
Developing numerical libraries in Java

RONALD F. BOISVERT1, JACK J. DONGARRA2, ROLDAN POZO1,
KARIN A. REMINGTON1 AND G.W. STEWART1;3

1Mathematical and Computational Sciences Division, Information Technology Laboratory, National Institute

of Standards and Technology, Gaithersburg, MD 20899 USA

(email: fboisvert,pozo,karing@nist.gov)

2Computer Science Department, University of Tennessee at Knoxville, Knoxville, TN 37996, and Oak Ridge

National Laboratory, Oak Ridge, TN

(email: dongarra@cs.utk.edu)

3Department of Computer Science, University of Maryland, College Park, MD 20742 USA

(email: stewart@cs.umd.edu)

SUMMARY

The rapid and widespread adoption of Java has created a demand for reliable and reusable

mathematical software components to support the growing number of compute-intensive ap-

plications now under development, particularly in science and engineering. In this paper we

address practical issues of the Java language and environment which have an e�ect on nu-

merical library design and development. Benchmarks which illustrate the current levels of

performance of key numerical kernels on a variety of Java platforms are presented. Finally, a

strategy for the development of a fundamental numerical toolkit for Java is proposed and its

current status is described.

1. INTRODUCTION

Mathematical software libraries were introduced in the 1960s both to promote software reuse and as a means
of transferring numerical analysis and algorithmic expertise to practitioners. Many successful libraries have
since been developed, resulting in a variety of commercial products, as well as public repositories of reusable
components such as netlib and the Guide to Available Mathematical Software [4].

Library users want components which run fast, are easily moved among computing platforms, invari-
ably produce the right answer, and are easy to understand and integrate with their applications. Thus,
e�ciency, portability, reliability and usability are of primary concern to library developers. Unfortunately,
these properties are often competing, portability and reliability often taking a toll on performance, for ex-
ample. Hence, the development of high quality portable mathematical software libraries for widely di�ering
computing environments continues to be a challenging task.

Java technology [11, 12] is leading to a revolution in network-based computing. One of the main reasons
for this is the promise of new levels of portability across a very wide range of platforms. Java is only
beginning to a�ect the scienti�c computing world. Some of the barriers to its adoption in this domain are
the perception of inadequate e�ciency, language constraints which make mathematical processing awkward,
and lack of a substantial existing base of high quality numerical software components.

In this paper we assess the suitability of the Java language for the development of mathematical software
libraries. We focus on features of the language and environment which may lead to awkward or ine�cient
numerical applications. We present case studies illustrating the performance of Java on key numerical
kernels in a variety of environments. Finally, we outline the Java Numerical Toolkit1 (JNT), which is meant
to provide a base of computational kernels to aid the development of numerical applications and to serve as
a basis for reference implementations of community de�ned frameworks for computational science in Java.

1http://math.nist.gov/jnt/



Developing numerical libraries in Java 2

2. NUMERICAL COMPUTING IN JAVA

Java is both a computer language and a run-time environment. The Java language [11] is an object-oriented
language similar to, but much simpler than, C++. Compilers translate Java programs into bytecodes for
execution the Java Virtual Machine (JVM) [12]. The JVM presents a �xed computational environment
which can be provided on any computer platform.

The resulting computing environment has many desirable features: a simple object-oriented language,
a high degree of portability, a run-time system that enforces array bounds checking, built-in exception
handling, and an automated memory manager (supported by a garbage collector), all of which lead to more
reliable software.

In this section we review key features of the Java language, assessing their e�ect on both performance
and convenience for use in numerical computing. In doing this we point out a number of de�ciencies in the
language. It is important to note, however, that many of Java's desireable features, such as its portability,
are derived from the JVM rather than the language itself. Other languages can be compiled into Java
bytecodes for execution by the JVM, and several compilers for Java extensions are under development.2

Precompilers which translate other languages, including C++, into pure Java are also under development.
If such tools achieve a high enough level of maturity and support, they too can provide the basis for a
Java-based development environments for scienti�c computing.

2.1. Arithmetic

The idea that results produced on every JVM should be bitwise identical [11] on all platforms threatens the
usability of Java for high performance scienti�c computing. While there may be some scienti�c applications
where such certainty would be useful, its strict implementation could severely degrade performance on many
platforms. Systems with hardware that support extended precision accumulators (which enhance accuracy)
would be penalized, for example, and certain code optimizations (including run-time traslation to native
code) would be disallowed.

It is also unfortunate that Java has not provided programmers with full access to the facilities of IEEE
oating-point arithmetic. Programmers do not have control of the rounding mode, for example (although
this is rarely available in high level languages). Also, the ability to (optionally) have oating-point arithmetic
throw exceptions (on the generation of a NaN, for example), would simplify coding and debugging.

2.2. Complex arithmetic

Complex arithmetic is essential in scienti�c computing. Java does not have a complex data type, although
this is not a fatal aw since new types are easy to de�ne. However, since Java does not support operator
overloading, one cannot make such types behave like the primitive types float or double. More important
than syntactic convenience, however, is that not having complex arithmetic in the language can severely
a�ect the performance of applications. This is because compilers, as well as the JVM, will be unable to
perform conventional optimizations on complex arithmetic because they are unaware of the semantics of the
class.

Since complex arithmetic is so pervasive it is necessary to establish community consensus on a Java
interface for complex classes [17].

2.3. Memory model

Perhaps the biggest di�erence in developing numerical code in Java rather than in Fortran or C results from
Java's memory model. Numerical software designers typically take information about the physical layout
of data in memory into account when designing algorithms to achieve high performance. For example,
LINPACK [7] used column-oriented algorithms and the Level 1 BLAS in order to localize memory references
for e�ciency in paged virtual memory environments. LAPACK [1] used block-oriented algorithms and the
Level 2 and 3 BLAS to localize references for e�ciency in modern cache-based systems. The ability to do
this hinged on the fact that Fortran requires two-dimensional arrays be stored contiguously by columns.

2Many of these are listed at http://grunge.cs.tu-berlin.de/�tolk/vmlanguages.html.



Developing numerical libraries in Java 3

Unfortunately, there is no similar requirement for multidimensional arrays in Java. Here, a two-dimensional
array is an array of one-dimensional arrays. Although we might expect that elements of rows are stored
contiguously, one cannot depend upon the rows themselves being stored contiguously. In fact, there is no way
to check whether rows have been stored contiguously after they have been allocated. The row-orientation of
Java arrays means that, as in C, row-oriented algorithms may be preferred over column-oriented algorithms.
The possible non-contiguity of rows implies that the e�ectiveness of block-oriented algorithms may be highly
dependent on the particular implementation of the JVM as well as the current state of the memory manager.

The Java language has no facilities for explicitly referencing subvectors or subarrays. In particular, the
approach commonly used in Fortran and C of passing the address of an array element to a subprogram which
then operates on the appropriate subarray does not work.3

2.4. Java's vector class

Despite its name, Java's vector class java.util.Vector is not really appropriate for numerics. This class is
similar in spirit to those found in the Standard Template Library of C++, that is, they are merely containers
which represent objects logically stored in contiguous locations.

Because there is no operator overloading, access to vectors via this class must be through a functional
interface. Also, Vector stores generic Objects, not simple data types. This allows a vector to contain
heterogeneous data elements | an elegant feature, but it adds overhead, and, unfortunately, complicates its
use for simple data types. To use a vector of double, for example, one needs to use Java's wrapper Double
class and perform explicit coercions.

Consider the di�erence between using native Java arrays,

double x[] = new double[10]; // using native Java arrays

double a[] = new double[10];

...

a[i] = (x[i+1] - x[i-1]) / 2.0;

and Java's Vector class,

Vector x = new Vector(10); // using Java's Vector class

Vector a = new Vector(10);

...

a.setElement(i, new Double((((Double) x.ElementAt(i+1)).doubleValue()

- ((Double) x.ElementAt(i-1)).doubleValue()) / 2.0);

Deriving a VectorDouble class from Vector which performed these coercions automatically would clean
the code up somewhat, but would introduce even more overhead by making each reference x[i] a virtual
functional call.

2.5. I/O facilities

Java's JDK 1.1 de�nes over 40 I/O classes, many of them with only subtle di�erences, making it di�cult to
choose the right one for a given task. For example, the average Java user may not immediately recognize
the di�erence between parsing tokens from strings via StringTokenzier (String) and StreamTokenizer

(StringReader(String)).
Ironically, despite these numerous I/O classes there is little support for reading oating point numbers

in exponential notation. Even if one resorts to low-level parsing routines to read oating point numbers,
the internal class java.io.StreamTokenizer parses \2.13e+6" as four separate tokens (\2.13", \e", \+",
\6.0"), even when the parseNumbers() ag is set. Furthermore, no formatted output facilities are provided,
making it very di�cult to produce readable tabulated output.

3In C one would explicitly pass an address to the procedure, but address arithmetic does not exist in Java. In Fortran one

passes an array element, which amounts to the same thing since all parameters are passed by address, but scalars are passed

by value in Java.



Developing numerical libraries in Java 4

2.6. Other inconveniences

A number of other conveniences which library developers have come to depend upon are not available in
Java. Operator overloading, which would be particularly useful for user-de�ned matrix, vector, and array
classes, as well as for complex arithmetic, would be quite useful. Finally, templates, such as those in C++,
would eliminate the need to create duplicate functions and classes for double, oat, complex, etc. The loss of
compile-time polymorphism can also lead to ine�ciencies at run-time. While these omissions are not fatal,
they signi�cantly increase the burden of numerical library developers.

Extensions to Java which provide such facilities are under development by various groups, implemented
as either precompilers producing pure Java, or as compilers for the JVM4 This may provide a reasonable
approach for a Java-centric development environment for scienti�c computing.

3. JAVA PERFORMANCE ON NUMERICAL KERNELS

For numerical computation, performance is a critical concern. Early experience with Java interpreters has led
to the common perception that applications written in Java are slow. One can get good performance in Java
by using native methods, i.e. calls to optimized code written in other languages [3]. However, this comes at
the expense of portability, which is a key feature of the language. Advances in just-in-time (JIT) compilers,
and improvements in Java run-time systems have changed the landscape in recent months, suggesting that
Java itself may indeed be suitable for many types of numerical computations. In this section we provide a
variety of benchmarks which provide a brief glimpse of the current performance of Java for simple numerical
kernels.

3.1. Run-time array bounds checking

Run-time array bounds checking is a requirement of the JVM, and improved reliability of applications makes
this feature very desirable. Fortunately, this does not necessarily imply signi�cant performance degradation
in practice. Modern processors have the ability to overlap index checks with other computation, allowing
them to cost very little. Experiments performed in C++ using the NIST Template Numerical Toolkit [13]
on a Pentium Pro with the Watcom C++ compiler (version 10.6) show that array bounds checking can add
as little as 20% overhead.

3.2. Elementary kernels

Timings for several BLAS 1 kernels with various unrolling strategies in several environments are presented
in Table 1. The baseline kernel daxpy (unroll 1) is written with no optimizations, i.e.

public static final void daxpy(int N, double a, double x[], double y[]) {

for (int i=0; i<N ; i++) y[i] += a*x[i]; }

The unroll 4 variant of daxpy uses the kernel

y[i ] += a * x[i ]; y[i+1] += a * x[i+1];

y[i+2] += a * x[i+2]; y[i+3] += a * x[i+3];

while the unroll 4-inc variant uses

y[i] += a * x[i]; i++; y[i] += a * x[i]; i++;

y[i] += a * x[i]; i++; y[i] += a * x[i]; i++;

The latter can provide performance improvements if the JVM's inc opcode is used. The ddot schemes are
similar.

The data in Table 1 show that Microsoft's SDK 2.0, for example, appears to deliver about half the
performance of C code for daxpy and ddot on the Pentium II. This is encouraging. The results also indicate
that unrolling can favorably a�ect the performance of numerical kernels in Java, but that the e�ect varies
widely among JVMs. (No JIT is currently available for the Sun JDK 1.1 under Linux.)

4See http://grunge.cs.tu-berlin.de/�tolk/vmlanguages.html.



Developing numerical libraries in Java 5

Table 1: Performance of BLAS level 1 kernels in various environments. Vector length is 200. Also varied is
the depth of loop urollings. Results in Mops.

daxpy ddot

Environment Unroll depth Unroll depth

1 4 4-inc 8 1 4 8
Pentium II, 266 MHz, Intel BLAS, Win95 96y 193y

Pentium II, 266 MHz, gcc 2.7.1 -O3, Linux 88.1 134.2 120.0 132.5 147.1 147.1 148.1
Pentium II, 266 MHz, Microsoft SDK 2.0, Win95 45.0 67.0 80.0 81.0 41.0 80.0 81.0
Pentium Pro, 200 MHz, Sun JDK 1.1.3, Linux 10.4 14.6 15.7 14.7 13.5 21.6 22.0
SGI R10000, 194 MHz, java 3.0.1, IRIX 6.2 12.0 15.0 16.7 16.1 14.4 22.0 24.4
SGI R10000, 194 MHz, f77 -O3, IRIX 6.2 128.7 128.9 129.3 133.3 188.4 188.7 186.3
yactual loop unrolling strategy unknown

Table 2: Performance of matrix multiplication in C and Java. 266 MHz Pentium II using Gnu C 2.7.2.1
(Linux) and Microsoft Java SDK 2.0 (Windows 95). C=AB, where A is LxN and B is NxM. L=M=100.
Results in Mops.

Environments

Gnu C Microsoft Java

Loop order N=100 N=16 N=100 N=16
(i,j,k) 82.2 90.6 20.4 29.1
(k,i,j) 60.4 49.0 11.4 13.9
(i,k,j) 74.1 60.0 7.6 9.4

Table 3: E�ect of loop optimizations on matrix multiplication in Java. 266 MHz Pentium II using Microsoft
Java SDK 2.0 (Windows 95). C=AB, where A is LxN and B is NxM. L=M=100. Results in Mops.

Loop Optimizations

1D indexing plus unrolling

Loop order N=100 N=16 N=100 N=16
(i,j,k) 30.4 36.4 38.3 49.2
(k,i,j) 18.2 20.8 22.0 26.0
(i,k,j) 10.4 11.2 15.8 18.5

Table 4: Performance of sparse matrix-vector multiply in Java and C. 266 MHz Pentium II using Microsoft
Java SDK 2.0 and Watcom C 10.6 (Windows 95). Results in Mops.

Environments

Matrix Order Entries Microsoft Java Watcom C

WEST0156 156 371 33.7 43.9
SHERMAN3 5,505 20,033 14.0 21.4
MCFE 765 24,382 17.0 23.2



Developing numerical libraries in Java 6

3.3. Dense matrix multiply

We next consider a straightforward matrix multiply loop, i.e.

for (int i=0; i<L; i++)

for (int j=0; j<M; j++)

for (int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

By interchanging the three for loops one can obtain six distinct matrix multiplication algorithms. We
consider three which contain row operations in the innermost loop, denoted as (i,j,k), (k,i,j) and (i,k,j)
according to the ordering of the loop indices. The �rst is the loop displayed above; it computs each element
of C in turn using a dot product. The second sweeps through C N times row-wise, accumulating one term
of the inner product in each of C's elements on each pass. The third uses a row-wise daxpy as the kernel.

In Table 2 we display the result in Mops for these kernels on a 266 MHz Pentium II using both Java
SDK 2.0 under Windows 95 and C compiled with the Gnu C compiler Version 2.7.2.1 under Linux. The
C kernels were coded exactly as the loop above, and compiled with the options -O3 -funroll-loops. We
consider the case L=N=M=100, as well as the case where L=M=100 and N=16. The latter represents a
typical rank K update in a right-looking LU factorization algorithm.

In Table 3 we explore e�ect of two additional loop optimizations for this kernel in Java on the Pentium
II. In the �rst case we attempt to reduce overhead using one-dimensional indexing. That is, we assign rows
to separate variables (e.g., Ci[j] rather than C[i][j]), while in the second we use both one-dimensional
indexing and loop unrolling (to a level of 4).

These results indicate that Java performance is still inferior to that obtained from C for Level 3 BLAS
operations, but that optimized Java can approach half the speed of C. (Note that the highly optimized
Intel BLAS run this kernel (dgemm) at about 190 Mops for L=M=N=200.) Also, relative performance of
kernels in Java may be quite di�erent than in C. As expected, however, kernels based on dot products may
be preferable in Java, and strategies such as unrolling and one-dimensional indexing may also help.

3.4. Sparse matrix-vector multiply

Finally, we consider sparse matrix-vector multiplication based on a sparse coordinate storage format [2]. In
particular, we compare an implementation in Java with those based upon the NIST Sparse BLAS Toolkit
reference implementation [14] in C on a 266 MHz Pentium II running Windows 95. The test cases, taken from
the Harwell-Boeing collection [5, 8], represent fairly small sparse matrices, but may provide an indication
of the relative performance of these languages on kernels which contain indirect index computations. The
results are presented in Table 4. Note that the higher levels of performance for WEST0156 are due to the
fact that the matrix is small enough to completely �t in cache. The results indicate that optimized Java
code which is rich in indexing such as in sparse matrix operations can perform at from 65% to 75% of the
speed of optimized C code.

4. NUMERICAL LIBRARIES IN JAVA

Several development strategies exist for building numerical libraries in Java. First, numerical classes can be
coded directly in the language. This is, of course, labor-intensive, and could lead to less than optimal code
due to ine�ciencies in the language. Nevertheless, several groups have begun to undertake such projects
[15, 16, 17]. A second option is to develop tools to translate existing Fortran libraries into Java [6, 10]. While
this provides easy access to a wealth of existing software, the severe mismatch between Fortran and Java
semantics is likely to lead to converted library source which is unnatural and ine�cient. A third option is to
use Java's native methods facility to provide an interface to existing code in other languages such as Fortran
and C. This requires one to develop a Java wrapper to each library routine, although this is far simpler than
recoding. The problem here, of course, is that Java's greatest advantage, its portability, is compromised.

In this section we discuss issues involved in the design of numerical libraries coded directly in the Java
language.



Developing numerical libraries in Java 7

4.1. Basic Design Parameters

A number of elementary design decisions must be made when developing numerical libraries in Java.

� Precision. What oating-point precisions should be supported? Most numerical computations are
currently carried out in IEEE double precision, and hence, support of double is necessary.

� Naming. What naming convention should be used for numerical classes? Should long descriptive
names or short less cumbersome names be used? Should Float and Double explicitly appear in class
names to distinguish between precisions, as has been done in early numeric class libraries?

� Vectors and Matrices. Should native Java arrays be used instead of specialized classes for vectors
and matrices? Native Java arrays have the advantage of e�cient processing and automatic array
bounds checking. If an elementary matrix class is devised, should matrices be represented internally as
one-dimensional arrays to insure contiguity of data for block algorithms? If this is done, how can we
provide for e�cient access to individual elements of arrays and vectors? (Preliminary experiments with
Microsoft SDK 1.1 using a �ve-point stencil kernel showed that use of explicit get and set methods
in a matrix class was �ve times slower than using native Java arrays.) Should indexing of vectors
and matrices be 0-based or 1-based? Should packed storage schemes be supported? One can argue
that storage is now so plentiful that for many problems the complexity of packed storage schemes for
triangular and symmetric matrices is unnecessary in many cases.

� Serializable classes. Java provides a convention that allows for I/O of arbitrary objects. Classes
which implement the Serializable interface promise to provide standard utilities for input and output
of their instances. Should all numeric classes be made Serializable?

� Functionality. How much functionality should be built into classes? Experience has shown that
extensive object-oriented design frameworks tend to restrict usability.

Because the design of object-oriented frameworks for numerical computing is a very di�cult undertaking,
and elaborate designs may, in fact, limit usability by being too complex and specialized for many users, we
propose that a toolkit approach be taken to the development of numerical libraries in Java. A toolkit is a
collection of \raw" classes which are unencumbered by most of the trappings of object-oriented computing
frameworks. They provide a rich source of numerical algorithms implementedmostly as static methods which
need not be explicitly instantiated to be used. For simplicity and e�ciency, native Java arrays are used to
represent vectors and matrices. A toolkit provides a low-level interface to numerical algorithms similar to
what one �nds in C and Fortran. Toolkits provide a source of basic numerical kernels and computational
algorithms which can be used in the construction of more facile object-oriented frameworks for particular
applications [9].

4.2. Interface to the BLAS

Because the Java memory model for multidimensional arrays is di�erent than the Fortran model, some
consideration must be given to the meaning and interpretation of function interfaces for matrix/vector
kernels like the BLAS which play a key role in any toolkit for numerical linear algebra.

As in C and C++, Java stores matrices by rows, without any guarantee that consecutive rows are actually
contiguous in memory. Java goes one step further, however. Because there are no capabilities to manipulate
pointers directly, one cannot \alias" subvectors, or reshape vectors into matrices in a direct and e�cient
manner.

For example, in Fortran, if the function SUM(N, X) sums N elements from a given vector X, then calling
it as SUM(K, X(I)) sums the elements xi; xi + 1; :::; xi+K. Unfortunately, no analogue exists in Java. We
must reference subvectors explicitly by describing the whole vector and its o�set separately, i.e. SUM(N, X,

I).
If we are to provide the same level of functionality as the Fortran and C BLAS then we must provide

several versions of each vector operation. For example, the functionality of a Fortran BLAS with calling
sequence

(..., N, X, INCX, ... )



Developing numerical libraries in Java 8

would have to be supported by

(..., int n, double x[], int xoffset, ... ), and

(..., int n, double A[][], int Arow, int Acol, ... ),

the former for a subvector, the latter for part of a column in a two-dimensional array. Thus, a Fortran call
to manipulate a subvector such as

CALL DAXPY(N, ALPHA, X(I), 1, Y(I), 1)

would be realized in Java as

BLAS.daxpy(N, alpha, x, i, y, i)

whereas a Fortran call to manipulate part of the column of an array such as

CALL DAXPY(N, ALPHA, A(I,J), LDA, B(I,J), LDB)

would be realized in Java as

BLAS.daxpy(N, alpha, A, i, j, B, i, j)

One might also want to provide simpli�ed, and more e�cient, versions which operated on entire vectors or
columns, e.g.,

(..., double x[], ...) and

(..., double A[][], int Acol, ... ),

the former for a vector, the latter for a column in a two-dimensional array.
Similarly, Level 2 and Level 3 BLAS which refer to matrices in Fortran as

(..., N, M, A, LDA, ...)

would require explicit o�sets in Java to support operations on subarrays as in

(..., int n, int m, double A[][], int Arow, int Acol, ... )

whereas routines which manipulate whole Java arrays need only have

(..., double A[][], ... )

It is clear that providing e�cient and capable linear algebra kernels in Java requires much more coding
than in Fortran or C.

4.3. Interfaces

It is also necessary to identify commonmathematical operations to be de�ned as Java interfaces. An interface
is a promise to provide a particular set of methods. User-de�ned objects implementing a well-de�ned interface
can then be operated on by library routines in a standard way.

Interfaces to generic mathematical functions are needed, for example, in order to be able to pass user-
de�ned functions to zero �nders, minimizers, quadrature routines, plotting routines, etc. If the following
existed,

public interface UnivariateFunction {

double eval(double x);}

then instances of user-de�ned classes implementing UnivariateFunction could be passed as arguments to zero
�nders, which in turn would use the eval method to sample the function. Many variants of mathematical
function interfaces would be required. For example, it would also be necessary to de�ne interfaces for bivari-
ate, trivariate and multivariate functions. It would also be necessary to de�ne interfaces for transformations
from Rm to Rn. Versions for complex variables would also be required.

Interfaces are necessary to support iterative methods for the solution of sparse linear systems. These
would de�ne standard method invocations for operations such as the application of a linear operator (matrix-
vector multiply) and preconditioner application, thus allowing the development of iterative solvers that are
independent of matrix representation.



Developing numerical libraries in Java 9

5. THE JAVA NUMERICAL TOOLKIT

In order to promote widespread reuse, community de�ned standard class libraries and interfaces are needed
for basic mathematical operations. To promote the development of such class libraries, we have begun the
construction of the Java Numerical Toolkit (JNT). JNT will contain basic numerical functions and kernels
which can be used to build more capable class libraries. In particular, the initial version of JNT includes

1. elementary matrix/vector operations (BLAS)
2. dense LU and QR matrix factorizations
3. dense linear systems and least squares problems
4. sparse linear systems using iterative methods
5. elementary and special functions, such as sign and Bessel functions I0, I1, J0, J1, K0, K1, Y0, Y1
6. random number generators
7. solution of nonlinear equations of a single variable

The toolkit includes interface de�nitions to support mathematical functions and linear solvers as in Section
4.3.

JNT will also include

1. solution of banded linear systems
2. dense eigenvalue problems
3. support for a variety of specialized matrix formats
4. additional special functions, such as hyperbolic functions, the error function, gamma function, etc.
5. one-dimensional quadrature rules

The toolkit has been initially developed using the oating-point type double. Class and method names
will not include the word Double (i.e., double will be the toolkit default). Versions based upon float will
be de�ned and developed later if there is su�cient demand.

We are using the initial version of the toolkit to develop prototype user-level classes for numerical linear
algebra. These will include explicit dense matrix classes which will contain class variables for matrix factor-
izations. When a user solves a linear system with such a matrix object, a factorization would automatically
be computed if necessary and would be available for future use, without explicit action or knowledge of the
programmer.

The Web page for the JNT project is http://math.nist.gov/jnt/.

6. CONCLUSIONS

The high level of portability, along with support for GUIs and network-based computing provided by Java
is attracting interest from the scienti�c computing community. The Java language itself provides many
facilities needed for numerical computing, but many others are lacking, such as complex arithmetic, operator
overloading, a clear memory model, and formatted I/O. These will lead to much additional e�ort on the
part of programmers, and brings the ability to achieve high levels of performance in some areas into doubt.
On the other hand, rapid progress is being made in the development of JIT compilers, and the performance
level of many Java systems are improving (delivering as much as 25-50% of optimized Fortran and C for key
kernels in some cases). A major impediment to quick progress in this area is the lack of basic mathematical
software which is plentiful in other environments. The construction of basic numerical toolkits for Java needs
to be undertaken to bootstrap the development of more sophisticated numerical applications and to provide
a basis for the development of community supported standard numerical class libraries and interfaces.

ACKNOWLEDGMENTS

This paper is a contribution of the National Institute of Standards and Technology and is not subject
to copyright. Certain commercial products are identi�ed in this paper in order to adequately document
computational experiments. Identi�cation of such products does not constitute endorsement by NIST, nor
does it imply that these are the most suitable products for the task.



Developing numerical libraries in Java 10

This work is supported in part by Defense Advanced Research Projects Agency under contract DAAH04-
95-1-0595, administered by the U.S. Army Research O�ce.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative

Methods. SIAM, Philadelphia, 1994.

[3] A. J. C. Bik and D. B. Gannon. A note on native level 1 BLAS in Java. Concurrency: Practice and

Experience, 9(11):1091{1099, Nov. 1997.

[4] R. F. Boisvert, S. Browne, J. Dongarra, and E. Grosse. Digital software and data repositories for
support of scienti�c computing. In N. Adam, B. K. Bhargava, and M. Halem, editors, Advances in

Digital Libraries, number 1082 in Lecture Notes in Computer Science, pages 61{72. Springer-Verlag,
New York, 1996.

[5] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra. The Matrix Market: A web
resource for test matrix collections. In R. F. Boisvert, editor, The Quality of Numerical Software:

Assessment and Enhancement, pages 125{137, London, 1997. Chapman & Hall.

[6] H. Casanova, J. Dongarra, and D. M. Doolin. Java access to numerical libraries. Concurrency: Practice
and Experience, 9(11):1279{1291, Nov. 1997.

[7] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK Users' Guide. SIAM,
Philadelphia, 1979.

[8] I. S. Du�, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM Trans. Math. Softw.,
15(1):1{14, Mar. 1989.

[9] M. B. Dwyer and V. Wallentine. A framework for parallel adaptive grid simulations. Concurrency:

Practice and Experience, 9(11):1293{1310, Nov. 1997.

[10] G. Fox, X. Li, Z. Qiang, andW. Zhigang. A prototype Fortran-to-Java converter. Concurrency: Practice
and Experience, 9(11):1047{1061, Nov. 1997.

[11] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison-Wesley, Reading, MA,
1996.

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. Addison-Wesley, Reading, MA,
1996.

[13] R. Pozo. Template Numerical Toolkit for linear algebra: High performance programmingwith C++ and
the Standard Template Library. International Journal of High Performance Computing Applications,
11(3), 1997. Further information about TNT may be found at http://math.nist.gov/tnt/.

[14] K. Remington and R. Pozo. Sparse blas. Working document of the Basic Linear Algebra Subprograms
Technical (BLAST) Forum. Available at http://www.netlib.org/utk/papers/blast-forum.html.

[15] S. Russell, L. Stiller, and O. Hansson. PNPACK: Computing with probabilities in Java. Concurrency:
Practice and Experience, 9(11):1333{1339, Nov. 1997.

[16] T. H. Smith, A. E. Gower, and D. S. Boning. A matrix math library for Java. Concurrency: Practice
and Experience, 9(11):1127{1137, Nov. 1997.

[17] Java language proposal. Visual Numerics, Inc., 9990 RichmondAve., Ste. 400, Houston, TX 77042-4548.
Available at http://www.vni.com/products/wpd/jnl/JNL/docs/intro.html, 1997.


