
Another Architecture: PVM on Windows 95/NT

Markus Fischer �y Jack Dongarra � z

October 4, 1996

Abstract

This paper describes the implementation of PVM in the new WIN32-bit world. There are

no restrictions to existing applications which are using PVM since it is fully compatible to the

existing PVM3 release. We discuss the limits and provide some benchmarking results. The

software package is freely available at netlib: http://www.netlib.org/pvm3/index.html

1 Introduction

1.1 The PVM System

PVM (Parallel Virtual Machine) is a de facto standard message passing interface. It is an inte-

grated set of software tools and libraries that emulates a general-purpose,
exible, heterogeneous

concurrent computing framework on interconnected computers of varied architectures. The overall

objective of the PVM system is to enable such a collection of computers to be used cooperatively

for concurrent or parallel computation.

1.1.1 Current Architectures

So far, PVM is available for 40 di�erent architectures combining Unix- workstations, shared memory

machines and MPP's to one single parallel virtual machine. Obviously, the established architectures

take place in the more scienti�c area.

1.1.2 New Architecture: Computers running WINDOWS 95/NT

However, since software companies like MS provide multiuser (WINDOWS NT) and multitasking

(WINDOWS 95/NT) operating systems, lots of personal computers in smaller companies could be

used for parallel processing if this processing power could be put together. As a matter of fact,

�Department of Computer Science, University of Tennessee, TN 37996
yDepartment of Computer Science, University of Paderborn, 33100 Paderborn, Germany
zMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

0

there are Unix -like operating systems (Linux for example) for PC's available, but they are not

used by companies or individual people. It is Microsoft which leads the market with almost 90

percent. But not only improved operating systems and development tools lead to a growing market

for scienti�c computing with PC's.

Figure 1 shows the growing performance of PC's compared to Unix workstations [PDS] (SUN

workstations for example) which will make the use of more a�ordable PC's more attractive.

SUN Workstations

PC Generation

1
0
0

1
5
0

2
0
0

5
0

Generations

M
IP

S

Sparc2

Intel 386

Pentium 90

Intel 486/33

Sun Ultra1

Pentium Pro

Sparc 1

Pentium 60

Sparc 20

Sparc 10

Figure 1: Growing Performance of PC's

Therefore, PVM now o�ers a version to this so called WIN32 - bit world. Using existing equipment

and operating system, its application could be to

� solve large industry problems like parallelized combinatorical optimization algorithms (Job

Scheduling , Cutting Stock) at 'home'.

� use computers in High Schools for teaching purposes. Basic steps in the more and more

important becoming parallel processing area can be made.

� combine new WIN32 - compiler function calls (like built-in 3D rendering) with parallel pro-

cessing power.

PVM's most powerful feature is that it provides the message passing interface which lets the

application assume to run on one single machine.

PVM - Parallel Virtuell Machine

Unix
Workstations

Alpha’sMPP’s
Windows

95/NT

32-bit generation

Figure 2: The PVM Model

1

2 Developing Applications in the WIN32-bit World

2.1 Towards scienti�c computing

A bit of history can let us understand our di�culties in programming for a parallel world for PC's.

Microsoft's �rst operating system was its command-line MS-DOS. Because of the competition with

Apple Macintosh the �rst version of Windows was released. It o�ered the �rst graphical user

interface for PC's to ease working with computers. The more and more growing need of connected

computers in companies leaded to Windows for Workgroups, followed by Windows 95/NT today.

The newest version of these operating systems o�er the same surface and are making use of the

32-bit availability.

Developing applications for both operating systems requires only one compiler. However lots of

functions from the more professional Windows NT are not implemented in Windows 95. Basically

it can be said that Windows 95 is a subset of Windows NT and is just on its way for becoming a

real operating system.

2.2 Di�erences Between Windows 95 and Windows NT

The major di�erence is that Windows 95 is designed to provide downgrade compatibility. Programs

developed under the early DOS 3.3 still run with Windows 95. Windows NT does not provide this

MS-DOS shell. This is the reason why the PVM WIN32 executable itself switches to the running

operating system.

The reason is the concept of using device drivers. User's code in Windows NT is not allowed to

access hardware directly.

In former versions of Windows direct access was possible and caused unmeant shutdowns when

con
icts arose. In Windows NT, function calls to device drivers, which actually access the hardware,

guarantee that Windows NT runs stable (Process runstate level).

Another contrast to Windows NT is that Windows 95 allows only one user to be logged in at one

time. It therefore does not provide a function which lets the system give di�erent users di�erent

access privileges. Therefore every process actually has 'root' privileges. Performance is also better

on NT. It o�ers a Virtual Memory Space resulting in faster switching of multiple processes. Fur-

thermore NT is designed to run as a multiple processor machine. Its scalability is dependant on

the motherboard. Unfortunately we have no experience within that environment, however, it can

be assumed that the operating system takes care of dynamic started processes and performs the

mapping. This will probably lead to an investigation of a shared memory implementation on those

systems.

2.2.1 Security Aspects

The new generation o�ers su�cient security only for the Windows NT side. Security is set to

objects, where objects can be declared as multiple things. It is possible to handle a socket as an

object, but also a process or a �le, standard input, -output and -error can be seen as an object.

Finally, a pointer to this object can modify the security status of this object. This modi�cation

is done by the Security Identi�er, which exists for every user and in which the privileges of the

speci�c users are set. In PVM an important security aspect is a secured �le system in which users

can deny access to this �le to other users.

2

To the contrast of Windows NT's NTFS, Windows 95 does not o�er a �le system which restricts

access. The FAT is readable for everyone. The reason was mentioned above, once logged in, the

process has root privileges. A process which likes to enroll into the PVM reads a socket address out

of the %PVM_TMP%\pvmd.username �le. Since this �le is readable to every process di�erent users

could get access to the pvmd daemon ! It is recommended to run NT as the operating system,

however people are using Windows 95 more often than NT because of the downgrade capability.

3 The Implementation

Like the original PVM this version needs a daemon process called pvmd, which keeps track of the

entire task management. The �rst pvmd process becomes a master pvmd. In the original version

this process is also used to start up slave daemons on other hosts. This version however uses a

separate hoster process. This is kept invisible to the user, so that he will not notice any di�erence.

The hoster process is started automatically and is running as a task of the virtual machine. He

also will be started again automatically, once a user has executed a reset.

processes

ti
m

e

B
lo

ck
ed

"spawn"

provide socket
port

connect
to local daemon

"pvm_addhost"

no entry for hoster:

message to hoster

reminder for

"spawn"

connect
to local daemon

"pvm_reg_hoster"
enroll as hoster

send out
reminder message

rsh / rexec
new hosts

slave_config

host table update

host startup result

pvm-console

master pvmd daemon

hoster process

slave pvmd daemon

Figure 3: PVM Startup Protocol

The main functions of these daemons are to start or delete new tasks, to route messages between

tasks, but also to establish direct connections for better performance. For more detailed information

the interested reader may refer to the book about PVM [PVM].

3

3.1 The Communication Layer

Messages between processes are exchanged using Windows Winsockets. They o�er TCP and UDP

on top of the IP layer. The speci�cation is close to the BSD standard, however it is not possible to

handle them as �le or stream descriptors. It di�ers also from the standard by initializing a socket

structure, where the version of the socket layer must be speci�ed. A socket failure is reported

otherwise.

Using a heterogeneous system with di�erent architectures requires encoding and decoding of mes-

sages. The WIN32 version o�ers XDR -en/decoding possibilities. Like the existing PVM, message

bu�ers can be created in three di�erent manners: PvmDataInPlace (fastest method, only pointer

to the message data is stored and packed for message transfer without encoding), PvmDataRaw

(a copy of the data is made, sent out without encoding), PvmDataDefault (a encoded copy is sent

out).

Messages sent inbetween one architecture should use PvmDataRaw or better PvmDataInPlace, if

possible. XDR en- /decoding is expensive and slows down the performance (dependend on CPU

power).

pvm hoster

group server
pvm

User task

User task

TCP

TCP

TCPTCP

TCP

UDP

UDPUDP

TCP

User task

pvm daemons

connection
User task

Network

Hardware Driver

Network (Hardware) Interface

Protocol Stack (TCP/IP)

Windows Socket DLL

WinSock Compliant Application

Figure 4: Communication and Layout of PVM

3.2 Di�erences Between WIN32 and UNIX

In the Unix environment a user has his unique user-id. Furthermore all users have the same rights

concerning executing processes. The easy method of the Unix call chmod secures �les from being

read by other users. It can be allowed / denied to all users or the access may be restricted to

a speci�c group. In WIN32 each user has to be included into a security object if he wants to

have access to it. If a new object is created, a security attribute is generated to this object and

if not speci�ed otherwise, access is granted to everyone. Users even have special rights in this

environment. More speci�c the user's SID, the Security Identi�er, which is a binary structure

4

stores the rights for the user which are set by the administrator. The SID is invisible to other users

and information can only be obtained by using speci�c function calls. Therefore di�erent PVM's in

the WIN32 environment are distinguished by there user name, which is also stored in the SID and

is connected to the running process. Creating a new process can be done by several spawn calls

which will generally take a �lename as its argument. Di�erent
avors provide environment setting

or startup parameters. It is possible to start a new process but it is not possible to split up a task

in the way the Unix 'fork' call does.

This leads to the need of a hoster process which is responsible for starting up new daemons on

other hosts. If the master daemon would perform this startup, the process would block, waiting for

a response or sending initial data to the new hosts. Consequently, other input would have to wait

like the request of starting up new hosts, which is sent to the master daemon, routing messages or

startin up new tasks, for example. The hoster method keeps the master daemon free to response

to other requests.

4 Using PVM

Before we describe the software handling of this version we point to the additional requirements.

4.1 Settings

The correct use of PVM for WIN32 needs the following environment variables,

� PVM TMP which speci�es the location of the temporary �les (PVM TMP=c:\temp)

� PVM ROOT points to the installation of pvm (PVM ROOT=c:\pvm\pvm3)

� PVM RSH locates the rsh-command (On NT: %winntsystem%\system32\rsh.exe)

� PVM ARCH has to be set to WIN32

As well as Windows 95, Windows NT is designed for networking. Nevertheless they do not provide

convenient tools for remote process handling. As a matter of fact at least one additional daemon

has to run on each host. Users have to look out for a remote shell daemon (rshd), which will allow

to add other hosts to the machine. If you have a di�erent account on the other machine, you will

probably need a remote execute daemon (rexecd). Note that Unix does provide those. They are

only required on WIN32 computers. It is also possible to perform a manual startup. This, however,

is very inconvenient and takes time.

4.2 Setting Up a Virtual Machine

To provide a convenient way for the user to interact with the pvmd, the pvm-console process can

be used. Here new hosts can be added to the virtual machine and passwords can be typed in. The

user can reset his parallel virtual machine if tasks hang. Last not least in provides the possibility

of a proper shutdown. Figure 5 shows a typical startup of a virtual machine. After starting up

the master pvm daemon via pvm (�gure 5) the user can add other hosts to his virtual machine.

(host 'rudolph' and 'shenzi' respectively). Tasks can be started within the console and the 'ps -a'

command gives information about running tasks on every machine in the VM.

5

pvm> spawn -> spmd
1 successful
t80001
libpvm [t80001]: token ring done
pvm>

HOST TID FLAG 0x COMMAND
204/H,c c:/pvm/pvm3/bin/WIN32/hoster.exe40001ed

:

c:> pvm hostfile
hoster() 2 to start
0. t80000 rudolph so=""
1. tc0000 thud so=""
Password
3.3.10
t40002
pvm> conf
3 hosts, 2 data formats

pvm> ps

SUN4
SUN4

80000
thud c0000

1000
1000

ed 40000WIN32 1000
HOST DTID ARCH

rudolph

SPEED

Figure 5: PVM Session

4.3 Creating a PVM Application: FORTRAN and C

Sequential code can be parallelized using PVM's message passing interface. The algorithm has

to be changed that processes can divide up work and gather the solution. These functions can

be found in the library of PVM. A linking with $(PVM_ROOT)/lib/$(PVM_ARCH)/libpvm3.lib is

necessary. The new PVM version also o�ers group functionality. Application which are using the

group server have to link with $(PVM_ROOT)/lib/$(PVM_ARCH)/libgpvm3.lib, too. It is also possible

to bring existing FORTRAN applications to the new environment. They have to be linked with

$(PVM_ROOT)/libfpvm/$(PVM_ARCH)/libfpvm3.lib.

4.4 Debugging in PVM on WIN32

The common way in the existing PVM version was to start a new task under a debugger, which was

speci�ed in the $(PVM_ROOT)/lib/debugger �le. This debugger was displayed at the users machine.

Debugging is also possible in the WIN32 version. Di�erent to the existing Unix version the new

task is started on the remote machine, but waits for the connection to a debugger. Users then

have to start their debugger manually on the local machine and then choose the option for remote

connection. For developing, we advise to test the application on the local machine. The operating

system allows local socket connections without restrictions. (See �gure 6)

5 Results

We ran a benchmark program which performs a ping pong test between two processes. Each size

of a message was sent out and received 100 times. Based on these round trip values, an average

6

round trip time is computed. Every message content was double checked, on the receiver and on

the initiator. The tests did not drop any message and they were received correctly by 100 percent.

The result for the WIN32 environment lacks good performance. We optimized the code and will

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100000 200000 300000 400000 500000 600000

M
B

/s

Message Sizes in Bytes

TCP Over Ethernet

"sun.sun.tcp.inp"
"win32.win32.tcp.inp"

"win32.sun.tcp.def"

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100000 200000 300000 400000 500000 600000

M
B

/s

Message Sizes in Bytes

Local TCP

"sparc1.local.tcp.inp"
"win32.local.tcp.inp"

"sparc5.local.tcp.inp"

Figure 6: PVM Performance

include the new winsocket library (Winsocket 2 speci�cation), which will lead to better values.

6 Conclusion

As tests have shown, the PVM package on top of MS Windows NT/95 brings reliable parallel

computing possibilities. Crashed applications do not interfere with the operating system and users

do not have to to be afraid of causing unmeant shutdowns. It is also possible to have multiple,

communicating processes running on one machine.

The version to the WIN32 world was done by using MS VC++ compiler but the library can also

be linked by other brands compilers.

Also a cross compiling of this package with fortran compilers was done successfully. Users can even

take their existing PVM - application and run it on the new architecture. There is no need of long

lasting modi�cations.

The only restriction is the possibility of using the pvm_sendsig call, which is usually provided by

the PVM interface.

References

[PVM] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy Sun-

deram PVM: Parallel Virtual Machine A Users' Guide and Tutorial for Networked Par-

allel Computing 1994. Published by MIT Press, Boston.

http://www.netlib.org/pvm3/book/pvm-book.html

[PDS] Alfred Aburto PDS: The Performance Database Server November 26, 1995, Naval Ocean

Systems Center, San Diego

http://performance.netlib.org/performance/html/PDStop.html

7

