
Using Agent-based Software

for Scienti�c Computing

in the NetSolve System

Henri Casanova� Jack Dongarra� y

August 9, 1997

Abstract

Agent-based computing is increasingly regarded as an elegant and e�cient way of providing

access to computational resources. Several metacomputing research projects are using intelligent

agents to manage a resource space and to map user computation to these resources in an optimal

fashion. Such a project is NetSolve, developed at the University of Tennessee and Oak Ridge

National Laboratory. NetSolve provides the user with a variety of interfaces that a�ord direct

access to preinstalled, freely available numerical libraries. These libraries are embedded in

computational servers. New numerical functionalities can be integrated easily into the servers by

a speci�c framework. The NetSolve agent manages the coherency of the computational servers.

It also uses predictions about the network and processor performances to assign user requests to

the most suitable servers. This article reviews some of the basic concepts in agent-based design,

discusses the NetSolve project and how its agent enhances
exibility and performance, and

provides examples of other research e�orts. Also discussed are future directions in agent-based

computing in general and in NetSolve in particular.

Keywords

Agent, Metacomputing, Client-Server, Scienti�c Computing, Networking, Load Balancing,

Fault Tolerance, Computational Servers

�Department of Computer Science, University of Tennessee, TN 37996
yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

1 Introduction

Scienti�c computing has applications in many �elds of science and engineering and hence has become

a major focus of research centers and industry. The demand for scienti�c problem-solving facilities

has led to the development of numerous software tools usable on diverse hardware platforms.

Some numerical tools, such as MATLAB[1] or Mathematica [2], have enjoyed great success. They

generally provide an interactive interface, a set of built-in functionalities, and the possibility of

writing scripts to perform complex computations.

Another class of tools falls under the category of numerical function libraries. These libraries

are less convenient than interactive tools because the user is required to write an actual program

(generally in C or Fortran). Nevertheless, they o�er several advantages. A large number of such

libraries exists, and they cover diverse �elds of computational science. Moreover, unlike most

interactive tools, numerical libraries are often freely available and can be downloaded directly from

the World Wide Web.

A third class of tools comprises runtime packages whose goal is to help the user perform some

speci�c types of scienti�c computations. Like numerical libraries, these packages are usually freely

available. One example is the NEOS project [3], which is focused on linear programming and

optimization. However, most such tools are not yet well established, and the user often feel the

need for numerical capabilities that are outside their scope.

Users wanting to solve a numerical problem are thus confronted with a dilemma. They can

purchase an expensive commercial product and take the risk that it might not be suitable for

future use on di�erent kinds of problems, or they can try to locate and download free libraries and

write programs in terms of speci�c functions or subroutines. In this article, we focus on the second

situation.

The user who decides to use free software libraries must �rst look for the appropriate library or

set of libraries needed for his speci�c computational problem. Usually, such libraries can be found

in established software repositories. A well-known repository, for example, is Netlib [4], which

is maintained through the collaborative e�ort of several institutions and universities. Software

repositories present some intrinsic di�culties for the unexperienced user. First, they are usually

very large. For example, Netlib contains more than 40 di�erent numerical libraries, a number that

amounts to more than 20,000 di�erent numerical subroutines or functions. And Netlib is just one

of many such repositories. The National HPCC Software Exchange (NHSE) [5] Web site gives

access to more than 50 di�erent HPCC-related repositories. Second, software repositories contain

very di�erent types of libraries. Having such diversity can be regarded as a strength of the whole

software repository approach: it guarantees that the repositories will target a broad scope of users.

However, because of this diversity, each time a user downloads a new library, he must go through

a new learning phase.

Once the appropriate library has been located, it must be downloaded and installed. Depending

on the nature of the software, this step might be nontrivial. For instance, a lot of freely distributed

software is not fully portable: it is not uncommon to have comments in the code of the numerical

software saying that such and such sections will run only on certain systems. Another example is

software using system libraries that might not be directly available on the user's system. To an

experienced user, these problems are not really threatening. They can generally be solved by a

sequence of compilations, linkings, and system libraries searching. However, all these steps can take

a large amount of time if the user has not much experience in software installation. The biggest steps

2

still remain|learning how to use the library itself and learning how to write a program in terms of

its component. These tasks can be formidable and time-consuming (without even mentioning the

debugging phase).

Clearly, much work remains in order to enable a straightforward use of freely available numerical

function libraries. Instead of leaving the user responsible for exploring large software repositories

and installing the downloaded software, an alternative approach is to provide the user with an

infrastructure that facilitates access to numerical libraries through a variety of interfaces. Such an

infrastructure could also manage the di�erent hardware and software computing resources available

to the user, with a view to maximizing performance. In this article, we describe an agent-based

environment that provides these capabilities. The environment, called NetSolve, is being developed

as part of a project at the University of Tennessee and Oak Ridge National Laboratory.

The article is organized as follows. Section 2 gives an overview of NetSolve. Section 3 develops

the agent concept and relates it to several ongoing research works. Section 4 describes in more

detail the way the NetSolve agent operates; examples are provided to illustrate the bene�ts of the

agent-based design. Section 5 discusses future directions in the NetSolve system, and Section 6

draws some conclusions.

2 Overview of NetSolve

In this section we describe basic concepts that are fundamental for agent-based network-enabled

software. The concepts are relevant not only to NetSolve but to other projects with similar goals.

2.1 Basics

NetSolve is a client-server network-based system. One can distinguish three main paradigms for

such systems: proxy computing, code shipping, and remote computing. These paradigms di�er in the

way they handle the user's data and the program that operates on this data. In proxy computing,

the data and the program reside on the user's machine and are both sent to a server that runs the

code on the data and returns the result. In code shipping, the program resides on the server and is

downloaded to the user's machine, where it operates on the data and generates the result on that

machine. This is the paradigm used by Java applets within Web browsers, for example. In the

third paradigm, remote computing, the program resides on the server. The user's data is sent to

the server, where the programs or numerical libraries operate on it; the result then is sent back to

the user's machine. NetSolve uses this third paradigm.

Figure 2.1 depicts the basic layout of the system. NetSolve provides the user with a pool of

computational servers that have access to ready-to-use numerical software. As shown in the �gure,

the computational servers can be running on single workstations, networks of workstations that

can collaborate for solving a problem, or massively parallel systems. The user is using one of the

NetSolve client interfaces. Such interfaces allow a user to send requests to the NetSolve system

asking for numerical computation to be carried out by one of the servers. The main role of the

NetSolve agent is to process this request and to choose the most suitable server for this particular

computation. The basic concepts of such an agent are described in Section 3.

One of the major advantages of this approach is that the agent performs load balancing among

the di�erent resources. Once a server has been chosen, it is assigned the computation, uses its

available numerical software, and eventually returns the results to the user.

3

reply

choice

choice

reply

 of

Client

Network

 Servers

Client

Agent

Scalar Server

request

Scalar Server

Agent

request

MPP Servers

Figure 1: NetSolve's organization

As shown in Figure 2.1, there can be multiple instances of the NetSolve agent on the network,

and di�erent clients can contact di�erent agents, depending on their locations. The agents can

exchange informations about their di�erent servers and allow access from any client to any server,

if desirable. Suppose, for example, the set of computational resources spans several local area

networks and that users on each of these networks want to use NetSolve to perform scienti�c

computations. It is possible to start a NetSolve agent on each network, so that user requests

always go to the \closest" agent to be processed. Di�erent instances of the NetSolve agent can

then have di�erent views of the set of computational resources, re
ecting the fact that certain

clients are closer to certain computational resources. NetSolve can be used via the Internet or on

an intranet, inside a research department or a university, without participating in any Internet

computation.

Another important aspect of NetSolve is that the con�guration of the system is entirely
exible.

Any server/agent can be stopped and (re)started at any time without jeopardizing the integrity of

the system.

In addition to being a resource broker for the clients, the NetSolve agent is also the primary

participant in the management of the di�erent computational resources (hardware and software)

and is also in charge of the fault-tolerance mechanisms. Details on the way the NetSolve agent

operates and its various responsibilities in the system are given in Section 4.

4

2.2 The Computational Resources

2.2.1 Challenges

One of the challenges in building the NetSolve system was to design a suitable model for the

computational servers. Indeed, when designing such servers, we were faced with the very same

di�culties as those highlighted in Section 1. For the user to be able to use numerical software

directly through our servers, three major features seemed to emerge as mandatory:

Uniform access to the software: The servers should give the illusion that users have access to a

uniform set of subroutines or functions. That is, we wish to hide the speci�cities of the underlying

numerical softwares as much as possible. This feature will ensure that users need not go through

long learning phases when using a new set of functions.

Con�gurability: The servers should not be limited to any particular software. We therefore

needed to provide a framework to add functionalities to a computational server in an easy way.

This would give our system the ability to extend and encompass new numerical applications at

will.

Preinstallation: The user should not be responsible for installing any numerical software. The

software present on the servers should be ready to use, already compiled to the target architecture.

Or, in a more general view, the system could dynamically take care of installation and compilation

itself, without any intervention from the user.

2.2.2 The Solution

To make the implementation of such a computational server model possible, we have designed

a machine-independent, general way of describing a numerical computation, as well as a set of

tools to generate new computational modules as easily as possible. The main component of this

framework is a descriptive language that is used to describe each separate numerical functionality

of a computational server. Files written in this language can be compiled by NetSolve into actual

computational modules executable on any UNIX platform.

This approach has several advantages. Machine independence is, of course, one advantage, as

is the ability of integrating any arbitrary software into NetSolve. But this framework also allows

increased collaboration between research teams and institutions. Indeed, description �les for a

given numerical library need to be written only once. These �les can then be exchanged by any

institutions wanting to set up servers, compiled and run to create a new stand-alone NetSolve

system or to contribute new servers to an existing system. Each time a new description �le is

created, the capabilities of the entire NetSolve system are thereby increased.

These advantages, however, are e�ective only if the process of creating new input �les and

adding them to a computational server is reasonably straightforward. For this reason, we developed

a graphical interface to handle the generation of the description �les. The interface performs error

checking of the user's input. Using the interface is much easier than creating a description �le

manually, especially as the complexity of the problem to be described increases.

Not only is this interface graphical, but it is also written in Java. Several factors motivated

this choice. First, Java allows one to write GUIs (graphical user interfaces) very easily, thanks to

its built-in widget classes. Second, Java is object oriented and therefore provides a good degree of

modularity and data encapsulation. These features are important because we might have to modify

the syntax of the language in the future to describe wider classes of numerical computations. Third,

5

Java is Web-enabled. This interface could thus be downloaded as an applet, and users setting

up NetSolve computational servers could create their description �les directly from within Web

browsers. These �les could then be downloaded from the Web browser and compiled into NetSolve

computational modules (thanks to the compiler provided by the NetSolve server software).

The ultimate goal would be to have a NetSolve description �le repository on the Web. From that

repository, description �les could be downloaded at will to set up computational servers. The actual

numerical software should also be available to make the creation of these servers almost immediate.

The idea would then be to add a complementary repository containing NetSolve description �les

to a regular software repository (like Netlib [4]).

2.2.3 Existing Resources

So far, description �les have been written for the following numerical libraries: FitPack [6], It-

Pack [7], MinPack [8], FFTPACK [9], LAPACK [10], BLAS [11, 12, 13], QMR [14], and ScaLA-

PACK [15].

NetSolve computational servers providing access to these packages are running on a 24-hour

basis at the University of Tennessee and at other locations world-wide. Real-time information on

the available servers and numerical softwares can be found on the NetSolve homepage located at

http://www.cs.utk.edu/netsolve.

These numerical libraries cover several �elds of computational science, including linear algebra,

optimization, and fast Fourier transforms. Two particular numerical libraries require special treat-

ment by NetSolve. In the MINPACK (a package of optimization/minimization software) library,

for example, the user must supply a piece of code that implements the function to be minimized.

The current version of the NetSolve software handles user-supplied functions in a way described in

[16]. The ScaLAPACK library is also a special case because it is a parallel library. A prototype

description �le for ScaLAPACK has been written and tested on a network of workstations managed

by PVM [17]. Integrating ScaLAPACK in NetSolve will allow a user on a workstation to access

massively parallel systems in order to perform large computations. As outlined in Section 2.3 and

detailed in [16], this access is extremely simple, and users will not be aware that they are using a

parallel library. Furthermore, this parallel library will be accessible for C, Fortran, MATLAB, Java

programs, and even a Java GUI (as explained in the following section).

2.3 The Client Interfaces

A major concern in designing NetSolve was to provide several interfaces in order to target a wide

range of users. Currently, NetSolve provides application program interfaces (APIs) as well as

higher-level interfaces: C, Fortran, and Java APIs are already available, as well as a MATLAB

interface and a graphical Java interface.

Another concern was keeping the interfaces as simple as possible. For example, the MATLAB

interface contains only two functions that allow users to submit problems to the NetSolve system.

Every interface provides asynchronous calls to NetSolve in addition to traditional synchronous calls.

When several asynchronous requests are sent to a NetSolve agent, they are dispatched among the

available computational resources according to the load-balancing schemes implemented by the

agent. Hence, the user|with virtually no e�ort|can achieve coarse-grained parallelism from either

a C or Fortran program, or from interaction with a high-level interface.

6

All the interfaces are described in detail in the \NetSolve's Client User's Guide" [16]. In Section

4, we show an example of NetSolve that takes advantage of our agent-based strategy.

3 What Is an Agent?

The fundamental conception behind NetSolve is that agent-based scheduling can provide robust and

high-performance application execution in a metacomputing environment. An agent is an entity

(process) that reasons about and makes decisions about the mapping of computations to resources.

Consequently, an agent must be able to access application- and system-speci�c information.

Application-speci�c information can be, for example, the number and type of the application

data structures, or the complexity of the algorithm to be used, or the frequency and volume of com-

munications and computations for a parallel application, or the amount of memory required by the

application. System-speci�c information, on the other hand, involves resource performance: num-

ber of computational resources available, network characteristics, and, for each of these resources,

the amounts of memory available, CPU maximum speeds, and the like.

The agent also needs dynamic information to determine the system state. Before mapping

computations on resources, the agent must take into account whether the candidate CPUs are

lightly or heavily loaded, whether the network itself is loaded, and what the best combination of

resources is at any given time. Combining the application-speci�c and system-speci�c information

with dynamic information describing system conditions allows the agent to assess the cost of a

given mapping, and thus to choose the optimal one with respect to the user's performance criteria.

Rather than controlling the resources in a way that maximizes application performance, an agent

controls the mapping of the computations so that it makes maximal use of the available resources.

This general concept is being used by several metacomputing research projects and is widely

extended and adapted to �t the requirements and speci�cations of these projects. Here we discuss

two such projects and distinguish their features from those of NetSolve. In the next section, we

describe the NetSolve agent.

The AppLeS (application-level schedulers) system [18], developed at the University of California

- San Diego, focuses on scheduling agents for parallel metacomputing applications. In the AppLeS

framework, the agent performs the mapping of computation to resources in the form of a particular

scheduling of the user's parallel application. To determine schedules, the agent must consider the

requirements of the application and the predicted load and availability of the system resources at

scheduling time. Each AppLeS agent has access to dynamic predictions of resource performance,

thanks to the NWS (Network Weather Service)[19] that has been developed as a separate facility.

AppLeS and NetSolve di�er in that AppLeS is concerned with the scheduling of stand-alone parallel

applications whereas NetSolve schedules computational requests but provides access to numerical

software.

The Network-based Information Library (Ninf) [20] project developed at the Electrotechnical

Laboratory in Tsukuba is using an agent-based design. The agent in Ninf, called a meta-server,

is responsible for the request assignment to the di�erent servers. Ninf and NetSolve have several

common aspects even though NetSolve seems to be a little more mature at this time. This common

ground has motivated a collaboration between the University of Tennessee and the Electrotechnical

Laboratory to built a common interface between the two systems. A prototype of a Ninf-NetSolve

adapter has already been developed. The protocols of both projects will evolve to permit a seamless

7

integration of both systems. Eventually, Ninf and NetSolve users will be able to use any interface

of any project to perform computations on servers administrated either by Ninf or by NetSolve.

4 The NetSolve Agent

In this section, we highlight the main responsibilities of the agent in the NetSolve system, and we

give some details about its current implementation.

4.1 The Agent as a Database

Keeping track of what software resources are available and on which servers they are located

is perhaps the most fundamental responsibility of the NetSolve agent. Since the computational

servers use the same framework to contribute software to the system (see Section 2.2.2), the agent

can maintain data describing the di�erent numerical functionalities available to the users.

The protocol is fairly straightforward. Each time a new server is started, it sends a registration

request to an instance of the NetSolve agent. This request contains general information about the

server (including its location), but also the list of numerical functions it intends to contribute to

the system. The agent examines this list for possible discrepancies with the other existing servers

in the system. Based on the agent's verdict, the server is either rejected or integrated into the

system.

Once a new server is accepted, it can be used by a client. The next section explains how the

agent chooses a server.

4.2 The Agent as a Resource Broker

The goal of the NetSolve agent is to choose the best-suited computational server for each incom-

ing request to the system. To do so, the agent uses computation-speci�c and resource-speci�c

information.

Computation-speci�c information is mostly included in the user request: size in bytes of the

input data, size of the problem to be solved (e.g., size of the matrices for a linear algebra compu-

tation), and so on. Resource-speci�c information, as explained in Section 3, is composed of static

and dynamic data. Static system-speci�c data is communicated to the agent by each server when

it is �rst started and accepted in the system. This data mainly contains the server's host processor

speed, the number of processors, and the complexity of the algorithms used by its numerical soft-

ware. Dynamic data is the load of the server's host and the network delays and transmission rates

to contact that host. The network performance is estimated by the agent by constantly averaging

samples of the network delays between the hosts. The strategy for the load of the servers is di�er-

ent: the computational servers notify the agent of their workload
uctuations when they deem it

necessary. Rationale and further detail on these protocols can be found in [21].

4.3 Fault Tolerance

As previously mentioned, the hosts in the NetSolve system can be located anywhere on the Internet

and can therefore be administered by di�erent institutions. Hence, NetSolve does not try to impose

any control on the di�erent resources. This approach is, of course, very
exible, but it requires that

8

NetSolve implement some kind of fault-tolerance mechanisms. Indeed, any resource can become

unreachable at any moment, perhaps because of a network failure, a host failure, or simply a

system administrator rebooting a host. Every instance of the agent is a repository of the hardware

resource. It is therefore natural that the fault-tolerance mechanisms in NetSolve be at least partly

implemented by the agent.

The NetSolve system ensures that a user request will be completed unless every single resource

has failed. When a client sends a request to a NetSolve agent, it receives a sorted list of compu-

tational servers to try. When one of these servers has been successfully contacted, the numerical

computation is started. If the contacted server fails during the computation, then another server

is contacted and the computation is restarted. This whole process is transparent to the user. Each

time a computational server malfunction (server unreachable, server stopped, failure during com-

putation) is detected by a client, this client noti�es the failure to one agent. The agent updates its

tables and takes the necessary measures. If all the servers have failed, the user is noti�ed that the

computation cannot be performed at that time.

4.4 Simple Example of the Agent's E�ectiveness

Several simple experiments can be done with the current version of the NetSolve software in order

to measure di�erent performance issues. The experiment we describe here provides information

about the typical gain a user can obtain by using NetSolve. In this experiment, the user is using

MATLAB on a Sun workstation (Sparc 5) to perform several matrix multiplications. The size of

the matrix is 800 by 800, and the use performs from 1 to 16 multiplications. A NetSolve system

is available consisting of seven computational servers. These servers also run on Sun workstations

(Ultra 1's) and are located at the University of Tennessee. We note here that the results of this

experiment would be the same if, instead of one user, several users were sending requests to the

NetSolve system.

Figure 4.4 shows the total execution times in in di�erent situation. The �rst curve is labeled

'MATLAB' and shows the execution times for 1 to 16 matrix multiplications when the user is

using MATLAB directly. The total execution time increases linearly with the number of operations

performed, with a rate equal to the execution time of one matrix multiplication. This result was

expected, since the multiplications are executed one after the other.

The other four curves are all labeled 'NetSolve' and show the execution times when the user

is using the MATLAB interface to NetSolve to perform his computations. Each curve correspond

to a di�erent location of the user's machine. The 'Intranet' curve shows execution times when the

user's machine is located on the network of the Computer Science Department at the University

of Tennessee. For the 'Close Internet' curve, the user is at the Oak Ridge National laboratory.

The 'Continental Internet' curve shows execution times for a user at the University of California

at Berkeley, and the 'Overseas Internet' curve is for a user at the Danish Technical University in

Copenhagen, Denmark. For these four curves, the user's machines were all Sun workstations (Sparc

5), and the measurements were taken from 11:00PM till 4:00AM EST during week days.

There are mainly two facts of interest shown on �gure 4.4. First, if the client machine is close

enough to the NetSolve system (Internet-wise), then the NetSolve overhead (contacting the agent,

sending the input data, retrieving the result) is still small enough to allow a win over MATLAB

computation. This is of course true because the server machines are faster than the client machine.

On the curves, this corresponds to the �rst points (one multiplication) and we can see that NetSolve

9

MATLAB

NetSolve (Intranet)

NetSolve (Close Internet)

NetSolve (Continental Internet)

NetSolve (Overseas Internet)

2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of 800x800 matrix operations

R
e

s
p

o
n

s
e

 t
im

e
 i
n

 s
e

c

Figure 2: Multiple 400x400 matrix multiplications

wins over MATLAB for all but the overseas user. In fact, there is a very large performance gap

between the overseas Internet curve and the other ones due to very poor network bandwidth.

Second, the execution times when using NetSolve are sensibly linear. The rates are approxi-

matively 22 for the intranet client, 52 for close Internet, 135 for distant Internet, 232 for overseas

Internet and 261 for MATLAB. The NetSolve rates are all lower than the MATLAB rate, and of

a di�erent order of magnitude when the user is close enough to the NetSolve system. This is due

to the load-balancing strategy implemented by the NetSolve agent. All the user requests are pro-

cessed in parallel on di�erent servers, leading to an impressive speedup. One may be surprised that

the execution time is linear even for more that seven multiplications since only seven servers are

available. In fact, due to the matrix size, the speed of the processors and the network contentions,

the NetSolve overhead is su�cient to prevent a server from performing two multiplications simul-

taneously. For bigger matrix sizes or faster networks, the execution time would not be linear, but

would start increasing faster than its initial rate after seven multiplications.

The NetSolve agent attempts to locate and schedule the user's computation on powerful ma-

chines, in order to optimize performance. In this experiment, however, all the servers were identical,

as was their workload. The agent was therefore compelled to schedule the computation in what

appears to be a round-robin fashion.

For the NetSolve approach to be most worthwhile, users must have to change as little of their

code as possible. The explanation is as follows. The MATLAB code to perform a matrix multiply

is given below:

10

c = a * b

An equivalent NetSolve code using a blocking call could be

c = netsolve('matmul',a,b)

However, to achieve the speedups in the experiment, the user must call NetSolve in an asynchronous

way as

request = netsolve_nb('matmul',a,b)

...

...

c = netsolve('wait',request)

The price to pay in code complexity is quite reasonable, given the improvement in speed that

can be achieved with NetSolve. This is even more true about the C and Fortran interfaces. Even

more striking, the same performance can be achieved from a Java program calling the NetSolve

Java API or from the Java GUI by simply clicking and pointing in graphical windows.

5 Future Directions

Agent-based computing seems to be a promising strategy. NetSolve will certainly evolve into a

more elaborate system in the future, and a major part of this evolution is bound to take place

within the agent. We highlight here some of the expected changes in the agent concept.

As the number of users and resources increases, it will be increasingly di�cult to maintain

a coherent resource space. The issue of a robust and
exible naming strategy will undoubtedly

arise. Several naming services have been designed (LDAP [22], RCDS [23]), and implementations

are starting to become available. Such services would provide a good basis for a metacomputing

project like NetSolve.

NetSolve will eventually need to provide a user-accounting feature so that realistic bounds can

be imposed on resource usage. We could, for instance, restrict the access to the resources, restrict

the access for some users, or do a combination of the two. The word restrict is still to be precisely

de�ned in this context. A practical and convenient scheme would be to use tokens or credits

that users can release or spend to perform computations. Di�erent users could have a di�erent

level of access. For instance, students would not be permitted to run large computations, whereas

researchers could have full access. It also might be advisable to let administrative authorities

customize their own accounting policy and put bounds on the usage of their resources. These

bounds would be in terms of CPU time or megabytes on hardware resources, or in terms of number

of requests. We can imagine, for instance, that two universities or national laboratories could allow

each other to use every resources|with, however, a \preference" for the local users to use the

local resources. It seems natural to make the NetSolve agent the primary actor of any accounting

mechanism.

Finally, as the types of hardware resources and numerical software available on the compu-

tational servers become more and more diverse, the resource broker embedded in the agent will

need greater sophistication. Some issues have already arisen with the current implementation of

NetSolve. For instance, it is di�cult for the agent to predict execution times of computations that

11

involve user-supplied functions, or for any iterative algorithm whose complexity depends on the in-

put data. Now that ScaLAPACK [15] is being integrated into NetSolve, predicting performance on

multiprocessor con�gurations must also be explored. Many di�culties arise in providing a uniform

performance metric that encompasses any type of algorithmic and hardware considerations in a

metacomputing setting. Much work will be devoted to implementing a reasonable approximation

of such a metric within the agent.

6 Conclusion

In this article, we have described how agent-based computing can help researchers use freely avail-

able numerical software in an easy and e�cient way. Several metacomputing research projects have

already used an agent-based strategy to manage a heterogeneous pool of resources. These resources

can be hardware or software, or a combination of the two.

Featured here is the agent-based project called NetSolve, developed at the University of Ten-

nessee and Oak Ridge National Laboratory. NetSolve provides the user with a pool of compu-

tational servers running on single workstations, networks of workstations, or massively parallel

systems. These servers also provide uniform access to a variety of numerical software. Moreover,

a general framework has been designed so that any arbitrary numerical library can be integrated

in a NetSolve computational server. The NetSolve agent schedules user requests and manages the

resources. The role of this agent is fundamental, and it is bound to become even more important

in the future.

A �rst version of the NetSolve software, as well as all relevant information about the system,

is available at http://www.cs.utk.edu/netsolve. We anticipate that the NetSolve software will

evolve rapidly and will become more and more interoperable with other metacomputing projects.

References

[1] The Math Works Inc. MATLAB Reference Guide. 1992.

[2] S. Wolfram. The Mathematica Book, Third Edition. Wolfram Median, Inc. and Cambridge

University Press, 1996.

[3] J. Czyzyk, M. Mesnier, and J. Mor�e. NEOS : The Network-Enabled Optimization System.

Technical Report MCS-P615-1096, Mathematics and Computer Science Division, Argonne

National Laboratory, 1996.

[4] S. Browne, J. Dongarra, E. Grosse, and T. Rowan. The Netlib Mathematical Software Repos-

itory. D-Lib Magazine, Sep. 1995. Accessible at http://www.dlib.org/.

[5] S. Browne, J. Dongarra, S. Green, K. Moore, T. Rowan, R. Wade, G. Fox, K. Hawick,

K. Kennedy, J. Pool, R. Stevens, R. Olson, and T. Disz. The National HPCC Software

Exchange. IEEE Computational Science and Engineering, 2(2):62{69, Summer 1995.

[6] A. Cline. Scalar- and Planar-Valued Curve Fitting Using Splines Under Tension. Communi-

cations of the ACM, 17:218{220, 1974.

12

[7] D. Young, D. Kincaid, J. Respess, and R. Grimes. Itpack2c: a FORTRAN package for solv-

ing large sparse linear systems by adaptive accelerated iterative methods. Technical report,

University of Texas at Austin, Boeing Computer Services Company, 1996.

[8] J. Mor�e, B. Garbow, and K. Hillstrom. Minpack : Documentation �le accessible at:

"http://www.netlib.org/minpack/readme".

[9] P. Swarztrauber. FFTPACK : Documentation �le accessible at:

"ftp://ftp.ucar.edu/ftp/dsl/lib/�tpack/readme".

[10] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-

marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, Second

Edition. SIAM, Philadelphia, PA, 1995.

[11] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for

Fortran Usage. ACM Transactions on Mathematical Software, 5:308{325, 1979.

[12] J. Dongarra, J. Du Croz, S Hammarling, and R. Hanson. An Extended Set of Fortran Basic

Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 14(1):1{32, 1988.

[13] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A Set of Level 3 Basic Linear Algebra

Subprograms. ACM Transactions on Mathematical Software, 16(1):1{17, 1990.

[14] R.W. Freund and N.M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian

linear systems. Numer. Math., 60:315{339, 1991.

[15] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-

marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users'

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[16] H. Casanova, J. Dongarra, and K. Seymour. Client User's Guide to Netsolve. Technical Report

CS-96-343, Department of Computer Science, University of Tennessee, 1996.

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM : Parallel

Virtual Machine. A Users' Guide and Tutorial for Networked Parallel Computing. The MIT

Press Cambridge, Massachusetts, 1994.

[18] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-Level Scheduling on

Distributed Heterogeneous Networks. In Proc. of Supercomputing'96, Pittsburgh. Department

of Computer Science and Engineering 0114, University of California, San Diego, 1996.

[19] R. Wolski. Dynamically Forecasting Network Performance Using the Network Weather Service.

Technical Report TR-CS96-494, U.C. San Diego, October 1996.

[20] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf : Network based

Information Library for Globally High Performance Computing. In Proc. of Parallel Object-

Oriented Methods and Applications (POOMA), Santa Fe, 1996.

13

[21] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science

Problems. In Proc. of Supercomputing'96, Pittsburgh. Department of Computer Science, Uni-

versity of Tennessee, Knoxville, 1996. to appear in The International Journal of Supercomputer

Applications and High Performance Computing.

[22] Timothy A. Howes. The Lightweight Directory Access Protocol: X.500 Lite. Technical Report

CITI-95-8, CITI, University of Michigan, July 1995.

[23] Keith Moore, Shirley Browne, Jason Cox, and Jon Gettler. The Resource Cataloging and

Distribution system. Technical Report UT-CS-97-346, University of Tennessee, 1997.

14

