
Network-Enabled Solvers and the NetSolve

Project

H. Casanova

J.J. Dongarra

K. Moore

The beginning of the 21st century will present new challenges for large-
scale applications involving communication with, and coordination of, large

numbers of geographically dispersed information sources, supplying informa-
tion to a large number of geographically dispersed information consumers.
Applications of this class will require an environment which supports long-
term or continuous, reliable and fault-tolerant, highly distributed, heteroge-
neous, and scalable computing capability.

The characteristics of such applications include: distributed data col-

lection, distributed computation (often in signi�cant amounts), distributed
control, and distributed output. Many of these applications will require high
reliability and continuous operation, even though individual nodes or links
may fail or otherwise be unavailable. Such applications will be constructed
out of a wide variety of computational components (including smart sen-

sors, personal digital assistants, workstations, and supercomputers), and a
wide variety of communications media (wire, optical �ber, terrestrial radio,

satellite) with varying degrees of link reliability, bandwidth, and message
loss. The reliability requirement means that such applications must degrade

gracefully rather than fail in the presence of node or link failures, or with

insu�cient communications bandwidth and high message loss rates. Since

some computational resources may not be available on a continuous basis,

applications may have to adapt to varying computational power. The poten-
tial for hostile attack to such systems requires that they have a high degree of

security, both for authentication of data and privacy of sensitive information.

1

To facilitate the construction of such systems, development of new pro-

gramming environments which integrate computational, data gathering, data

storage, resource management, and human-computer interaction into a com-

mon framework are needed. The framework should provide high availability

and reliability through replication of both data and computational resources

and by careful resource management. Such a network-enabled programming

environment is based on a number technologies currently being developed by

various research groups.

Enabled by advances in hardware, networking infrastructure and algo-

rithms, highly compute intensive problems in many areas can now be suc-
cessfully solved using networked scienti�c computing. In the networked com-

puting paradigm vital pieces of software and information used by and within
a computing process are spread across the network. The requisite pieces
are identi�ed and linked together only at run time. This is in contrast to
the current software usage model where a copy (or copies) of a task-speci�c,
monolithic software is purchased for use within local hosts. It may even be

distributed on a collection of local hosts. With networked computing, the
view of software changes from a product to a service. The software developer
provides a computing service to interested parties over the network. The raw
computing power to run this service may be purchased from the software ser-
vice provider, provided by the end user, or even purchased from a third-party
computing service provider. The information needed to use this service might

be available only from disparate sources. Clearly the networked computing
model does not apply to all computing services; basic operating system and
network access software will probably be permanently resident on the user
machine. One advantage of this paradigm is that as software is improved by
the software provider, there is no need to release new versions and upgrades.

The user simply sees an improved service at the next run-time invocation.
The analogy could be to the phone system|changes in the software of the

local switch are completely transparent to the user, except for the availabil-
ity of additional or enhanced functionality. Similarly, the service provider

can upgrade the hardware without a�ecting the user. We envision that this

model will eventually become fully automated and e�ectively transparent to

the user. It is the aim of this research to facilitate this in the context of

scienti�c computing.
The user who decides to use freely available numerical software must �rst

look for the appropriate library, or set of routines, needed for the speci�c

2

computational problem. Usually, such libraries can be found in software

repositories. A speci�c well known repository is Netlib [1]. Netlib is main-

tained through the collaborative e�ort of several institutions and universities.

Software repositories present some intrinsic di�culties for the unexperienced

user: they are generally very large, and they contain very di�erent types of

libraries. Once the appropriate software has been located, it must be down-

loaded and installed. Depending on the nature of the software, this step

might be nontrivial, especially for a user not used to this kind of task. The

biggest steps still remain|learning how to use the software and learning how

to write a program in terms of the library components. These tasks can be
formidable and time-consuming. Further, we have not even mentioned the

debugging phase.
To implement a system to address the challenges highlighted above we

have developed NetSolve. NetSolve provides the user with a pool of compu-

tational resources. These resources are computational servers that provide
run-time access to arbitrary numerical libraries.

What is NetSolve?

NetSolve is a network-enabled solver-based system designed to solve compu-
tational science problems over a network. A number of di�erent interfaces

have been incorporated within the NetSolve software. Users of C, Fortran,
MATLAB, Java, or the Web can easily use the NetSolve system. The under-
lying computational software can be any scienti�c package, thereby ensuring
good performance results and great
exibility and extensibility. Moreover,
NetSolve uses a load-balancing strategy to improve the use of the computa-

tional resources available.

The organization of NetSolve.

We can distinguish three main paradigms for network-based systems: proxy
computing, code shipping, and remote computing. These paradigms di�er in

the way they handle the user's data and the program that operates on this

data. In proxy computing the data and the program reside on the user's
machine and are both sent to a server that runs the code on the data and

3

returns the result. In code shipping the program resides on the server and is

downloaded to the user's machine where it operates on the data and generates

the result on that machine. This is the paradigm used by Java applets within

Web browsers. In the third paradigm, remote computing, the program resides

on the server. The user's data is sent to the server, where the programs or

numerical libraries operate on it; the result is then sent back to the user's

machine. NetSolve uses the third paradigm; it is a client-server network-

based system.

NetSolve provides the user with pools of computational resources. These

resources are, in fact, computational servers that provide run-time access to
arbitrary numerical libraries. The NetSolve computational servers have the

following abilities:

� Uniform run-time access to the software: The servers give users the
illusion that they have access to a uniform set of subroutines/functions
and provide direct access to computational modules.

� Con�gurability: The servers are not limited to using any particular
software because they use a general framework to integrate new func-
tionalities easily. NetSolve can extend and encompass new numerical
applications at will, from any numerical library.

� Preinstallation: Numerical software is, of course, preinstalled on the
servers' sites. The user is not responsible for installing or maintaining
any numerical software at all.

To make the implementation of such a computational server model pos-
sible we have designed a machine-independent, general way of describing a

numerical computation. We have also designed a set of tools to generate new
computational modules as easily as possible. The main component of this

framework is a descriptive language that is used to describe each separate
numerical functionality provided on a computational server. Files written in

this language can be compiled by NetSolve into actual computational mod-

ules executable on any UNIX platform. NetSolve also includes a Java applet

to easily generate description �les. The Java applet can be used by anyone on

the Internet to create new computational resources. This framework also al-
lows increased collaboration between research teams. Indeed, description �les

need to be generated only once and can be reused in a machine-independent

4

manner to set up new computational resources anywhere on the Net. So far,

such description �les have been written for the following numerical libraries:

FitPack, ItPack, MinPack, FFTPACK, LAPACK, BLAS, and QMR. Net-

Solve computational servers providing access to these packages are running

on a 24 hour basis at the University of Tennessee and at other locations.

The user can use one of the di�erent NetSolve client interfaces to send

requests to the NetSolve computational servers. However, the user requests

are not sent directly to the computational resources. User requests are pro-

cessed by another component of the system, a NetSolve agent. The agent

decides which computational server will be assigned the user requests. Thus,
the agent is really the mastermind behind the whole NetSolve strategy, and

the e�ciency of the system depends entirely on its decisions. Figure 1 shows
this organization.

NetSolve Client NetSolve Agent

Request

ChoiceReply

Resource
NetSolve

NetSolve Pool of Resources

Figure 1: The high-level organization of NetSolve.

One of the roles of the NetSolve agent is to perform load balancing among

the di�erent computational resources. NetSolve is inherently a multirequest

5

system. Several users can compete for the resources by contacting the same,

or di�erent, agent(s) managing the same pool of resources. Alternatively, a

single user can send multiple asynchronous requests at once (as we will see in

the description of the user interfaces). For each incoming request, the Net-

Solve agent chooses a computational server where the numerical computation

will be performed. For each server, the agent can use information contained

in the user request (e.g., type of computation, size of the problem), static

information about the server (e.g., speed of the host, numerical server avail-

able), predictions about the workload of the server's host, and the distance

to the server's host over the network. These di�erent pieces of information
are then combined to obtain an estimate of the time required to process the

user request on each computational server, including network time and CPU
time. For each request, the NetSolve agent sorts the appropriate computa-
tional servers according to these estimated times and processes the request
accordingly. More details on this strategy can be found in [2].

Where can NetSolve be used?

The di�erent hosts that participate in the NetSolve protocol can be anywhere
on the Internet. In fact, they can be administrated by di�erent institutions.
NetSolve does not assume any centralized control over the di�erent hosts in

the system. On the contrary, each process (computational server or agent)
is an independent entity: it can safely be stopped and restarted at any time,
without jeopardizing the integrity of the system. The
exibility of this ap-
proach does require that NetSolve implement some kind of fault tolerance
mechanisms. Indeed, any resource can become unreachable at any moment,

perhaps because of a network failure, a host failure, or simply a system ad-
ministrator rebooting a host.

NetSolve also can be used on an intranet, inside a research department or

a university, without participating in any Internet computation. Even though
such a setting is more stable than an Internet-based NetSolve con�guration,

fault tolerance is still required.
Currently, NetSolve uses the following strategy for fault tolerance. The

NetSolve system ensures that a user request will be completed unless every
single resource has failed. When a client sends a request to a NetSolve agent,

it receives a sorted list of computational servers to try. When one of these

6

servers has been successfully contacted the numerical computation starts. If

the contacted server fails during the computation another server is contacted

and the computation is restarted. This whole process is transparent to the

user. If all the servers fail the user is noti�ed that the computation cannot be

performed at this time. This simple fault-tolerant approach will be improved

in a future version of the NetSolve software.

What interfaces does NetSolve provide?

A major concern in designing NetSolve was to provide several interfaces in

order to target a wide range of users. Currently, NetSolve provides Applica-
tion Program Interfaces (APIs) as well as higher-level interfaces. C, Fortran,
and Java APIs are already available, as well as a MATLAB interface and
a graphical Java interface. Another concern was keeping the interfaces as
simple as possible. For example, the MATLAB interface contains only two
functions that allow users to submit problems to the NetSolve system. Every

interface provides asynchronous calls to NetSolve in addition to traditional
synchronous calls. When several asynchronous requests are sent to a Net-
Solve agent, they are dispatched among the available computational resources
according to the load-balancing schemes implemented by the agent. Hence,
the user|with virtually no e�ort|can achieve coarse-grained parallelism

from either a program or from interaction with a high-level interface. All the
interfaces are described in detail in [3]

MATLAB interface example

The MATLAB interface to NetSolve is easy to use and is no di�erent form
any other MATLAB extension. Using this interface, the user can �nd out
what resources are available in the NetSolve system, including hardware and

software resources. Consider a user who wants to perform two independent

computations, for instance a vector sort and an eigenvalue problem. After

typing netsolve at the MATLAB prompt and browsing the list of resources,

the user �nds out that the two problems he wants to use are qsort and eig.
We show here step by step what the user is supposed to do to use NetSolve

from MATLAB.
First, the data must be loaded from disk into memory:

7

>> load a

>> load v

Then, the user send the �rst asynchronous request to NetSolve to perform

the eigenvalue computation:

>> [request1] = netsolve_nb('send' , 'eig' , a)

NetSolve : contacting server 'ig.cs.utk.edu'

request1 = 0

NetSolve informs the user that his problem is being performed on the machine
ig.cs.utk.edu and returns a request handler in the form of an integer (0).
The request for the vector sort follows:

>> [request2] = netsolve_nb('send' , 'qsort' , v)

// sends the request for the vector sort

contacting server 'cupid.cs.utk.edu'

request2 = 1

At this point, the two request are being serviced in parallel on two di�erent

servers. The user can now perform local computations using MATLAB.
When he deems it appropriate, he can check the results of the computation
as follows:

>> [eigenvalues] = netsolve_nb('probe' , request1)

NetSolve : Not ready yet

>> [sorted] = netsolve_nb('wait' , request2)

sorted = [-1.23]

The user �rst probed for the eigenvalues and was informed that they were not

yet available. Then the user waited for the sorted vector to be computed.
The sorted vector is returned in the variable sorted when the call returns.

Finally, the user can wait for the eigenvalues to be available:

>> [eigenvalues] = netsolve_nb('probe' , request1)

eigenvalues = [0.23+i23.11]

8

>From this example it is easy to see how using NetSolve from MATLAB

provides the ability not only to access a variety of computational resources,

but also to achieve parallelism at almost no cost for the user. There are other

functionalities in the NetSolve MATLAB interface that are not part of this

short example. The complete description of the interface is found in [3], as

well as a complete example.

Fortran interface example

Another important aspect of NetSolve is that the computational servers can
enforce any arbitrary calling sequence from C and Fortran to the problem
they handle. It is then possible to have the calls from the NetSolve client
exactly match the ones that would be made directly to the underlying nu-
merical libraries. The following Fortran examples illuminates this aspect:

parameter(MAX = 100)

double precision A(MAX,MAX),B(MAX)

integer IPIV(MAX),N,INFO,LWORK

integer NSINFO

C

C *************************

C * Direct call to LAPACK *

C *************************

C

call DGESV(N,1,A,MAX,IPIV,B,MAX,INFO)

...

C *************************

C * Call to NetSolve *

C *************************

C

call NETSL('DGESV()',NSINFO,N,1,A,MAX,IPIV,B,MAX,INFO)

With the exception of the �rst two arguments the call to NetSolve matches

the call to LAPACK. The �rst two arguments are the problem name and the
NetSolve error code. It is then easily seen that a user who is accustomed to

a particular numerical library can switch to NetSolve easily. Existing codes
can then be converted, using asynchronous calls to NetSolve and yielding

some degree of parallelism at almost no extra cost to the user.

9

Obtaining NetSolve

Currently, we have released version 1.0 of NetSolve (both clients and servers).

The NetSolve home page contains detailed information and source code. The

home page is located at http://www.cs.utk.edu/netsolve.

Figure 2: NetSolve-enabling global collaboration

To allow users to try out NetSolve as soon as they download the client
distribution, we maintain a pool of computational servers at the University of

Tennessee (as well as in some other places). These servers can solve various
numerical problems in several �elds, including linear algebra, fast Fourier

transform, optimization, and curve �tting. The numerical functionalities

10

are constantly increasing, and new servers are being started as the demand

increases.

NetSolve is a continuing project and several research issues are under

investigation for the next release. One of the main improvements that we

would like to make to the paradigm is to allow dynamic software-hardware

computational resource binding. In the present version of the software, com-

putational servers are given access to computational software and started

on a host. New numerical functionalities can be added to the server, but

this decision has to be made by the NetSolve administrator. We envision a

system where a server (or agent), upon receiving a request for an unknown
numerical computation, could contact a well-established software repository

and download the appropriate code to perform the computation. Software re-
sources, hardware resources, and data resources could be dynamically bound
yet transparent to the user. The Netlib repository seems to be the natural
choice for this revolutionary system. This new paradigm will require ad-
dressing several issues, such as security, software caching mechanisms, and

software authentication. Success in this endeavor would, however, represent
a breakthrough in global metacomputing and collaboration as depicted on
Figure 2.

References

[1] S. Browne and J. Dongarra and E. Grosse and T. Rowan, The
Netlib Mathematical Software Repository, D-Lib Magazine, September
1995,

http://www.cnri.reston.va.us/home/dlib/september95/09contents.html .

[2] H. Casanova and J. Dongarra, NetSolve: A Network-Enabled Server

for Solving Computational Science Problems , The International Jour-

nal of Supercomputer Applications and High Performance Computing.

The International Journal of Supercomputer Applications and High Per-

formance Computing, Volume 11, Number 3, pp 212-223, Fall 1997,

http://www.netlib.org/utk/people/JackDongarra/PAPERS/netsolve.ps .

[3] H. Casanova, J. Dongarra, and K. Seymour, Client User's

Guide to NetSolve, Technical Report CS{96{343, Department of

11

Computer Science, University of Tennessee, Knoxville, TN, 1996,

http://www.cs.utk.edu/ library/TechReports/1996/ut-cs-96-343.ps.Z .

Henri Casanova (casanova@cs.utk.edu) is a Graduate Research Assis-

tant at the University of Tennessee, Knoxville.

Jack Dongarra (dongarra@cs.utk.edu) is a Distinguished Professor at

the University of Tennessee, Knoxville and a Distinguished Scientist at the

Oak Ridge National Laboratory.

Keith Moore (moore@cs.utk.edu) is a Research Associate at the Univer-

sity of Tennessee, Knoxville.

12

