC mode in
the gopen() system call.

Table 4.1 shows the run time (in seconds) for out-of-core LU factorization on
the Intel Paragon. Field lwork is amount of temporary storage (number of double
precision numbers) available to the out-of-core routine for panels X and Y. Field
update is the computation time (excluding I/O) for PxTRSM and PxGEMM updates from
panel X to panel Y. Field fact is the total computation time (excluding I/O) required
to factor panel Y. Field reorder is the total time for I/O and PxLAPIV to reorder
the lower triangular factors into the �nal pivoted order. Field in-core shows the
computation time (and number of processors used) for an all in-core factorization
using ScaLAPACK PDGETRF routine.

We are considering streamlining the out-of-core PFxGETRF LU factorization
code (and PFxGETRS right-hand solver) to leave the lower factors in partially pivoted
form and avoid the extra pass required to reorder the lower triangular matrix into
�nal pivoted order. Note that without this extra reordering cost, the out-of-core solver
incurs approximately a 18% overhead over in-core solvers ((3502� 290)=(681 � 4) �
1:18).

Table 4.2 shows the run time (in seconds) for out-of-core QR factorization on the
Intel Paragon. Field lwork is amount of temporary storage (number of double precision

Out-of-core Library Extension for ScaLAPACK 9

Table 4.3

Performance of out-of-core Cholesky factorization on 64 processors using MB=NB=50.

size of lwork update fact total in-core

matrix (doubles) (sec) (sec) (sec) (processors)

5000 130000 20 18 77 39 (64)

8000 260000 56 45 196 90 (64)

10000 410000 93 78 311 60 (256)

16000 1000000 339 264 937 191 (256)

20000 1000000 776 354 1655 340 (256)

numbers) available to the out-of-core routine for panels X and Y. Field update is the
computation time (excluding I/O) for Householder updates using PxORMQR from panel
X to panel Y. Field fact is the total computation time (excluding I/O) required to
factor panel Y using PxGEQRF. Field in-core shows the computation time (and number
of processors used) for an all in-core factorization using ScaLAPACK PDGEQRF routine.
For large problems, the out-of-core version incurs an overhead of around 16% over the
in-core solver ((5466=4)=1176� 1:16).

Table 4.3 shows the run time (in seconds) for out-of-core Cholesky factorization
on the Intel Paragon. Field lwork is amount of temporary storage (number of double
precision numbers) available to the out-of-core routine for panels X and Y. Field
update is the computation time (excluding I/O) for PxSYRK and PxGEMM updates from
panel X to panel Y. Field fact is the total computation time (excluding I/O) required
to factor panel Y. Field in-core shows the computation time (and number of processors
used) for an all in-core factorization using ScaLAPACK PDPOTRF routine. For large
problems, the out-of-core version incurs about a 22% overhead over the in-core version
((1655=4)=340� 1:22).

E�ectiveness of the out-of-core solvers depends in part on the amount of available
core memory and on the performance of the I/O system. The results on the xps35
suggest that the out-of-core solvers are most e�ective on very large problems greater
than available core memory and incurs about a 20% penalty over the in-core solvers.

10 E. D'Azevedo and J. Dongarra

REFERENCES

[1] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C.

Whaley, The design and implementation of the ScaLAPACK LU, QR, and Cholesky fac-

torization routines, Tech. Report ORNL/TM-12470, Oak Ridge National Laboratory, 1994.

[2] J. Dongarra, S. Hammarling, and D. Walker, Key concepts for parallel out-of-core LU

factorization, SIAM Press, 1996. (also LAPACK Working Note # 110).

[3] K. Klimkowski and R. A. van de Geijn, Anatomy of a parallel out-of-core dense linear solver,

in Proceedings of the International Conference on Parallel Processing, 1995.

[4] S. Toledo, Locality of reference in lu decomposition with partial pivoting, Tech. Report RC

20344(1/19/96), IBM Research Division, T. J. Watson Research Center, Yorktown Heights,

New York, 1996.

[5] S. Toledo and F. Gustavson, The design and implementation of SOLAR, a portable library

for scalable out-of-core linear algebra computations, in IOPADS Fourth Annual Workshop

on Parallel and Distributed I/O, ACM Press, 1996, pp. 28{40.

