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Abstract

Recently, an algorithm-based approach usingdiskless
checkpointinghas been developed to provide fault toler-
ance for high-performance matrix operations. With this ap-
proach, since fault tolerance is incorporated into the matrix
operations, the matrix operations become resilient to any
single processor failure or change with low overhead. In
this paper, we present a technique calledmultiple check-
pointing to enable the matrix operations to tolerate a cer-
tain set of multiple processor failures by adding the capac-
ity for multiple checkpointing processors. The results on a
network of workstations have shown that this technique im-
proves not only the reliability of the computation but also
the performance of checkpointing.�

1. Introduction

Due to the price and performance of uniprocessor work-
stations and off-the-shelf networking, networks of worksta-
tions (NOWs) have become a cost-effective parallel pro-

�Youngbae Kim is partially supported by National Energy Research
Scientific Computing (NERSC) Center at Lawrence Berkeley National
Laboratory, Berkeley, CA. James Plank is supported by National Science
Foundation grant CCR-9409496 and the ORAU Junior Faculty Enhance-
ment Award. Jack Dongarra is supported by the Defense Advanced Re-
search Projects Agency under contract DAAL03-91-C-0047, administered
by the Army Research Office by the Office of Scientific Computing, U.S.
Department of Energy, under Contract DE-AC05-84OR21400 by the Na-
tional Science Foundation Science and Technology Center Cooperative
Agreement CCR-8809615.

cessing platform that is competitive with supercomput-
ers. The popularity of NOW programming environments
like PVM [10] and MPI [29] and the availability of high-
performance numerical libraries like ScaLAPACK (Scal-
able Linear Algebra PACKage) [6] for scientific computing
on NOWs show that networks of workstations are already
in heavy use for scientific programming.

The major problem with programming on a NOW is the
fact that it is prone to change. Idle workstations may be
available for computation at one moment, but gone the next
due to failure, load, or availability. We term any such event
a failure. Thus, on the wish list of scientific programmers is
a way to perform computation efficiently on a NOW whose
components are tolerant to failure.

Recently, a fault-tolerant computing paradigm based
on diskless checkpointinghas been developed in the pa-
pers [16, 17, 22, 23]. The paradigm is based on checkpoint-
ing and rollback recovery using processor and memory re-
dundancy with any reliance on disk. Its underlying idea is
to adopt theN+1 parity used by Gibson to provide reliabil-
ity in RAID (Redundant Array of Inexpensive Disks) [12].
The paradigm is an algorithm-based approach in which fault
tolerance is especially tailored to the applications.

In this paradigm, a global checkpoint is taken and main-
tained in a checkpointing processor as a checksum or a par-
ity of local checkpoints to encode the data. When a proces-
sor failure occurs, an extra idle processor replaces the failed
processor and recovers its data from remaining application
processors and the global checkpoint. For this paradigm,
two checkpointing techniques based on parity [22, 23] or
checksum and reverse computation [17], are used to incor-



porate fault tolerance into high-performance matrix opera-
tions. Throughout this paper, we call these techniquessin-
gle checkpointingbecause it employs only one checkpoint-
ing processor.

In this paper, we present a new technique calledmul-
tiple checkpointing. In multiple checkpointing, we extend
any single checkpointing technique to tolerate a certain set
of multiple processor failures simultaneously by adding the
capacity for multiple checkpointing processors. The gen-
eral idea of multiple checkpointing is to maintain coding
information inm extra processors so that if one or more (up
tom) application processors fail in the middle of computa-
tion, then they can be replaced instantly by one or more of
the extra processors.

In our implementations, we have added the capacity for
multiple checkpointing processors to the fault-tolerant ma-
trix operations using checksum and reverse computation
developed in [17]. The analytic and experimental results
have shown that using multiple checkpointing processors
improves not only the reliability of the computation but also
the performance of checkpointing. In particular, our tech-
nique reaps significant benefits from multiple checkpoint-
ing with relatively less memory by checkpointing at a finer-
grain interval.

In Section 2, we review first the basic concept of single
checkpointing and then introduce multiple checkpointing.
In Section 3, we analyze the overhead of a multiple check-
pointing technique and compare against the correponding
single checkpointing technique. In Section 4, we give a
short description of how a multiple checkpointing technique
can be incorporated in well-known algorithms in numerical
linear algebra. In Section 5, we describe implementations
in detail and show the performance of the implementations
on a cluster of 20 Sun Sparc-5 workstations connected by
a fast-switched Ethernet. In the subsequent sections, we
discuss some issues raised by our technique, compare re-
lated work, draw conclusions, and suggest avenues for fu-
ture work.

2. Checkpointing and Recovery

2.1. Basic Concept

Our technique for checkpointing and rollback recov-
ery adopts the idea ofalgorithm-based diskless checkpoint-
ing [22] and hence enables a system with fail-stop fail-
ures [31] to tolerate failures by periodically saving the entire
state and rolling back to the saved state if a failure occurs.

If the program is executing on a subset ofN processors
called application processors, there is a subset ofm idle
processors. At all points in time, a consistent checkpoint is
held in theN processors in memory. A checksum (floating-
point addition) of theN checkpoints is held in one ofm idle

processor calledcheckpointing processor. This checksum is
called theglobal checkpoint. If any processor fails, all live
processors, including the checkpointing processor, cooper-
ate in reversing the computations performed since the last
checkpoint. Thus, the data is restored at the last checkpoint
for rollback, and the failed processor’s state can be recon-
structed on the checkpointing processor as the checksum of
the global checkpoint and the remainingN � 1 processors’
local checkpoints.

In the following two subsections, two recovery models
are described—one for tolerating any single processor fail-
ure and the other for tolerating multiple processor failures.

2.2. Single-Failure Recovery Model
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Figure 1. Single-failure recovery model: be-
fore/after a failure

This model, consisting ofN application processors and
m spare processors, can handlem single failures during the
lifetime of the application. The program executes onN pro-
cessors; there is a single checkpointing processor. Figure 1
depicts how to construct checkpoints and how to recover in
the presence of a single failure. As shown, a spare processor
becomes the new checkpointing processor after recovery, if
one is available. The model therefore toleratesm single
failures.

2.3. Multiple-Failure Recovery Model

A generalization of the single-failure recovery model,
the multiple-failure recovery model consists ofN +m pro-
cessors that can tolerate up tom failures at once. Instead of
having one dedicated processor for checkpointing, the en-
tire set of application processors is divided intom groups,
and one checkpointing processor is dedicated to each group.
When one failure occurs in a group, the checkpointing pro-
cessor in the group will replace the failed one, and the appli-
cation will roll back and resume at the last checkpoint. Fig-
ure 2 shows the application processors logically configured
into a two-dimensional mesh, with a checkpointing proces-
sor dedicated to each row of processors. This model en-
ables the algorithm to tolerate a certain set of multiple fail-
ures simultaneously, one failure for each group (e.g. each
row or column of processors). This is often called theone-
dimensional parity scheme[13].
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Figure 2. A multiple-failure recovery model

2.4. Multiple Checkpointing

A multiple checkpointing technique is based on the
multiple-failure recovery model of using multiple check-
pointing processors. It can be used together with any sin-
gle checkpointing technique to tolerate multiple failures. A
simple scheme for tolerating multiple failures with multi-
ple checkpointing processors is to employone-dimensional
parity.

For the one-dimensional parity scheme, we assume that
one checkpointing processor is dedicated to each column of
a P � Q processor grid. Note that such a scheme allows
the program to tolerateQ simultaneous failures as long as
failures occur in different groups, for example, columns of
processors. With multiple checkpointing processors, each
column of processors, including its dedicated checkpoint-
ing processor, cooperates to checkpoint its part of the ma-
trix independently from the other columns of processors.
Since the checkpointing and recovery can be distributed into
groups of processors (i.e., columns of processors), the over-
head of both checkpointing and recovery can be reduced. In
addition, when the checksum is used, it reduces the possibil-
ity of overflow, underflow, and cancellation because fewer
processors are involved in each checksum. Details of this
technique can be found in [16].

3. Analysis of Checkpointing

In this section, the time complexity of checkpointing ma-
trices is analyzed. This analysis will provide a basic formula
for computing the overhead of checkpointing and recovery
in each fault-tolerant matrix operation.

Throughout this paper, a matrixA is partitioned into
square “blocks” of a user-specified block sizeb. ThenA
is distributed among the processorsP0 throughPN�1, log-
ically reconfigured as aP �Q mesh, as in Figure 3. A row
of blocks is called a “row block” and a column of blocks a
“column block.” If there areN processors andA is ann�n

matrix, each processor holdsn
Pb

row blocks andn
Qb

column
blocks, where it is assumed thatb, P , andQ dividen.
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Figure 3. Data distribution and checkpointing of a
matrix with 6�6 blocks over a 2�2 mesh of 4 pro-
cessors (using a single checkpointing technique)

3.1. Analysis of Single Checkpointing

The basic checkpointing operation works on a panel of
blocks, where each block consists ofX floating-point num-
bers, and the processors are logically configured in aP �Q

mesh (see Figure 3). The processors take the checkpoint
with a global addition. This works in a spanning-tree fash-
ion in three parts. The checkpoint is first taken rowwise,
then taken columnwise, and then sent to the checkpointing
processorPC . The first part therefore takesdlogP e steps,
and the second part takesdlogQe steps. Each step con-
sists of sending and then performing addition onX floating-
point numbers. The third part consists of sending theX

numbers toPC . We define the following terms: is the time
for performing a floating-point addition,� is the startup
time for sending a floating-point number, and� is the time
for transferring a floating-point number.

Details of this analysis can also be found in [16, 17].
The first part takesdlogP e(�+X(�+)), the second part
takesdlogQe(�+X(� + )), and the third takes�+X�.
Thus, the total time to checkpoint a panel is the following:
Tpanelckpt(X;P;Q) = (dlogP e + dlogQe)(� + X(� +

)) + (�+X�). If we assume thatX is large, the� terms
disappear, andTpanelckpt can be approximated by the fol-
lowing equation:Tpanelckpt(X;P;Q) � X(�+(dlogP e+

dlogQe)(� + )).
If we define the function

Tckpt(P;Q) =
� + (dlogP e+ dlogQe)(� + )

PQ
;(1)

thenTpanelckpt(X;P;Q) � PQXTckpt(P;Q). For con-
stant values ofP andQ, Tckpt(P;Q) is a constant. Thus,
Tpanelckpt(X;P;Q) is directly proportional toX . When an
entirem�nmatrix needs to be checkpointed, if we assume
thatm andn are large, the time complexity of checkpoint-
ing an entirem� n matrix is

Tmatckpt(m;n; P;Q) = mnTckpt(P;Q): (2)



We define thecheckpointing rateR to be the rate of
sending a message and performing addition on the mes-
sage, measured in bytes per second. In 64-bit floating point
arithmetics, we approximate the relationship betweenR and
Tckpt(P;Q) as follows:

Tckpt(P;Q) �
dlogP e+ dlogQe

PQ

8

R
: (3)

3.2. Analysis of Multiple Checkpointing

In analyzing multiple checkpointing, we assume that
one checkpointing processor is dedicated to checkpoint-
ing the data over a column of processors (i.e., aP � 1

processor grid). One checkpoint is taken over each col-
umn of processors and is then sent to the corresponding
checkpointing processor (see Figure 2). The first part takes
dlogP e(�+X(�+)) time, and the second takes�+X�

time.
Thus, as discussed before, the time overhead of check-

pointing a panel of X floating-point
numbers can be approximated by the following equation:
Tpanelckpt(X;P;Q) = X(� + dlogP e(� + )). If we also
define the function

Tckpt(P;Q) =
� + dlogP e(� + )

PQ
�
dlogP e

PQ

8

R
; (4)

the time overhead of checkpointing anm�nmatrix is then
given as in Eq. 2.

4. Fault-Tolerant Matrix Operations

We focus on three classes of matrix operations: matrix
multiplication; direct, dense factorizations; and Hessenberg
reduction. These matrix operations are at the heart of sci-
entific computations and thus have been implemented in
ScaLAPACK. The factorizations (Cholesky, LU, and QR)
are operations for solving systems of simultaneous linear
equations and finding least squares solutions of linear sys-
tems. Hessenberg reduction is an operation for solving an
nonsymmetric eigenvalue problem. Note that we choose
the right-looking algorithms for the factorizations. Their
fault-tolerant implementations using the single checkpoint-
ing technique based on checksum and reverse computation
can be found in [17].

In our implementations, we added to the matrix opera-
tions one-dimensional parity in such a way that one check-
pointing processor is dedicated to checkpoint a column of
processors.

5. Implementation Results

We implemented and executed these programs on a net-
work of Sparc-5 workstations running PVM [10]. This

network consists of 24 workstations, each with 96 Mbytes
of RAM, connected by a switched 100 megabit Ethernet.
The peak measured bandwidth in this configuration is 40
megabits per second between two random workstations.
These workstations are generally allocated for undergrad-
uate classwork, and thus are usually idle during the evening
and busy executing I/O-bound and short CPU-bound jobs
during the day. We ran our experiments on these machines
when we could allocate them exclusively for our own use.

Each implementation was run on 20 processors, with 16
application processors logically configured into a4�4 pro-
cessor grid and 4 checkpointing processors one for each
processor column. The block size for all implementations
was set at 50, and all implementations were developed for
double-precision floating-point arithmetic.

We ran two sets of tests for each instance of each prob-
lem. In the first, there is no checkpointing. In the second,
the program checkpoints, but there are no failures.

Experimental results of the implementations for matrix
multiplication, LU factorization, and Hessenberg reduction
are given in Figures 4 through 6, respectively. For compar-
ison, each figure includes experimental results of the single
and multiple checkpointing schemes. Each figure contains
a table of experimental results and graphs of running times,
percentage checkpoint overhead, and checkpointing rate ex-
perimentally determined. In each table, the fifth columns
represent the average checkpointing interval in seconds, and
the eighth columns represent the average time overhead of
each checkpoint. Note thatTC includes the initial check-
pointing overheadTinit andTA represents the total running
time of the algorithm without checkpointing.K represents
the checkpointing interval in iterations and is chosen dif-
ferently for each implementation to keep the checkpointing
overhead small. Note that we use the same value ofK for
the multiple checkpointing technique as the single check-
pointing technique.

6. Discussion

The performance results and analyses presented in the
preceding sections confirm that using multiple checkpoint-
ing processors improves considerably the performance of
checkpointing and recovery for all of the fault-tolerant im-
plementations. Thus, multiple checkpointing is more ef-
ficient and reliable by not only distributing the process of
checkpointing and rollback recovery over groups of proces-
sors but also by tolerating multiple failures in one of each
group of processors.

In particular, when multiple checkpointing is combined
with the implementations based on checksum and reverse
computation, it could reduce the checkpointing and recov-
ery overhead without using more memory. As the perfor-
mance is improved with multiple checkpointing, it could



With Single Checkpointing

n TA NC T �T
NC

TC Tinit
�TC
NC

(sec) +3 (sec) (sec) (sec) % (sec) (sec)

1000 29 2+3 43 19.1 14 48.3 8 2.7
2000 197 3+3 261 74.6 64 32.5 32 9.1
3000 644 4+3 816 171.8 172 26.7 73 20.8
4000 1547 6+3 1941 323.5 394 25.5 131 43.8
5000 2951 7+3 3682 507.9 731 24.8 205 72.6
6000 5036 8+3 6170 725.9 1134 22.5 295 98.7
7000 7920 9+3 9546 979.1 1626 20.5 406 125.1

With Multiple Checkpointing

1000 29 2+3 37 16.4 8 27.6 5 1.3
2000 197 3+3 238 68.0 41 20.8 21 5.7
3000 644 4+3 756 159.2 112 17.4 48 13.5
4000 1547 6+3 1797 299.5 250 16.2 85 27.5
5000 2951 7+3 3418 471.4 467 15.8 149 43.9
6000 5036 8+3 5855 688.8 819 16.3 191 73.9
7000 7920 9+3 9108 934.2 1188 15.0 263 94.9

K = 16;�TC = TC � Tinit; T = TA + TC;�T = T � Tinit.
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Figure 4. Matrix Multiplication: Timing Results

reduce checkpointing interval and hence use less memory
for checkpointing. In addition, the probability of overflow,
underflow, and cancellation error can be reduced.

7. Related Work

Considerable research has been carried out on algorithm-
based fault tolerance for matrix operations on parallel plat-
forms where (unlike the above platform) the computing
nodes are not responsible for storage of the input and out-
put elements [14, 27]. These methods concentrate mainly
on fault-detection and, in some cases, correction.

Checkpointing on parallel and distributed systems has
been studied and implemented in many literature [4, 7, 8,
9, 15, 18, 19, 24, 28]. All of this work, however, focuses on
either checkpointing to disk or on process replication.

Some efforts are underway to provide programming plat-
forms for heterogeneous computing that can adapt to chang-
ing load. These efforts can be divided into two groups:
those presenting new paradigms for parallel programming
that facilitate fault tolerance/migration [1, 2, 8, 11], and mi-
gration tools based on consistent checkpointing [5, 25, 30].
They cannot handle processor failures or revocation due to
availability, without checkpointing to a central disk.

8. Conclusions and Future Work

We have presented a new technique for executing cer-
tain scientific computations on a changing or faulty network
of workstations (NOWs). This technique employs multiple
checkpointing processors to adapt the algorithm-based disk-
less checkpointing to the matrix operations. It also enables

With Single Checkpointing

n TA NC T �T
NC

TC Tinit
�TC
NC

(sec) +1 (sec) (sec) (sec) % (sec) (sec)

1000 45 2 52 23.1 7 15.6 3 1.8
2000 153 3 180 51.4 27 17.6 11 4.6
3000 364 4 436 91.8 72 19.8 25 9.9
4000 745 6 884 147.3 139 18.7 43 16.0
5000 1293 7 1525 210.3 232 17.9 69 22.5
6000 2144 8 2525 297.1 381 17.8 98 33.3
7000 3211 9 3760 385.6 549 17.1 134 42.6
8000 4774 11 5590 508.2 816 17.1 175 58.3
9000 6268 12 7555 616.7 1287 20.5 229 86.4

10000 8651 13 10447 773.9 1796 20.8 282 112.1

With Multiple Checkpointing

1000 45 2 50 22.2 5 11.1 2 1.3
2000 153 3 170 48.6 17 11.1 7 2.9
3000 364 4 404 85.1 40 11.0 16 5.1
4000 745 6 825 137.5 80 10.7 29 8.5
5000 1293 7 1427 196.8 134 10.4 45 12.3
6000 2144 8 2368 278.6 224 10.4 65 18.7
7000 3211 9 3561 365.2 350 10.9 90 26.7
8000 4774 11 5271 479.2 497 10.4 115 34.7
9000 6268 12 7042 574.9 774 12.3 153 50.7

10000 8651 13 9732 720.9 1081 12.5 181 66.7

K = 16;�TC = TC � Tinit; T = TA + TC;�T = T � Tinit.
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Figure 5. Right-looking LU: Timing results

a computation designed to execute onN processors to run
on a NOW platform where individual processors may leave
and enter the NOW because of failures or load. As long as
the number of processors in the NOW is greater thanN ,
and as long as processors leave the NOW in a group, the
computation can proceed efficiently.

We have implemented this technique on the core matrix
operations and shown performance results on a fast network
of Sparc-5 workstations. This technique has been shown to
improve not only the reliability of the computation but also
the performance of the checkpointing and recovery. The re-
sults indicate that our technique can also obtain lower over-
head with less amount of extra memory while checkpoint-
ing at a finer checkpointing interval.

There are several more complicated schemes for config-
uring multiple checkpointing processors to tolerate more
general sets of multiple failures. These schemes include
two-dimensional parityandmulti-dimensional parity[13],
the Reed-Solomoncoding scheme [20, 21, 26], andEven-
odd parity[3].

One possible direction of future research is to investigate
how such schemes can be employed to tolerate different
groups of multiple failures or a random set of multiple fail-
ures. We expect it to be challenging to implement any such
fault-tolerant scheme into the target matrix operations.
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