
Providing Access to High Performance

Computing Technologies

Jack Dongarra1, Shirley Browne2, and Henri Casanova2

1 University of Tennessee and Oak Ridge National Laboratory
2 University of Tennessee, Knoxville TN 37996 USA

Abstract. This paper describes two projects underway to provide users

with access to high performance computing technologies. One e�ort, the

National HPCC Software Exchange, is providing a single point of entry
to a distributed collection of domain-speci�c repositories. These reposi-

tories collect, catalog, evaluate, and provide access to software in their

specialized domains. The NHSE infrastructure allows these repositories
to interoperate with each other and with the top-level NHSE interface.

Another e�ort is the NetSolve project which is a client-server applica-

tion designed to solve computational science problems over a network.
Users may access NetSolve computational servers through C, Fortran,

MATLAB, or World Wide Web interfaces. An interesting intersection

between the two projects would be the use of the NetSolve system by a
domain-speci�c repository to provide access to software without the need

for users to download and install the software on their own systems.

1 The National HPCC Software Exchange

1.1 Overview of the NHSE

The National HPCC Software Exchange (NHSE) is an Internet-accessible re-

source that facilitates the exchange of software and of information among re-

search and computational scientists involved with High Performance Computing

and Communications (HPCC) [1] 3. The NHSE facilitates the development of

discipline-oriented software repositories and promotes contributions to and use

of such repositories by Grand Challenge teams, as well as other members of the

high performance computing community.

The expected bene�ts from successful deployment of the NHSE include the

following:

{ Faster development of better-quality software so that scientists can spend less

time writing and debugging programs and more time on research problems.

{ Reduction of duplication of software development e�ort by sharing of soft-

ware.

{ Reduction of time and e�ort spent in locating relevant software and infor-

mation through the use of appropriate indexing and search mechanisms and

domain-speci�c expert help systems.

3 http://www.netlib.org/nhse/



{ Reduction of duplication of e�ort in evaluating software by sharing software

review and evaluation information.

The scope of the NHSE is software and software-related artifacts produced

by and for the HPCC Program. Software-related artifacts include algorithms,

speci�cations, designs, and software documentation. The following three types

of software being made available:

{ Systems software and software tools. This category includes parallel process-

ing tools such as parallel compilers, message-passing communication subsys-

tems, and parallel monitors and debuggers.

{ Basic building blocks for accomplishing common computational and com-

munication tasks. These building blocks will be of high quality and trans-

portable across platforms. Building blocks are meant to be used by Grand

Challenge teams and other researchers in implementing programs to solve

computational problems. Use of high-quality transportable components will

speed implementation, as well as increase the reliability of computed results.

{ Research codes that have been developed to solve di�cult computational

problems. Many of these codes will have been developed to solve speci�c

problems and thus will not be reusable as is. Rather, they will serve as proofs

of concept and as models for developing general-purpose reusable software

for solving broader classes of problems.

1.2 Domain-speci�c Repositories

The e�ectiveness of the NHSE will depend on discipline-oriented groups and

Grand Challenge teams having ownership of domain-speci�c software reposito-

ries. The information and software residing in these repositories will be best

maintained and kept up-to-date by the individual disciplines, rather than by

centralized administration. Domain experts are the best quali�ed to evaluate,

catalog, and organize software resources within their domain.

Netlib { Mathematical Software An example of a domain-speci�c reposi-

tory is the Netlib mathematical software repository, which has been in existence

since 1985 [2]. Netlib di�ers from other publicly available software distribution

systems, such as Archie, in that the collection is moderated by an editorial

board and the software contained in it is widely recognized to be of high quality.

Netlib distributes freely-available numerical libraries such as EISPACK, LIN-

PACK, FFTPACK, and LAPACK that have long been used as important tools

in scienti�c computation. The Netlib collection also includes a large number of

newer, less well-established codes. Software is available in all the major numer-

ical analysis areas, including linear algebra, nonlinear equations, optimization,

approximation, and di�erential equations. Most of the software is written in For-

tran, but programs in other languages, such as C and C++, are also available.

Netlib uses the Guide to Available Mathematical Software (GAMS) classi�cation

system [3] to help users quickly locate software that meets their needs.



A branch of Netlib specialized to high performance computing, called HPC-

netlib, is currently under development. HPC-netlib will provide access to algo-

rithms and software for both shared memory and distributed memory machines,

as well as to information about performance of parallel numerical software on

di�erent architectures.

PTLIB { Parallel Tools Another domain-speci�c repository that is under

development is the PTLIB parallel tools repository. PTLIB will provide access

to high-quality tools in the followingareas: communication libraries, data parallel

language compilers, automatic parallelization tools, debuggers and performance

analyzers, parallel I/O, job scheduling and resource management.

1.3 Repository Interoperation

In addition to providing access to its own software, a repository may wish to

import software descriptions from other repositories and make this software avail-

able from its own interface. For example, a computational chemistry repository

may wish to provide access to mathematical software and to parallel processing

tools in a manner tuned to the computational chemistry discipline. A repository

interoperation architecture is shown in Figure 1.

import foreign metadata

import foreign metadata

import foreign metadata

import foreign metadata

export Netlib metadata export Softlib metadata

export Argonne metadata

export ORNL/CCS metadata

Netlib

http://www.netlib.org

Argonne MCS

http://www.mcs.anl.gov

Softlib

http://softlib.rice.edu

ORNL/CCS Code/Alg
Inventory

http://www.ccs.ornl.gov

Network

(future: RCDS servers)

Fig. 1. Repository Interoperation Architecture

The NHSE is using the Reuse Library Interoperability Group's Basic Inter-

operability Data Model (BIDM) as its interoperability mechanism [4]. Partici-



pating HPCC repositories and some individual contributors have placed META

and LINK tags in the headers of HTML �les that describe their software re-

sources. This information may then be picked up by other repositories and in-

corporated into their own software catalogs. The NHSE is developing a toolkit

called Repository in a Box (RIB) that will assist repository maintainers in creat-

ing and maintaining software catalog records, in exchanging these records with

other repositories (including the top-level virtual NHSE repository), and in pro-

viding a user interface to their software catalog. The Resource Cataloging and

Distribution System under development at the University of Tennessee will pro-

vide a scalable substrate for repository interoperability by providing catalog and

location servers that map resource names to catalog and location information.

1.4 Software Review Framework

The NHSE has designed a software review policy that enables easy access by

users to information about software quality, but which is 
exible enough to be

used across and specialized to di�erent disciplines. The three review levels rec-

ognized by the NHSE are the following: Unreviewed, Partially reviewed, and

Reviewed. The Unreviewed designation means only that the software has been

accepted into the owning repository and is thus within the scope of HPCC and

of the discipline of that repository. The Partially reviewed designation means

that the software has been checked by a librarian for conformance with the

scope, completeness, adequate documentation, and construction guidelines. The

Reviewed designation means that the software has been reviewed by an expert in

the appropriate �eld, for example by an author of a review article in the electronic

journal NHSE Review 4, and found to be of high quality. Domain-speci�c repos-

itories and expert reviewers are expected to re�ne the NHSE software review

policy by adding additional review criteria, evaluation properties, and evalua-

tion methods and tools. The NHSE also provides for soliciting and publishing

author claims and user comments about software quality. All software exported

to the NHSE by its owning repository or by an individual contributor is to be

tagged with its current review level and with a pointer to a review abstract

which describes the software's current review status and includes pointers to

supporting material.

2 The NetSolve project

An ongoing thread of research in scienti�c computing is the e�cient solution of

large problems. Various mechanisms have been developed to perform computa-

tions across diverse platforms. The most common mechanism involves software

libraries. Unfortunately, the use of such libraries presents several di�culties.

Some software libraries are highly optimized for only certain platforms and do

not provide a convenient interface to other computer systems. Other libraries

4 http://nhse.cs.rice.edu/NHSEreview/



demand considerable programming e�ort from the user, who may not have the

time to learn the required programming techniques. While a limited number of

tools have been developed to alleviate these di�culties, such tools themselves

are usually available only on a limited number of computer systems. MATLAB

[5] is an example of such a tool.

These considerations motivated the establishment of the NetSolve project.

NetSolve is a client-server application designed to solve computational science

problems over a network. A number of di�erent interfaces have been developed to

the NetSolve software so that users of C, Fortran, MATLAB, or the World Wide

Web can easily use the NetSolve system. The underlying computational soft-

ware can be any scienti�c package, thus helping to ensure good performance

through choice of an appropriate package.. Moreover, NetSolve uses a load-

balancing strategy to improve the use of the computational resources available.

Some other systems are currently being developed to achieve somewhat similar

goals. Among them are the Network based Information Library for high per-

formance computing (Ninf) [6] project which is very comparable to NetSolve

in its way of operation, and the Remote Computation System (RCS) [7] which

is a remote procedure call facility for providing uniform access to a variety of

supercomputers.

We introduce the NetSolve system, its architecture and the concepts on which

it is based. We then describe how NetSolve can be used to solve complex scienti�c

problems.

2.1 The NetSolve System

The NetSolve system is a set of loosely connected machines. By loosely con-

nected, we mean that these machines can be on the same local network or on an

international network. Moreover, the NetSolve system can be running in a het-

erogeneous environment, which means that machines with di�erent data formats

can be in the system at the same time.

The current implementation sees the system as a completely connected graph

without any hierarchical structure. This initial implementation was adopted for

simplicity and is viable for now. Our current idea of the NetSolve world is of

a set of independent NetSolve systems in di�erent locations, possibly providing

di�erent services. A user can then contact the system he wishes, depending

on the task he wants to have performed and on his own location. In order to

manage e�ciently a pool of hosts scattered on a large-scale network, future

implementations might provide greater structure (e.g., a tree structure), which

will limit and group large-range communications.

Figure 2 shows the global conceptual picture of the NetSolve system. In this

�gure, a NetSolve client send a request to the NetSolve agent. The agent chooses

the \best" NetSolve resource according to the size and nature of the problem to

be solved.

Several instances of the NetSolve agent can exist on the network. A good

strategy is to have an instance of the agent on each local network where there



are NetSolve clients. Of course, this is not mandatory; indeed, one may have

only a single instance of the agent per NetSolve system.

Every host in the NetSolve system runs a NetSolve computational server (also

called a resource, as shown in Figure 2). The NetSolve resources have access to

scienti�c packages (libraries or stand-alone systems).

An important aspect of this server-based system is that each instance of the

agent has its own view of the system. Therefore, some instances may be aware

of more details than others, depending on their locations. But eventually, the

system reaches a stable state in which every instance possesses all the available

information on the system.

NetSolve Client NetSolve Agent

NetSolve System

Request

ChoiceReply

Resource
NetSolve

Fig. 2. The NetSolve System

Communication within the NetSolve system is achieved through the TCP/IP

socket layer and heterogeneous environments are supported thanks to the XDR

protocol [8].

2.2 Problem Speci�cation

To keep NetSolve as general as possible, we needed to �nd a formal way of

describing a problem. Such a description must be carefully chosen, since it will



a�ect the ability to interface NetSolve with arbitrary software.

A problem is de�ned as a 3-tuple: < name; inputs; outputs >, where

{ name is a character string containing the name of the problem

{ inputs is a list of input objects

{ outputs is a list of output objects

An object is itself described as follows: < object; data >, where object can

be 'MATRIX', 'VECTOR' or 'SCALAR' and data can be any of the standard

FORTRAN data types. This description has proved to be su�cient to interface

NetSolve with numerous software packages. The NetSolve administrator can then

not only choose the best platform on which to install NetSolve, but also select

the best packages available on the chosen platform.

The current installation of NetSolve at the University of Tennessee uses the

BLAS [9], [10], [11], LAPACK [12], ItPack [13], LINPACK [14] and FitPack

[15]. These packages are available on a large number of platforms and are freely

distributed. The use of ScaLAPACK [16] on massively parallel processors would

be a way to use the power of high-performance parallel machines via NetSolve.

2.3 Client Interfaces

One of the main goals of NetSolve is to provide the user with a large number of

interfaces and to keep them as simple as possible.

The MATLAB Interface :

We developed a MATLAB interface which provides interactive access to the

NetSolve system. Interactive interfaces o�er several advantages. First, they are

easy to use because they completely free the user from any code writing. Second,

the user still can exploit the power of software libraries. Third, they provide good

performance by capitalizing on standard tools such as MATLAB. Let us assume,

for instance, that MATLAB is installed on one machine on the local network.

It is possible to use NetSolve via the MATLAB interface on this machine and

in fact use the computational power of another more powerful machine where

MATLAB is not available.

Within MATLAB, NetSolve may be used in two ways. It is possible to call

NetSolve in a blocking or nonblocking fashion. Here is an example of the MAT-

LAB interface to solve an linear system computation using the blocking call:

>> a = rand(100); b = rand(100,1);

>> x = netsolve('ax=b',a,b)

This MATLAB script �rst creates a random 100�100 matrix, a, and a vector

b of length 100. The call to the netsolve function returns with the solution. This

call manages all the NetSolve protocol, and the computation may be executed

on a remote host.

Here is the same computation performed in a nonblocking fashion:



>> a = rand(100); b = rand(100,1);

>> request = netsolve_nb('send','ax=b',a,b)

>> x = netsolve_nb('probe',request)

Not Ready Yet

>> x = netsolve_nb('wait',request)

Here, the �rst call to netsolve nb() sends a request to the NetSolve agent

and returns immediately with a request identi�er. One can then either probe for

the request or wait for it. Probing always returns immediately, either signaling

that the result is not available yet or, if available, stores the result in the user

data space. Waiting blocks until the result is available and then store it in the

user data space. This approach allows user-level parallelism and communica-

tion/computation overlapping (see Section 2.4).

Other functions are provided, for example, to obtain information on the prob-

lems available or on the status of pending requests.

C and FORTRAN interfaces :

In addition to the MATLAB interface, we have developed two programming

interfaces, one for Fortran and one for C. Unlike the interactive interfaces, pro-

gramming interfaces require some programming e�ort from the user. But again,

with a view to simplicity, the NetSolve libraries contain only a few routines, and

their use has been made as straightforward as possible. As in MATLAB, the

user can call NetSolve asynchronously.

A very attractive feature of these interfaces is that NetSolve preserves the

original calling sequence of the underlying numerical software. It is then almost

immediate to convert a code to NetSolve, as shown in the short FORTRAN

example below :

C Linear system solve : Call to LAPACK

call DGESV(N,1,A,MAX,IPIV,B,MAX,INFO)

C Linear system solve : Call to NetSolve

call FNSOLVE('DGESV',NSINFO,

N,1,A,MAX,IPIV,B,MAX,INFO)

2.4 Performance

One of the challenges in designing NetSolve was to combine ease of use and

excellence of performance. Several factors ensure good performance without in-

creasing the amount of work required of the user. In addition to the availability

of diverse scienti�c packages (as discussed in a preceding section), these factors

include load balancing and the use of simultaneous resources.



Load Balancing :

Load balancing is one of the most attractive features of the NetSolve project.

NetSolve performs computations over a network containing a large number of

machines with di�erent characteristics, and one of these machines is the most

suitable for a given problem, meaning the one yielding the shortest response

time. NetSolve provides the user with a \best e�ort" to �nd this best resource.

As seen on �gure 2, a NetSolve client sends a request to an instance of

the NetSolve agent. This instance of the agent has some knowledge about the

computational resources in the system. Hopefully this knowledge is not too out

of date (which is ensured by a set of protocols we do not have space to describe

here) and, for each resource M , allows a fairly accurate computation of :

{ Tn : the time to send the data to M and receive the result over the network,

and

{ Tc : the time to perform the computation on M .

All the details about the protocols involved in this computations are given

in [17]. The whole idea behind this scheme is that it would be too ine�cient to

have the agent compute exact values for Tn and Tc for each incoming request.

Instead, we prefer to have a quick estimate, which might not be as accurate.

Simultaneous resources :

Using the nonblocking interfaces to NetSolve, the user can design a Net-

Solve application that has some parallelism. Indeed, it is possible to send asyn-

chronously several requests to NetSolve. The load balancing strategy described

above insures that these problems will be solved on di�erent machines, in par-

allel. The client has then just to wait for the results to come back.

Here is another strength of NetSolve : as soon as a new resource is started, it

takes part in the system, and can be used. Therefore, without modifying his code

or knowing in fact anything about the servers, a user can see the performance

of his application greatly improved.

2.5 Fault Tolerance

Fault tolerance is an important issue in any loosely connected distributed system

like NetSolve. The failure of one or more components of the system should not

cause any catastrophic failure. Moreover, the number of side e�ects generated by

such a failure should be as low as possible, and the system should minimize the

drop in performance. We tried to make NetSolve as fault tolerant as possible.

A �rst aspect of fault-tolerance in NetSolve takes place at the server level.

It is possible to stop a NetSolve server (resource or instance of the agent) at

any time, and restart it safely at any time. In fact, every NetSolve server is an

independent entity. This insures that the NetSolve system will remain coherent

after any kind of network/machine problem. In the installation of NetSolve at the

University of Tennessee, the whole system is managed by a 'cron' job, and servers

are restarted automatically after machines go down for back-ups for instance.



Another aspect of fault tolerance is that it should minimize the side e�ects

of failures. To this end, we designed the client-server protocol as follows. When

the NetSolve agent receives a request for a problem to be solved, it sends back

a list of computational servers sorted from the most to the least suitable one.

The client tries all the servers in sequence until one accepts the problem. This

strategy allows the client to avoid sending multiple requests to the agent for the

same problem if some of the computational servers are stopped. If at the end of

the list no server has been able to answer, the client asks another list from the

agent. Since it has reported all the encountered failures, it will receive a di�erent

list.

Once the connection has been established with a computational server, there

still is no guarantee that the problem will be solved. The computational process

on the remote host may die for some reason. In that case, the failure is detected

by the client, and the problem is sent to another available computational server.

This process is transparent to the user but, of course, lengthens the execution

time. The problem is migrated between the possible computational servers until

it is solved or no server remains.

3 Conclusions and Future Work

The NHSE is providing a means for the HPCC community to share software

and information and thus broaden and accelerate the use of high performance

computing technologies in scienti�c and engineering applications. By supplying

the tools and mechanisms for HPCC repositories to interoperate, the NHSE is

enabling di�erent HPCC agencies and research groups to leverage each others

e�orts. During the next year, the NHSE will be bringing online several new

domain-speci�c repositories as well as promoting the review and evaluation of

software in these domains.

The NetSolve project is still at an early development stage and there is room

for improvement at the interface level as well as at the conceptual level. At the

interface level, we are thinking of providing a Java interface to NetSolve. At

the conceptual level, the load-balancing strategy must be improved in order to

change the \best guess" into a \best choice" as much as possible. The challenge

is to come close to a best choice without 
ooding the network. The danger is

to waste more time computing this best choice than the computation would

have taken in the case of a best guess only. All these improvements are intended

to combine ease of use, generality and performance, the main purposes of the

NetSolve project.

We plan to investigate extending the NHSE Repository in a Box toolkit with

a remote execution facility based on NetSolve. This facility would allow repos-

itory maintainers to provide remote access to software, instead of having users

download and install the software on their own systems. We will also investigate

how to provide server safe execution environments for user code so that users

may upload functions for execution on a remote server. This capability is im-

portant for software packages that require user-de�ned functions to be provided



as input.

References

1. Shirley Browne, Jack Dongarra, Stan Green, Keith Moore, Tom Rowan, Reed
Wade, Geo�rey Fox, Ken Hawick, Ken Kennedy, Jim Pool, Rick Stevens, Robert

Olsen, and Terry Disz. The National HPCC Software Exchange. IEEE Computa-

tional Science and Engineering, 2(2):62{69, 1995.
2. Jack J. Dongarra and Eric Grosse. Distribution of mathematical software via elec-

tronic mail. Communications of the ACM, 30(5):403{407, May 1987.

3. Ronald F. Boisvert, Sally E. Howe, and David K. Kahaner. GAMS: A framework
for the management of scienti�c software. ACM Transactions on Mathematical

Software, 11(4):313{355, December 1985.

4. Shirley Browne, Jack Dongarra, Kay Hohn, and Tim Niesen. Software repository
interoperability. Technical Report CS-96-329, University of Tennessee, 1996.

5. Inc The Math Works. MATLAB Reference Guide. 1992.

6. Ninf : Network based Information Library for Globally High Performance Com-

puting. Proc. of Parallel Object-Oriented Methods and Applications (POOMA),

Santa Fe, 1996.

7. W. Gander P. Arbenz and M. Oettli. The remote computational system. Lec-

ture Note in Computer Science, High-Performance Computation and Network,

1067:662{667, 1996.

8. Sun Microsystems, Inc. XDR: External Data Representation Standard. RFC 1014,
Sun Microsystems, Inc., June 1987.

9. D. Kincaid C. Lawson, R. Hanson and F. Krogh. Basic linear algebra subprograms

for fortran usage. ACM Transactions on Mathematical Software, 5:308{325, 1979.
10. S. Hammarling J. Dongarra, J. Du Croz and R. Hanson. An extended set of for-

tran basic linear algebra subprograms. ACM Transactions on Mathematical Soft-

ware, 14(1):1{32, 1988.
11. I. Du� J. Dongarra, J. Du Croz and S. Hammarling. A set of level 3 basic linear

algebra subprograms. ACM Transactions on Mathematical Software, 16(1):1{17,

1990.
12. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen.

LAPACK Users' Guide. SIAM Philadelphia, Pennsylvania, 2 edition, 1995.
13. David M. Young David R. Kincaid, John R. Respess and Roger G. Grimes. Itpack

2c: A fortran package for solving large sparse linear systems by adaptive acceler-

ated iterative methods. Technical report, University of Texas at Austin, Boeing
Computer Services Company, 1996.

14. C. B. Moler J. J. Dongarra, J. R. Bunch and G. W. Stewart. LINPACK Users'

Guide. SIAM Press, 1979.

15. A. Cline. Scalar- and planar-valued curve �tting using splines under tension. Com-

munications of the ACM, 17:218{220, 1974.
16. J. Dongarra and D. Walker. Software libraries for linear algebra computations on

high performance computers. SIAM Review, 37(2):151{180, 1995.

17. NetSolve: A Network Server for Solving Computational Science Problems. To ap-
pear in Proc. of Supercomputing '96, Pittsburgh, 1996.

This article was processed using the LaTEX macro package with LLNCS style


