
NetSolve: A Network Server

for Solving Computational Science Problems

Henri Casanova

University of Tennessee
UTK, Dept. of Computer Science - 104, Ayres Hall. KNOXVILLE, TN 37996-1301.

casanova@cs.utk.edu
http://www.cs.utk.edu/�casanova

Jack Dongarra

University of Tennessee, Oak Ridge National Laboratory
UTK, Dept. of Computer Science - 104, Ayres Hall. KNOXVILLE, TN 37996-1301.

dongarra@cs.utk.edu
http://www.netlib.org/utk/people/JackDongarra.html

April 29, 1996

Abstract

This paper presents a new system, called NetSolve, that allows users to access computational re-

sources, such as hardware and software, distributed across the network. The development of NetSolve
was motivated by the need for an easy-to-use, e�cient mechanism for using computational resources re-

motely. Ease of use is obtained as a result of di�erent interfaces, some of which require no programming

e�ort from the user. Good performance is ensured by a load-balancing policy that enables NetSolve to
use the computational resources available as e�ciently as possible. NetSolve o�ers the ability to look

for computational resources on a network, choose the best one available, solve a problem (with retry for

fault-tolerance), and return the answer to the user.

Keywords

Networking, Heterogeneity, Load Balancing,

Client-Server, Fault Tolerance, Numerical Computing, Virtual Library.



1 Introduction

An ongoing thread of research in scienti�c computing is the e�cient solution of large problems. Various
mechanisms have been developed to perform computations across diverse platforms. The most common
mechanism involves software libraries. Unfortunately, the use of such libraries presents several di�culties.
Some software libraries are highly optimized for only certain platforms and do not provide a convenient
interface to other computer systems. Other libraries demand considerable programming e�ort from the user,
who may not have the time to learn the required programming techniques. While a limited number of tools
have been developed to alleviate these di�culties, such tools themselves are usually available only on a
limited number of computer systems. MATLAB [1] is an example of such a tool.

These considerations motivated the establishment of the NetSolve project. NetSolve is a client-server
application designed to solve computational science problems over a network. A number of di�erent interfaces
have been developed to the NetSolve software so that users of C, Fortran, MATLAB, or the World Wide Web
can easily use the NetSolve system. The underlying computational software can be any scienti�c package,
thereby ensuring good performance results. Moreover, NetSolve uses a load-balancing strategy to improve
the use of the computational resources available.

This paper introduces the NetSolve system, its architecture and the concepts on which it is based. We
then describe how NetSolve can be used to solve complex scienti�c problems.

2 The NetSolve System

This section brie
y describes the NetSolve system, the protocols in use, and the issues involved in managing
such a system.

2.1 Architecture

The NetSolve system is a set of loosely connected machines. By loosely connected, we mean that these
machines can be on the same local network or on an international network. Moreover, the NetSolve system
can be heterogeneous, which means that machines with incompatible data formats can be in the system at
the same time.

The current implementation sees the system as a completely connected graph without any hierarchical
structure. This initial implementation was adopted for simplicity and is viable for now. Our current idea
of the NetSolve world is of a set of independent NetSolve systems in di�erent locations, possibly providing

di�erent services. A user can then contact the system he wishes, depending on the task he wants to have
performed and on his own location. In order to manage e�ciently a pool of hosts scattered on a large-scale
network, future implementations might provide greater structure (e.g., a tree structure), which will limit and
group large-range communications.

Figure 1 shows the global conceptual picture of the NetSolve system. In this �gure, a NetSolve client send
a request to the NetSolve agent. The agent chooses the \best" NetSolve resource according to the size and
nature of the problem to be solved.

Several instances of the NetSolve agent can exist on the network. A good strategy is to have an instance of
the agent on each local network where there are NetSolve clients. Of course, this is not mandatory; indeed,
one may have only a single instance of the agent per NetSolve system.

Every host in the NetSolve system runs a NetSolve computational server (also called a resource, as shown
in Figure 1). The NetSolve resources have access to scienti�c packages (libraries or stand-alone systems).

An important aspect of this server-based system is that each instance of the agent has its own view

of the system. Therefore, some instances may be aware of more details than others, depending on their
locations. But eventually, the system reaches a stable state in which every instance possesses all the available
information on the system (provided the system does not undergo never-ending modi�cations).

2



NetSolve Client NetSolve Agent

NetSolve System

Request

ChoiceReply

Resource
NetSolve

Figure 1: The NetSolve System

2.2 Protocol Choices

Communication within the NetSolve system is achieved through the socket layer. We chose to use the
TCP/IP protocol because it ensures reliable communication between processes. The fact that a process is
limited to a certain number of simultaneous TCP/IP connections was not a problem (given the NetSolve
speci�cation.)

To ensure the correct operation in an heterogeneous environment, NetSolve uses the XDR protocol between
hosts with incompatible data formats. Actually, this is the default protocol before two hosts agree that they
use the same data format. Not using XDR when not necessary is an issue here, since we expect to transfer
large amounts of data over the network (the user data).

2.3 NetSolve Management

The main philosophy behind the architecture of a NetSolve system is the following. Each NetSolve process
(instance of the agent or computational resource) is an independent entity. The system therefore can be
modi�ed without endangering its integrity, since any NetSolve process can be deleted/created at any time.
For instance, it is possible to have a NetSolve system with no agent. Such a system is just not accessible by
any user. An instance of the agent can be restarted later on, to make the system accessible again.

Managing such a system can rapidly become di�cult, and a tool is needed to have a centralized view of the
system. To make this tool as convenient as possible, we developed two CGI scripts accessible from a World
Wide Web browser. These scripts take as input the location of an agent instance (the name of the host
where it is running) in order to identify the NetSolve system to inspect. The �rst script outputs the list of
agent instances or computational resources available in the system (a list of host names and IP-addresses).
The second script outputs the list of problems solvable within the system.

3



3 Problem Speci�cation and Server Management

This section describes what a NetSolve problem is and how to con�gure and compile, and start a new
computational resource within a NetSolve system.

3.1 Problem Speci�cation

To keep NetSolve as general as possible, we need to �nd a formal way of describing a problem. Such a
description must be carefully chosen, since it will a�ect the ability to interface NetSolve with arbitrary
software.

A problem is de�ned as a 3-tuple: < name; inputs; outputs >, where

� name is a character string containing the name of the problem

� inputs is a list of input objects

� outputs is a list of output objects

An object is itself described as follows: < object; data >, where object can be 'MATRIX', 'VECTOR' or
'SCALAR' and data can be any of the standard FORTRAN data types.

This description has proved to be su�cient to interface NetSolve with numerous software packages. Net-
Solve is still at an early stage of development and is likely to undergo modi�cations in the future.

3.2 Arbitrary Calling Sequences

We have just described what a problem is conceptually. We now need a concrete way to describe how a
problem is to be speci�ed by the user. Ideally, we would like users already using scienti�c software packages
from C or Fortran to be able to switch to NetSolve with no modi�cation to their code. From this viewpoint,
when describing a problem as in the preceding subsection, we also describe what we call its format. This
is in e�ect describing what the calling sequence to NetSolve for this problem should be from C or Fortran.
Moreover, a problem can have di�erent calling sequences, and the user can chose between them.

3.3 Creating a Server

Part of our design objective was to ensure that NetSolve would have an extensive application range. Thus,
we wished to be able to add new problems to a computational server. We considered it unacceptable to have
the NetSolve administrator modify the NetSolve code itself for each new problem addition.

Two solutions were possible. We could have our server spawn o� executables, or we could have it call
the numerical software explicitly in its own code. The �rst solution seems much easier to implement: a
computational server could have access to a directory containing all the executables for all the problems.
However, this approach, has the following drawbacks. First, maintaining such a directory may not be easy
in a distributed �le system environment or in the case when some servers want to provide access to only a
subset of the set of problems. Second, and more important, such a design requires a stand-alone executable
for each problem. Moreover, since most of the numerical softwares likely to be interfaced with NetSolve
are actual libraries, it seems redundant to have our computational servers start up an executable calling
the library itself. Therefore, we decided to take the second approach and have our servers directly call the
underlying software.

We developed a simple tool to handle this code generation for this approach. The input for this tool
is a con�guration �le describing each problem in a formal way; the output is the actual C code for the
computational process in charge of the problem solving. Thus, new problems can be added without having
to be concerned about the NetSolve internal data structure.

In its �rst version, this pseudo-compiler still requires some e�ort from the NetSolve administrator. In
fact, since any arbitrary library is supposed to be accessible from NetSolve, we cannot completely free the

4



administrator from code writing. We can, however, provide the administrator with a simple and e�cient
way of accessing the parameters to the problem. In particular, the function calls to the library have to be
written in C, using a prede�ned set of macros.

3.4 Scienti�c Packages

NetSolve is able to use any scienti�c linear algebra package available on the platforms it is installed on,
provided that the formalism in the previous sections remains valid. This feature allows the NetSolve ad-
ministrator not only to choose the best platform on which to install NetSolve, but also to select the best
packages available on the chosen platform.

The current implementation of NetSolve at the University of Tennessee uses the BLAS [2], [3], [4], LAPACK
[5], ItPack [6], and LINPACK [7]. These packages are available on a large number of platforms and are freely
distributed.

The use of ScaLAPACK [8] on massively parallel processors would be a way to use the power of high-
performance parallel machines via NetSolve.

4 Client Interfaces

One of the main goals of NetSolve are to provide the user with a large number of interfaces and to keep
them as simple as possible. We describe here the di�erent interfaces currently available, classi�ed into two
groups.

4.1 Interactive Interfaces

Interactive interfaces o�er several advantages. First, they are easy to use because they completely free the
user from any code writing. Second, the user still can exploit the power of software libraries. Third, they
provide good performance by capitalizing on standard tools like MATLAB. Let us assume, for instance, that
MATLAB is installed on one machine on the local network. It is possible to use NetSolve via the MATLAB
interface on this machine and in fact use the computational power of another more powerful machine where
MATLAB is not available.

The current implementation of NetSolve contains two interactive interfaces.

4.1.1 The MATLAB Interface

Within MATLAB, NetSolve may be used in two ways. It is possible to call NetSolve in a blocking or
nonblocking fashion. Here is an example of the MATLAB interface to solve an linear system computation
using the blocking call:

>> a = rand(100); b = rand(100,1);

>> x = netsolve('ax=b',a,b)

This MATLAB script �rst creates a random 100� 100 matrix, a, and a vector b of length 100. The call
to the netsolve function returns with the solution This call manages all the NetSolve protocol, and the
computation may be executed on a remote host.

Here is the same computation performed in a nonblocking fashion:

>> a = rand(100); b = rand(100,1);

>> request = netsolve_nb('send','ax=b',a,b)

>> x = netsolve_nb('probe',request)

Not Ready Yet

>> x = netsolve_nb('wait',request)

5



Here, the �rst call to netsolve nb() sends a request to the NetSolve agent and returns immediately with
a request identi�er. One can then either probe for the request or wait for it. This approach allows user-level
parallelism and communication/computation overlapping (see Section 7).

Other functions are provided, for example, to obtain informations on the problems available or on the
status of the pending requests.

4.1.2 The Shell Interface

We also developed a shell interface. Here is the same example as above, with the shell interface:

earth % netsolve ax=b A b solution

Here, A, b, and solution are �les. This interface is slightly di�erent from the MATLAB interface because
the call to netsolve does not make any di�erence between inputs and outputs. The di�erence is made
internally, and the user must know the correct number of parameters. As mentioned before, information on
the problem speci�cations can be obtained by runing the management scripts (on the NetSolve Web site).

4.2 Programming Interfaces

In addition to interactive interfaces, we have developed two programming interfaces, one for Fortran and one
for C. Unlike the interactive interfaces, programming interfaces require some programming e�ort from the
user. But again, with a view to simplicity, the NetSolve libraries contain only a few routines, and their use
has been made as straightforward as possible. As in MATLAB, the user can call NetSolve asynchronously.

Simple examples of the C and Fortran interfaces can be found in Appendices A and B.

5 Load Balancing in NetSolve

Load balancing is one of the most attractive features of the NetSolve project. Since NetSolve performs
computations over a network containing a large number of machines with di�erent characteristics, and one
of these machines is the most suitable for a given problem. Before we consider how NetSolve tries to determine
which machine is to be chosen, let us examine what criteria determine the best machine.

5.1 Calculating the Best Machine

The hypothetical best machine is the one yielding the smallest execution time T for a given problem P .
Therefore, we have to estimate this time on every machine M in the NetSolve system. Basically, we split
the time T into Tn and Tc, where

� Tn is the time to send the data to M and receive the result over the network, and

� Tc is the time to perform the computation on M .

The time Tn can be computed by knowing the following

1. network latency and bandwidth between the local host and M ,

2. size of the data to send, and

3. size of the result to be received.

The computation of Tc involves knowledge of the

1. size of the problem,

6



0 100 200 300 400 500 600 700
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

workload

p
/P

RS6000 (1 processor)

0 200 400 600 800 1000 1200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
SPARC−Server (4 processors)

workload

p
/P

Figure 2: p=P versus workload

2. complexity of the algorithm to be used, and,

3. performance of M , which depends on

� the workload of M and

� the raw performance of M .

5.2 Performance Model

We have developed a simple theoretical model enabling us to estimate the performance, given the raw
performance and the workload. This model gives the estimated performance, p, as a function of the workload,
w; the raw performance, P ; and the number of processors on the machine, n:

p =
P � 100� n

100� n+max(w � 100� (n� 1); 0)

To validate this model, we performed several experiments. The results of the experiments are plotted in
Figure 2, which shows the ratio p=P versus the workload of the machine. Each measure gave one of the \+"
marks. We then computed the mean of all the measures for every value of the workload. An asymptotic
interpolation of these mean values is shown with a continuous curve. Our theoretical model is shown with
the dashed line.

In Figure 2a, we can see that the theoretical model is close to the experimental results. In Figure 2b,
because the machine has four processors, the beginning of the curve is a 
at line, and the performance
begins to drop when the four processors are loaded. Our model is less accurate and always optimistic
because it does not take into account any operating system delay to manage the di�erent processors. The
widely varying behavior of the four-processor machine comes from the fact that the operating system makes
process migrations between the processors.

7



5.3 Computation of T

The computation of T takes place on an instance of the agent for each problem request and for each
computational server M . This computation uses all the parameters listed in the preceding section. We
distinguish three di�erent classes of parameter:

� The client-dependent parameters

1. The size of the data to send

2. The size of the result to be received

3. The size of the problem

� The static server-dependent parameters

1. The network characteristics between the local host and M

2. The complexity of the algorithm to be used on M

3. The raw performance of M

� The dynamic server-dependent parameters

1. The workload of M

The client-dependent parameters are included in the problem request sent by the client to the agent. Their
evaluation is therefore completely straightforward. The static server-dependent parameters are generally
assessed once, when a new server contacts the other NetSolve servers already in the con�guration.

Network Characteristics. The network characteristics are assessed several times, so that a reasonable
average value for the latency and bandwidth can be obtained. We still call them static parameters, however,
since they are not supposed to change greatly once their mean value has been computed.

Complexity of the Algorithm. When a new computational server joins the NetSolve system, it posts
the complexity of all of the problems it is willing to service. This complexity does not change thereafter,
since it depends only on the software used by the computational server.

Raw Performance. By raw performance, we mean the performance of the machine with no other process
using the CPU. Its value is determined by each computational server at startup time. We use the LINPACK
benchmark to obtain the K
op/s rate. The LINPACK benchmark computes the \user time" for its run and
therefore corresponds to our de�nition of raw performance.

5.4 The Workload Model

Workload parameters are the only dynamic server-dependent parameters required to perform the computa-
tion of the predicted execution time T .

Each instance of the agent possesses a cached value of the workload of every computational server. By
cached, we mean that this value is directly used for T 's computation and that it is updated only periodically.
Admittedly, this value may be out of date and lead to an occasional wrong estimate of T . Nevertheless, we
prefer on the average to take the risk of having a wrong estimate than to pay the cost for getting a constantly
accurate one.

We emphasize that we have tried to make this estimate as accurate as possible, while minimizing the cost
of its computation. Figure 3 shows the scheme we used to manage the workload broadcast.

Let us consider a computational server M and an instance of the agent C. C performs the computation of
T according to the last value ofM 's workload it knows. M broadcasts its workload periodically. In Figure 3,

8



0

100

200

300

0 5 10 15

W
o

rk
lo

a
d

Confidence Interval

time slice

Time Units

Workload Broadcast

Workload

X
Confidence Interval

View from the "outer world"

Width of the

X

Figure 3: Workload Policy in NetSolve

we call time slice the delay between to workload broadcast fromM . This �gure shows the workload function
of M versus the time. The simplest solution would be to broadcast the workload at the beginning of each
time slice. However, experience proves that the workload of a machine can stay the same for a very long

time. Therefore, most of the time, the same value would be broadcast again and again over the network.
To avoid this useless communication, we chose to broadcast the workload only when it has signi�cantly
changed. In the �gure, we see some shaded areas called the con�dence interval. Basically, each time the
value of the workload is broadcast, the NetSolve computational server decides that the next value to be
broadcast should be di�erent enough from the last broadcast one|in other words, outside this con�dence
interval. In Figure 3, the workload is broadcast three times during the �rst �ve time slices.

Two parameters are involved in this workload management: the width of a time slice and the width of the
con�dence interval. These parameters must be chosen carefully. A time slice that is too narrow causes the
workload to be assessed often, which is costly in term of CPU cycles. We have to remember that a NetSolve
server is supposed to run on a host for a long period of time; it is impossible to let it monopolize a lot of
CPU time. The width of the con�dence level must also be considered carefully. A narrow con�dence interval
causes a lot of useless workload broadcasting, which is costly in term of network bandwidth.

Choosing an e�ective time slice and con�dence interval serves another function. It helps to make the
workload information on the instances of the agent as accurate as possible, so that the estimated value of T
is reasonable. We emphasize that experimentation is needed to determine the most suitable time slice and
con�dence intervals. A possibility investigated at the moment would be to have each server dynamically
tune its con�dence interval and time slice at runtime.

9



6 Fault Tolerance

Fault tolerance is an important issue in any loosely connected distributed system like NetSolve. The failure
of one or more components of the system should not cause any catastrophic failure. Moreover, the number
of side e�ects generated by such a failure should be as low as possible and minimize the drop in performance.
Fault tolerance in NetSolve takes place at di�erent levels. Here we will justify some of our implementation
choices.

6.1 Failure Detection

Failures may occur at di�erent levels of the NetSolve protocols. Generally they are due to a network
malfunction, to a server disappearance, or to a server failure. A NetSolve process (i.e., a client, a server, or
a utility process created by a server) detects such a failure when trying to establish a TCP connection with
a server. The connection might have failed or have reached a timeout before completion. In this case, this
NetSolve process reports the error to the NetSolve agent, which takes the failure into account.

One of the prerequisites for NetSolve was that a server can be stopped and restarted safely. Therefore, all
the error reports contain information to determine whether the server was restarted after the error occurred.
Indeed, since NetSolve can be used over a wide area network, some old failure reports may very likely arrive
after the server that failed has been restarted. In other words, a NetSolve server can always be stopped and

restarted safely.

When the agent takes a failure into account, it marks the failed server in its data structures and does not
remove it. A server will be removed only after a given time, and only if it has not been restarted.

6.2 Failure Robustness

Another aspect of fault tolerance is that it should minimize the side e�ects of failures. To this end, we
designed the client-server protocol as following. When the NetSolve agent receives a request for a problem
to be solved, it sends back a list of computational servers sorted from the most to the least suitable one.
The client tries all the servers in sequence until one accepts the problem. This strategy allows the client to
avoid sending multiple requests to the agent for the same problem if some of the computational servers are
stopped. If at the end of the list no server has been able to answer, the client asks another list from the
agent. Since it has reported all these failures, it will receive a di�erent list.

Once the connection has been established with a computational server, there still is no guarantee that the
problem will be solved. The computational process on the remote host can die for some reason. In that case,
the failure is detected by the client, and the problem is sent to another available computational server. This
process is transparent to the user but, of course, lengthens the execution time. The problem is migrated
between the possible computational servers until it is solved or no server remains.

6.3 Taking Failures into Account

When a failure occurs, the instances of the agent update their view of the NetSolve system. They keep
track of the status of the remote hosts: reachable or unreachable. They also keep track of the status of the
NetSolve servers on these hosts: running, stopped, or failed. When a host is unreachable or a NetSolve server
is stopped for more than 24 hours, the agent erases the corresponding entry in their view of the NetSolve
system.

The agent also keeps track of the number of failures encountered when using a computational server. Once
this number reaches a limit value, the corresponding entry is removed. Therefore, if a computational server
is poorly implemented, for instance because it calls a library incorrectly, it will eventually disappear from
the system.

10



7 Performance

One of the challenges in designing NetSolve was to combine ease of use and excellence of performance. Several
factors ensure good performance without increasing the amount of work required of the user. In addition
to the availability of diverse scienti�c packages (as discussed in the preceding section), these factors include
load balancing and the use of simultaneous resources.

� Load balancing. Given all the computational resources available, NetSolve provides the user with a
\best e�ort" to �nd the most suitable resource for a given problem.

� Simultaneous resources. Using the nonblocking interfaces to NetSolve, the user can write a NetSolve
application that has some parallelism. In Figure 4, we see the result of experiments conducted on a
network of SPARC workstations. The NetSolve program kept sending requests so that ten 600� 600
eigenvalues problems were solved simultaneously over the network. We also added computational
servers to the NetSolve con�guration while running this program. Figure 4 shows the execution time
for each problem for each experiment. As expected, the problems are solved simultaneously on di�erent
servers, and the average execution time for one problem decreases when the number of computational
servers increases.

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350
600x600 EigenValues Problems

Experiment #

S
o

lv
e

 t
im

e
 (

s
e

c
)

1
 s

e
rv

e
r

2 servers

3 servers

4 servers

Server addition

Figure 4: Simultaneous request to an evolving NetSolve system

8 Future Work

Because the NetSolve project is still at an early development stage there is room for improvement at the
interface level as well as at the conceptual level.

We plan to increase the number of interactive interfaces. For instance, we could write Maple and Mathe-
matica interfaces, similar to the MATLAB one. Currently, we are thinking of providing the user with a Java
interface. Such an interface should be easy to use and immediately accessible via the Web.

11



The load-balancing strategy must be improved in order to change the \best guess" into a \best choice" as
much as possible. The challenge is to come close to a best choice without 
ooding the network. The danger
is to waste more time computing this best choice than the computation would have taken in the case of a
best guess only. Also, we might wish to add a hierarchy in the NetSolve systems, so that a single system
could cover a large-scale network e�ciently.

Some new issues are raised also when trying to make NetSolve easier to interface with any arbitrary
software. One of those is the \user-de�ned function" problem. Some scienti�c packages require the user
to provide a function in order to solve a problem (typically with iterative methods). We are investigating
di�erent approaches to allow this in NetSolve.

All these improvements are intended to combine ease of use, generality and performance, the main purposes
of the NetSolve project.

12



A Example: The NetSolve C Interface

double A[100*100]; /* Matrix A */

double Real[100],Imaginary[100]; /* real and imaginary parts of A's eigenvalues */

int request; /* NetSolve request number */

int is_finished; /* Flag giving the computation status */

/* Blocking call */

request = netsolve("eig", /* Eigenvalues problem */

A,100, /* One matrix in input : A 100x100 */

Real,Imaginary); /* Two vectors in output : */

/* Real and Imaginary */

/* Asynchronous call */

request = netsolve_nb("eig",A,100,

Real,Imaginary);

... Some computations

is_finished = netsolve_get(request,PROBE); /* poll the previous request */

... Some computations

is_finished = netsolve_get(request,WAIT); /* poll in a blocking fashion */

B Example: The NetSolve Fortran Interface

INTEGER LDA,N

PARAMETER(LDA = 100, N = 100)

DOUBLE PRECISION A(LDA,N), R(N),I(N)

INTEGER REQUEST,ISREADY

* Blocking Call

CALL FNSOLVE('eig',REQUEST,

$ A,LDA,N,R,I)

* Asynchronous Call

CALL FNSOLVE_NB('eig',REQUEST,

$ A,LDA,N,R,I)

... Some computations

CALL FNSGET(REQUEST,PROBE,ISREADY)

... Some computations

CALL FNSGET(REQUEST,WAIT,ISREADY)

13



References

[1] Inc The Math Works. MATLAB Reference Guide. 1992.

[2] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for fortran usage. ACM

Transactions on Mathematical Software, 5:308{325, 1979.

[3] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of fortran basic linear algebra

subprograms. ACM Transactions on Mathematical Software, 14(1):1{32, 1988.

[4] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of level 3 basic linear algebra subprograms. ACM

Transactions on Mathematical Software, 16(1):1{17, 1990.

[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKen-
ney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM Philadelphia, Pennsylvania, 2 edition, 1995.

[6] David M. Young David R. Kincaid, John R. Respess and Roger G. Grimes. Itpack 2c: A fortran package for
solving large sparse linear systems by adaptive accelerated iterative methods. Technical report, University of

Texas at Austin, Boeing Computer Services Company, 1996.

[7] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users' Guide. SIAM Press, 1979.

[8] J. Dongarra and D. Walker. Software libraries for linear algebra computations on high performance computers.
SIAM Review, 37(2):151{180, 1995.

14


