
Implementation in ScaLAPACK of Divide-and-Conquer Algorithms for
Banded and Tridiagonal Linear Systems

A. Cleary

Department of Computer Science

University of Tennessee

J. Dongarra

Department of Computer Science

University of Tennessee

Mathematical Sciences Section

Oak Ridge National Laboratory

Abstract

Described here are the design and implementation of a family of algorithms for a variety of classes

of narrowly banded linear systems. The classes of matrices include symmetric and positive de�-

nite, nonsymmetric but diagonally dominant, and general nonsymmetric; and, all these types are

addressed for both general band and tridiagonal matrices. The family of algorithms captures the

general avor of existing divide-and-conquer algorithms for banded matrices in that they have three

distinct phases, the �rst and last of which are completely parallel, and the second of which is the par-

allel bottleneck. The algorithms have been modi�ed so that they have the desirable property that they

are the same mathematically as existing factorizations (Cholesky, Gaussian elimination) of suitably

reordered matrices. This approach represents a departure in the nonsymmetric case from existing

methods, but has the practical bene�ts of a smaller and more easily handled reduced system. All

codes implement a block odd-even reduction for the reduced system that allows the algorithm to scale

far better than existing codes that use variants of sequential solution methods for the reduced system.

A cross section of results is displayed that supports the predicted performance results for the algo-

rithms. Comparison with existing dense-type methods shows that for areas of the problem parameter

space with low bandwidth and/or high number of processors, the family of algorithms described here

is superior.

1 Introduction

We are concerned in this work with the solution of banded linear systems of equations

Ax = b:

The matrix A is n� n. In general, x and b are n� nrhs matrices, but it is su�cient to consider

nrhs = 1 for explanation of the algorithms. Here, nrhs is the number of right-hand sides in the

system of equations.

The matrix A is banded, with lower bandwidth �l and upper bandwidth �u. This has the following

meaning:

If i � j, then i� j > �l) Ai;j � 0; if i � j, then j � i > �u) Ai;j � 0.

Thus, the matrix entries are identically zero outside of a certain distance from the main diagonal.

We are concerned here with narrowly banded matrices, that is, n � �l; n � �u. Note that while,

1

in general, entries within the band may also be numerically zero, it is assumed in the code that all

entries within the band are nonzero. As a special case of narrowly banded matrices, we are also

concerned with tridiagonal matrices, speci�cally, �l = �u = 1.

Three classes of matrix are of interest: general nonsymmetric, symmetric and positive de�nite,

and nonsymmetric with conditions that allow for stable computations without pivoting, such as

diagonal dominance. In this article we focus on the last two cases and indicate how the family of

algorithms we present can apply to other classes of matrix. The �rst class, general nonsymmetric,

is the subject of a forthcoming report.

This article concentrates on issues related to the inclusion in ScaLAPACK [CDPW93, BCC+97]

of library-quality implementations of the algorithms discussed here. ScaLAPACK is a public-domain

portable software library that provides broad functionality in linear algebra mathematical software

to a wide variety of distributed-memory parallel systems. Details on retrieving the codes discussed

here, as well as the rest of the ScaLAPACK package, are given at the end of this article.

Algorithms for factoring a single banded matrix A fall into two distinct classes.

� Dense-type: Fine-grained parallelism such as is exploited in dense matrix algorithms is used.

The banded structure is used to reduce operation counts but not to provide parallelism.

� Divide and Conquer: Medium/large-grained parallelism resulting from the structure of

banded matrices is used to divide the matrix into large chunks that, for the most part, can be

dealt with independently.

The key parameter for choosing between the two classes of algorithms is the bandwidth. Par-

allelism of the dense methods depends on the bandwidth in the exact same way that parallelism

in dense matrix algorithms depends on the matrix size. For small bandwidths, dense methods are

very ine�cient. Reordering methods are the opposite: the smaller the bandwidth, the greater the

potential level of parallelism. However, reordering methods have an automatic penalty that reduces

the spectrum over which they are the methods of choice: because of �ll-in, they incur an operation

count penalty of approximately four compared with sequential algorithms. They are therefore lim-

ited to an e�ciency of no greater than 25%. Nonetheless, these algorithms scale well and must be

included in a parallel library.

Many studies of parallel computing reported in the literature [Wri91, AG95, GGJT96, BCD+94,

Joh87, LS84] address either the general banded problem or special cases such as the tridiagonal

problem. Wright [Wri91] presented an ambitious attempt at incorporating pivoting, both row and

column, throughout the entire calculation. His single-width separator algorithm without pivoting

is similar to the work described here. However, Wright targeted relatively small parallel systems

and, in particular, used a sequential method for the reduced system. Arbenz and Gander [AG95]

present experimental results demonstrating that sequential solution of the reduced system seriously

impacts scalability. They discuss the basic divide-and-conquer algorithms used here, but do not

give the level of detail on implementation that we present. Gustavson et al. [GGJT96] tackle the

wide-banded case with a systolic approach that involves an initial remapping of the data. Cleary

[BCD+94] presents an in-place wide-banded algorithm that is much closer to the ScaLAPACK-style

of algorithm [CDPW93], utilizing �ne-grained parallelism within BLAS-3 for parallel performance.

2

2 Divide-and-Conquer Algorithms

In this article, we are concerned only with divide-and-conquer methods that are appropriate for nar-

rowly banded matrices. The family of divide-and-conquer algorithms used in ScaLAPACK perform

the following algebraic steps. Here, P is an n� n permutation matrix (speci�ed in Section 3) that

reorders A to allow exploitation of parallelism.

First, Ax = b is multiplied on the left by P to produce the equation

PA(P�1P)x = Pb:

The reordered matrix PAP�1 is factored via Gaussian elimination as (if A is symmetric and positive

de�nite, Cholesky decomposition is used and U = LT)

PAP�1 = LU:

Substituting this factorization and the following de�nitions,

x0 = Px; b0 = Pb;

we are left with the system

LUx0 = b0:

This is solved in the traditional fashion by using triangular solutions:

Lz = b0; Ux0 = z:

The �nal step is recovery of x from x0:

x = P�1x0:

3 The Symmetric Positive De�nite Case

Dongarra and Johnsson [DJ87] showed that their divide-and-conquer algorithm, when applied cor-

rectly to a symmetric positive de�nite matrix, can take advantage of symmetry throughout, including

the solution of the reduced system. In fact, the reduced system is itself symmetric positive de�nite.

This fact can be explained easily in terms of sparse matrix theory: the algorithm is equivalent to

applying a symmetric permutation to the original matrix and performing Cholesky factorization on

the reordered matrix. This follows from the fact that the matrix PAP T resulting from a symmetric

permutation P applied to a symmetric positive de�nite matrix A is also symmetric positive de�nite

and thus has a unique Cholesky factorization L. The reordering is applied to the right-hand sides

as well, and the solution must be permuted back to the original ordering to give the �nal solution.

The key point is that, mathematically, the whole process can be analyzed and described in terms of

the Cholesky factorization of a specially structured sparse matrix.

We take this approach in the sequel. Figure 1 pictorially illustrates the user matrix upon input,

assuming the user chooses to input the matrix in lower triangular form (analogous to banded routines

in LAPACK [ABB+95], we provide the option of entering the matrix in either lower or upper form).

Each processor stores a contiguous set of columns of the matrix, denoted by the thicker lines in the

�gure. We partition each processor's matrix into blocks, as shown. The sizes of the Ai are given

respectively by Oi. The matrices Bi; Ci; Di are all � � �. Note that the last processor has only Ai.

The speci�c reordering can be described as follows:

� Number the equations in the Ai �rst, keeping the same relative order of these equations.

3

A

B

C

D

1

1

1

1

A

B

C

D

2

2
2

2

A

B

C

D

A

3

3

3

3

4

Figure 1: Divide-and-conquer partitioning of lower triangular portion of a symmetric matrix

� Number the equations in the Ci next, again keeping the same relative order of these equations.

This results in the lower triangular matrix shown in Figure 2. We stress that we do not physically

reorder the matrix but, rather, base our block operations on this mathematical reordering.

The Cholesky factorization of the matrix in Figure 2 can be computed largely with sequential

block operations, as can the solution of a linear system with these factors. The resultant mathemat-

ical Cholesky factorization is illustrated in Figure 3. Communication between processors is needed

only for a small portion of the total computation.

Figure 3 illustrates the major weakness of divide-and-conquer algorithms for banded matrices:

�ll-in. The blocks Gi and Hi represent �ll-in that approximately doubles the number of nonzeros

in the Cholesky factorization when compared with the factor produced by the sequential algorithm

applied to the original matrix. While �ll-in itself is not very expensive, the operation count of the

factorization is approximately four times that of the sequential algorithm. This can be seen in block

terms (which we give in more detail later): the factorization of the Ai sum to N�2+O(N�), which

is the same as the sequential operation count in the higher-order term. However, forming the Gi has

an operation count of 2N�2 + O(N�), and using the Gi to modify the Ci sums to N�2 + O(N�)

(the other block operations are of order less than N�2). Summing these terms gives the factor of

four degradation.

The computational process is generally regarded as occurring in three phases:

Phase 1 : Formation of the reduced system. Each processor does computations independently (for

the most part) with local parts and then combines to form the Schur complement system

4

A

B
D

1
T1

1

A

B
D2

T2

2

A

B
D3

T3

3

A
4

C

C

C

1

2

3

Figure 2: Matrix after divide-and-conquer reordering

corresponding to the parts already factored. The Schur complement is often called the reduced

system.

Phase 2 : The reduced system is solved, and the answers are communicated back to all of the processors.

Phase 3 : The solutions from Phase 2 are applied in a backsolution process.

3.1 Phase 1

We concentrate now on the local computations in Phase 1. For illustration we will look at the ith

processor. Note that the �rst and last processors do not have to perform all of these steps.

The �rst step is a communication step: Di is sent to processor i+1. This is a small communication

and is completely overlapped with the subsequent computation steps.

At this point, the portions of the matrix are stored locally, as illustrated by Figure 4. In this

�gure, we view the local computations as a frontal computation. Hence, in this case, we take Oi

factorization steps and apply them to the remaining submatrix of size 2�. This submatrix is then

subsequently used in Phase 2 to form the reduced system. Mathematically, this is exactly what the

local operations equate to. The frontal calculations have speci�c and unique structure dictated by

the way in which the frontal matrix was derived, but this remains a frontal calculation. The \divide"

in the algorithm's name is a result of the fact that the reordering allows each of the fronts so de�ned

to be independent. Only the 2� update equations at the end of each front need be coordinated with

other processors.

It is relatively easy to derive a block Cholesky formulation, as well as a partial factorization as

5

L

L

L

L

1

2

3

4

B’
D’

1
1
T G H

B’
D’2

T2

22

G H

B’
D’3

T3

33

G H4 4

L(C)1

F’2 L(C)

F’3 L(C)3

2

Figure 3: Cholesky factor of reordered divide-and-conquer matrix

is required in this case, by merely equating the blocks of the original matrix with the corresponding

blocks of the product of the desired Cholesky factors and then solving for the blocks of the Cholesky

factors. We will not reproduce this derivation here. Ultimately, the local frontal calculations will

result in the matrix illustrated in Figure 5. In this �gure, Ai is of size Oi � Oi, and Gi is of size

� �Oi. All other blocks are of size � � �, including Di and Hi; which are actually subblocks of Gi.

We now illustrate the sequence of steps necessary to arrive at this state.

0

0
0

A
2

C
2

B2

D
1
T

Figure 4: Local matrix on processor 2 after initial communication of Di

Because the reordering allows the Cholesky factorization to begin simultaneously with each of

the Ai, the �rst computational step in processor i is the factorization

Ai = LiLi

T :

This is easily done via a single call to the LAPACK [ABB+95] routine DPBTRF. The matrix resulting

after this step is illustrated in Figure 6. We allow the factors to overwrite the storage for Ai.

6

L
2

G H
E

B’ F
C’

2 2
2

2 2
2

1
D’

T

Figure 5: Local storage after completion of Phase 1

0

0
0

L

B
C

2

2
2

D1
T

Figure 6: Local matrix on processor 2 after factorization of Li

The factors just computed are used to complete the factorization of the Bi by solving

LiB
0

i

T

= Bi

T :

The matrix Bi is transposed and copied into the workspace, since the transpose is needed in the

next step. Once the matrix is in the workspace, the BLAS [DDHH84] subroutine DTRTRS is used to

compute B0

i

T
, which is copied back into the space held by Bi. Mathematically, the local matrix is

given by Figure 7.

0

0
0

L

B’
C

2

2
2

D1
T

Figure 7: Local matrix on processor 2 after modi�cation of Bi

The matrix B0

i

T
is used to modify Ci according to

C 0

i = Ci �B0

iB
0

i

T

:

Only the lower half of Ci is to be modi�ed (because of symmetry). The BLAS do not specify routines

for multiplying two triangular matrices, so the choice is to either write a new BLAS-like routine or

7

use a BLAS routine designed for a dense-by-triangular matrix multiplication. We chose the latter

route to maintain full dependence on the BLAS, although this uses more operations than necessary.

However, the assumption that � << N and the fact that these matrices are � � � make the impact

of the extra operations negligible.

Figure 8 shows the state after this computation.

0

0
0

L

C’
B’

D

2

2
2

1
T

Figure 8: Local matrix on processor 2 after modi�cation of Ci

Only at this point do the processors need to execute the receive operation for Di�1 transmitted

from the previous processor. This is received into auxiliary space because the entire matrix Gi

represents �ll-in and cannot overwrite the original matrix. Since subsequent operations operate

with GT

i
, Di�1 is actually stored in G

T

i
. This �ll-in is often referred to as the spike in this algorithm.

The calculation of GT

i
is accomplished as

LiGi

T = Di

(some liberty has been taken with the sizes of matrices in this expression, but it easy to interpret

properly), by using the LAPACK routine DTBTRS. We note that in terms of operation count, this

step is the most costly, and thus its serial e�ciency is key to the e�ciency of the entire algorithm.

Figure 9 shows the state after this computation.

0

0

L

G H

B’
C’

2

2 2

2
2

D’1
T

Figure 9: Local matrix on processor 2 after calculation of the spike �ll-in Gi

The matrix Ei represents the contribution from processor i to the diagonal block of the reduced

system stored on processor i�1, that is, C 0

i�1
. It is calculated by the BLAS routine DSYRK according

to the formula

Ei = GiGi

T :

Figure 10 shows the state after this computation.

8

0

L

G H
E

B’
C’

2

2 2

2
2

2D’
1

T

Figure 10: Local matrix on processor 2 using the spike �ll-in Gi to calculate Ei

The local computation phase is completed by computing Fi, using B
0

i
and the last � columns of

Gi, which we label as Hi. The BLAS routine DTRMM accomplishes this task, although it requires the

use of a data copy because of the way it is de�ned. However, this data copy comes for free because

Fi is also �ll-in and thus must be stored in work storage and cannot be calculated in-place. The

computation is

Fi = B0

iHi

T :

However, for ease of use in the subsequent reduced system factorization, we actually compute and

store the transpose,

Fi
T = HiB

0

i

T

:

3.2 Phase 2

Phase 2 consists of the forming and factorization of the Schur complement matrix. Each processor

contributes three blocks of size � � � to this system: Ei; Fi; C
0

i
. Each C 0

i
is added to Ei+1 to form

the diagonal blocks of the matrix, and the Fi form the o�-diagonal blocks. The resultant system is

block tridiagonal, with P � 1 blocks.

Several methods for factoring the reduced system have been proposed and implemented in the

past. For small P or small �, an e�cient algorithm is to perform an all-to-all broadcast of each

processor's portion of the reduced system, leaving the entire reduced system on each processor

[GGJT96]. Each processor then solves this system locally. The advantage of this scheme is that

there is only one communication step, albeit an expensive one whose cost grows quickly with P .

The disadvantage is that since each processor is performing redundant computation, the algorithm

is essentially serial and will not scale.

An algorithm with similar performance characteristics involves gathering the reduced system

on a single processor, solving it sequentially, and broadcasting the results. Again, the principal

disadvantage is the lack of scalability due to the sequential solution. Arbenz and Gander [AG95]

show that the best time for this algorithm occurs at P = 20, which is a disaster for scalability.

Theoretically and practically they show the need for a parallel reduced system algorithm, which is

what we have implemented for ScaLAPACK.

We use a block formulation of odd-even (or cyclic) reduction. This algorithm has log2 P stages.

At each stage, the odd-numbered blocks are used to \eliminate" the even-numbered blocks, with

the process decreasing the number of blocks left by a factor of two at each stage. Similar to Phase

1, symmetry is maintained throughout, since the actual mathematical calculation is a Cholesky

9

factorization of a symmetric permutation of the blocks of the reduced system. In this case, the

blocks are ordered so that the even-numbered blocks in Step 1 are ordered �rst, the even-numbered

blocks in Step 2 are numbered second, and so on. Such a reordering results in an elimination tree

of minimal height over all reorderings ([Cle89]).

The implementation of this algorithm requires that additional space for �ll-in be allocated, since

the odd-even reordering creates �ll-in in the reduced system (although this is of a much lower order

than the �ll-in created in Phase 1).

3.3 Phase 3

Phase 3 exists only in the solution of a linear system, whereas up to now we have discussed only

the factorization. When one is solving a linear system, the operations are performed in Phase 1 and

Phase 2 to the right-hand sides that mirror the factorization steps. We do not list these in detail.

At the end of Phase 2 of solving a linear system, each processor contains portions of the solution

to the reduced system. Each processor then distributes 2� elements of this solution to neighboring

processors to begin Phase 3. These partial solutions are easily backsubstituted into the locally stored

factors in a completely local computation stage to �nish the solution process. For brevity, we will

not detail the steps in the triangular solution process. Su�ce it to say that they have a similar but

simpler structure than the factorization process. Block operations in LAPACK and the BLAS are

used for the various operations. Multiple right-hand sides are as easily handled in this context as a

single right-hand side, and thus our code addresses this more general case.

3.3.1 Experimental Results

Results from a typical parallel system are included in Figure 11. This �gure shows computational

speeds from running the code on the IBM SP2 parallel supercomputer located at the Cornell Theory

Center, although results from other systems are qualitatively similar. The problem size has been

scaled with the number of processors so that the submatrix stored on each processor is constant;

that is, the bandwidth is �xed, but n scales as P . Two curves are given in this �gure: one is the

reciprocal of time and is the computational rate relative to the sequential operation count, while the

other is the computational rate relative to the divide-and-conquer operation count.

The results �t very well with the predicted times when considering the details of the algorithm.

The time for P = 1 reects the speed of the underlying LAPACK banded factorization routine

modulo minor additions for the parallel setup. The times for P = 2 and P = 4 show increases,

reecting the penalty of the �ll-in, which causes an operation count of approximately four times

that of the sequential algorithm. The actual megaop rating shows an almost linear increase, with a

deviation when going from P = 1 to P = 2 and P = 4 caused by the introduction of communication.

For P > 4, both graphs show almost linear performance. A closer look at the actual times shows

that the time can easily be divided into two components: Phase 1 and the reduced system. The

time for Phase 1 stays constant, since the work is essentially the same. The time for the reduced

system increases gradually as logP , and this slight increase causes the deviation from linearity in

the performance graph.

10

10
0

10
1

10
2

10
1

10
2

10
3

Number of processors

ex
ec

ut
io

n
sp

ee
d

(M
flo

p/
s)

Scaled Execution Speed for Banded Scalapack Solver on IBM SP/2

actual Mflop/s

Mflop/s relative

to opcount for

serial algorithm

Work per processor: N=1024, bandwidth=64

Figure 11: Scaled problem results for symmetric divide-and-conquer algorithm on IBM SP2

4 The Unsymmetric but Stable Case

An important class of banded matrices comprises those that are unsymmetric but that have nu-

merical properties such that Gaussian elimination without pivoting is stable. Diagonally dominant

matrices are the prototypical example in this class. ScaLAPACK provides special code to solve these

unsymmetric matrices. This is an addition to the LAPACK standard, and as such, an extension

to the subroutine naming scheme has been adopted. In addition to the two standard classes of

banded matrices, PB for positive de�nite banded and GB for general banded, the letters DB indi-

cate matrices and routines for handling them that are stable without interchanging (the mnemonic

is Diagonally-dominant-like Banded).

The literature has several divide-and-conquer algorithms for unsymmetric matrices (see, for ex-

ample, that of Lawrie and Sameh [LS84]). However, the majority of these have an unsymmetric

aspect that has two practical drawbacks: it results in unnecessarily large and complicated reduced

systems, and it complicates reusing the algorithmic structure of the symmetric positive de�nite

codes.

Our approach is to have our algorithm mirror the symmetric code as much as possible by treating

the transpose of the upper triangle of the matrix and factor in the same fashion as the lower triangle.

This approach gives our algorithm a characteristic that the algorithm of Lawrie and Sameh (as well

as others) does not: it is equivalent to performing Gaussian elimination on a suitably reordered

matrix. Thus, we can recapture established properties of Gaussian elimination for implementation

and analysis. For instance, if a symmetric positive de�nite matrix is input into the unsymmetric

code, the Cholesky factors from the symmetric positive de�nite algorithm are reproduced (modulo

diagonal scaling) by our unsymmetric code. Algorithms such as Lawrie and Sameh's do not share

11

this property. Our approach also has the desirable practical consequence that code structure can be

reused, allowing us to maintain the code for both cases in the same �le, using source preprocessing

techniques. We elaborate on this feature later.

We now give the algorithm in more detail. Figure 12 pictorially illustrates the user matrix of size

n, lower bandwidth �l, and upper bandwidth �u, upon input. Consistent with the symmetric case,

each processor stores a contiguous set of columns of the matrix, demarcated by the thicker lines in

the �gure. We partition each processor's matrix into blocks, as shown. The sizes of the Ai are given

respectively by Oi. The sizes of the smaller matrices reect the fact that two di�erent bandwidths

must be taken into account. A key algorithmic choice is that the separator matrices Ci are of size

�m, where �m = max(�l; �u). This choice induces sizes for the matrices Bi; Di of �m � �m. Note

that the last processor has only Ap.

A

BU

DU
C

DL

BL

1

1
1

1
1

1

A

BU
BL

C
DU

DL

2

2
2

2
2

2

A

BU
BL

C
DU

DL

3

3
3

3
3

3

A4

Figure 12: Divide-and-conquer partitioning of an unsymmetric matrix

The matrix is reordered by using the same algorithm as is used in the symmetric case, with �m
playing the role of � for the unsymmetric case. The resulting matrix is given in Figure 13. The

matrix is then factored in the same stages as in the symmetric case, suitably adjusted.

4.1 Phase 1

As in the symmetric case, we concentrate on computations local to a processor, and for illustration

we follow processor 2. After a preliminary communication stage in which DLi is sent to processor

i + 1, each processor's storage is illustrated in Figure 15. The local computations are viewed as

a frontal computation, with Oi factorization steps being taken and then applied to the remaining

submatrix of size 2�m. This remaining part of the front is used in the formulation and solution of

the reduced system. Ultimately, the local frontal calculations will result in the matrix labeled by

12

A

BL
DU

BU

DL

1

1
1

1

1

A

BL
DU

BU

DL

2

2

2

2
2

A

BL
DU

BU

DL

3

3

3

3
3

A4

C

C

C

1

2

3

Figure 13: Matrix after divide-and-conquer reordering

Figure 14. We now illustrate the sequence of steps necessary to arrive at this state.

U

DL

GU

BU

L

FUEGL
DU

BL FL
C

i

i

i

i

i

i

i
i

ii

i

i

Figure 14: Factored local matrix

Each processor performs an LU factorization of Ai in parallel with the other processors. The fac-

torizations are done without pivoting. Since LAPACK does not currently provide this functionality,

we have submitted a routine with this functionality for future inclusion.

The major di�erence between our parallel algorithm and that of Lawrie and Sameh occurs at

this point. Laurie and Sameh's algorithm applies both Li

�1 and Ui

�1 (via triangular solution with

L and U) to A from the left side. As we mentioned earlier, this is an asymmetric process, and it

is this that causes the complicated structure of the reduced system. The ScaLAPACK algorithm

applies Li

�1 from the left, as is done in the symmetric code; however, we apply Ui

�1 from the right,

in contrast to the algorithm of Lawrie and Sameh, as well as most others, though this is not the �rst

paper to discuss the idea, see e.g. citeArbGan95.

Note that this has the desired e�ect on the Ai: once Li

�1 has been applied, since Ai = LiUi,

Li

�1Ai = Li

�1LiUi = Ui;

13

and thus multiplying by Ui

�1 on either side reduces the main blocks to the identity.

Computationally, Li

�1 is applied from the left by solving the following systems:

LiBU
0

i = BUi;

LiGU i = DLi:

Analogously, Ui

�1 is applied from the right by solving

UiBL
0

i

T

= BLi

T ;

UiGLi

T = DUi

T :

At this point, the factors stored on each processor have been computed. They now must be used

to form the reduced system. The local matrix after these steps is illustrated in Figure 15.

0

0

0

DL

GU

BU

i

i

i

C i

U

L

GL

BL

DU

i

i

i
i

i

Figure 15: Local matrix on processor 2 after initial communication of DLi

The matrices B(L;U)0
i

T
are used to modify Ci according to

C 0

i = Ci �BL0iBU
0

i;

where all matrices in the formula are interpreted as being �m��m (the code uses the minimal sizes

possible which are smaller in the general case in which �l 6= �u).

Each processor i computes a modi�cation to Ci�1 via

Ei = GLiGUi:

Here, Ei is either �m � �l if �m = �u, or �u � �m otherwise.

Finally, the two o�-diagonal blocks FLi and FUi are computed:

FLi

T = HUi

TBL0i;

FUi = HLiBU
0

i

T

:

The matrices FLi and FUi are of size �l � �l and �u � �u, respectively.

4.2 Phase 2

Phase 2 is the forming and factorization of the reduced system. Like the symmetric case, the reduced

system is block tridiagonal and of size P � 1 blocks. The diagonal blocks have the same bandwidth

14

as A, and the o�-diagonal blocks are of size �m��m and have nonzero structure determined by the

two bandwidths.

An odd-even block algorithm with the exact same structure as that in the symmetric code is used,

although the code is modi�ed to take into account the asymmetry. Each processor has one diagonal

block and two o�-diagonal blocks, as well as a contribution to the previous processor's diagonal

block. Extreme care must be taken in the code, however, to operate on blocks of the correct size,

since reordering and the mismatched bandwidths create blocks of di�erent sizes and orientations.

4.3 Phase 3

Phase 3 has the exact same structure as in the symmetric case, where again the code has been mod-

i�ed to reect the unsymmetric matrix and the slightly varying blocksizes. Pieces of the solution are

communicated in the reverse of the factorization structure, and then a purely local backsubstitution

�nishes the solution process.

4.4 Experimental Results

Figure 16 presents results for this code on the IBM SP/2, similar to the result for the symmetric

positive de�nite code shown in Figure 11. As predicted based on the fact that both codes use the

same basic algorithm, the results for the nonsymmetric code have the same qualitative behavior as

those for the symmetric code. Actual computing rates are higher for the nonsymmetric code because

the underlying sequential kernels run faster for nonsymmetric matrices than for symmetric matrices.

The dropo� in performance as the number of processors is slightly worse for the nonsymmetric case,

partially because the on-processor computing speed is higher since that increases the communication

to computation ratio, and partially because the communication in the reduced system phase is

doubled.

5 Tridiagonal Matrices

Tridiagonal matrices form a very important practical subset of banded matrices, since many appli-

cations involve tridiagonal matrices. At the simplest, banded codes may be used to solve tridiagonal

matrices by setting �l = �u = 1, but this approach is ine�cient because subroutines are called in

the banded codes to perform operations that in the tridiagonal case are a single operation. A better

approach is to use the same algorithms we have described for banded matrices, but to specialize the

code implementation to tridiagonal matrices. An easily maintainable way to do this is via source

preprocessing that replaces the block operations in the banded code with the appropriate operations

for tridiagonal matrices, leaving the algorithmic sections of the code unchanged. This is the strategy

we have used in ScaLAPACK.

As mentioned earlier, for very small bandwidths, the reduced system is solved relatively e�ciently

by a sequential-type algorithm, since such an algorithm trades o� parallelism in the computation for

fewer communication startups, and the computation is almost trivial for small bandwidths. Thus,

an option for implementation is to keep the bulk of the algorithm the same as for banded matrices,

but to solve the reduced system on a single processor. For a number of processors below a cuto�

number that is dependent on many performance factors, the sequential algorithm will outperform the

parallel algorithm. However, to ensure scalability, a parallel algorithm must be used for a system

with more processors than this cuto�. While dynamically choosing a reduced system algorithm

15

10
0

10
1

10
1

10
2

10
3

Number of processors

ex
ec

ut
io

n
sp

ee
d

(M
flo

p/
s)

Scaled Execution Speed for Nonsymmetric Banded Scalapack Solver on IBM SP/2

actual Mflop/s

Mflop/s relative

to opcount for

serial algorithm

Work per processor: N=1024, bwl,bwu=64

Figure 16: Scaled problem results for diagonally dominant divide-and-conquer algorithm on IBM

SP2

based on various parameters is possible, we have opted to retain the parallel algorithm to guarantee

scalability for large systems.

6 Development and Maintenance Using Source Preprocess-

ing

Although the di�erent combinations of matrix bands, matrix types, precisions (four precisions are

supported in ScaLAPACK), and parameters (such as the UPLO parameter in the symmetric positive

de�nite codes and the TRANS parameter in the triangular solve codes) lead to a large quantity of

individual subroutines, the development above shows that mathematically they are very similar. We

have used this similarity to manage the development of all of these combinations in as uniform a

way as possible using source preprocessing techniques. Using a macro substitution package similar

to the C preprocessor, we maintain the bulk of the computational code in two meta-source �les,

one for factorization and another for triangular system solution. Each of these is in turn divided

into two sub�les, one for Phase 1 and a second for the reduced system, or Phase 2. This strategy

greatly facilitates maintenance, in the sense that if an algorithmic improvement or a bug �x is made

to one code, it is simultaneously made to all of them. The meta-source �le developed this way is

only fractionally larger than the individual source �les created from it.

16

7 Summary

Release 1.2 of ScaLAPACK included the �rst codes in ScaLAPACK that address banded linear

systems: the symmetric positive de�nite codes. Release 1.3 in November 1996 included three more

categories of software: the diagonally dominant unsymmetric banded codes, and the tridiagonal

codes for both symmetric positive de�nite matrices and diagonally dominant unsymmetric matrices.

All of this software has been discussed in this article.

In the near future we will release code based on new algorithms from the same family of algorithms

discussed here for the di�cult problem of general nonsymmetric matrices, incorporating partial

pivoting at all stages of the factorization and maintaining a parallel reduced system solution. A

followup to this article will detail the new algorithm and its implementation.

This article has shown the family of algorithms used to solve these systems in considerable detail,

giving not only the mathematical algorithm but also the implementational details. Performance

characteristics were predicted based on the general structure of the algorithm family, and these

predictions were con�rmed by experimental results.

These codes add considerable capability to the already comprehensive ScaLAPACK package

and �ll the largest remaining hole in the functionality of the package compared to LAPACK, the

community standard sequential linear algebra package. We anticipate that these codes, like the rest

of the ScaLAPACK package, will be adopted in parallel application codes. They have already been

included in commercially available software libraries such as IBM's PESSL and NAG's Numerical

PVM Library.

To retrieve the software described in this document, point your web browser at a netlib repository

site and follow the links to ScaLAPACK. For instance,

http://www.netlib.org/scalapack/index.html

8 Acknowledgments

The authors thank R. Clint Whaley, L. Susan Blackford, and Antoine Petitet for helpful discussions

and support with various aspects of the software development.

References

[ABB+95] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. LAPACK

Users' Guide. SIAM, 2nd edition, 1995. (Also available in Japanese, published by

Maruzen, Tokyo, translated by Dr Oguni).

[AG95] P. Arbenz and W. Gander. A survey of direct parallel algorithms for banded linear

systems. Technical report, Swiss Federal Institute of Technology, Zurich, Swizterland,

1995.

[BCC+97] S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. Scalapack:

A linear algebra library for message-passing computers. In Proceedings of 1997 SIAM

Conference on Parallel Processing, May 1997.

17

[BCD+94] R. Brent, A. Cleary, M. Dow, M. Hegland, J. Jenkinson, Z. Leyk, M. Nakanishi, M. Os-

borne, P. Price, S. Roberts, and D. Singleton. Implementation and performance of scal-

able scienti�c library subroutines on Fujitsu's VPP500 parallel-vector supercomputer.

In Proceedings of the 1994 Scalable High Performance Computing Conference, 1994.

[CDPW93] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A scalable linear algebra

library for distributed memory concurrent computers. Technical Report 53, LAPACK

Working Note, 1993.

[Cle89] A. Cleary. Algorithms for Solving Narrowly Banded Linear Systems on Parallel Comput-

ers by Direct Methods. PhD thesis, The University of Virginia, Department of Applied

Mathematics, 1989.

[DDHH84] J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. A proposal for an extended

set of Fortran basic linear algebra subprograms. Technical Memo 41, Mathematics and

Computer Science Division, Argonne National Laboratory, December 1984.

[DJ87] J. Dongarra and L. Johnsson. Solving banded systems on a parallel processor. Parallel

Computing, 5:219{246, 1987.

[GGJT96] A. Gupta, F. Gustavson, M. Joshi, and S. Toledo. The design, implementation, and

evaluation of a banded linear solver for distributed-memory parallel computers. Research

Report RC 20481, IBM, june 1996.

[Joh87] L. Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM J. Sci.

Statist. Comput., 8:354{392, 1987.

[LS84] D. Lawrie and A. Sameh. The computation and communication complexity of a parallel

banded system solver. ACM Trans. Math. Softw., 10:185{195, 1984.

[Wri91] S. Wright. Parallel algorithms for banded linear systems. SIAM J. Sci. Stat. Comput.,

12(4):824{843, 1991.

18

