
The Dangers of Heterogeneous Network Computing:

Heterogeneous Networks Considered Harmful

Jim Demmel� Jack Dongarray Sven Hammarlingz Susan Ostrouchovx

Ken Stanley{

Abstract

This report addresses the issue of writing reliable numerical software for net-

works of heterogeneous computers. Much software has been written for distributed

memory parallel computers and in principal such software could readily be ported

to networks of machines, such as a collection of workstations connected by Ethernet,

but if such a network is not homogeneous there are special challenges that need to

be addressed. The symptoms can range from erroneous results returned without

warning to deadlock.

Some of the problems are straightforward to solve, but for others the solutions are

not so obvious and indeed in some cases, such as the method of bisection which we

shall discuss in the report, we have not yet decided upon a satisfactory solution that

does not incur an unacceptable overhead. Making software robust on heterogeneous

systems often requires additional communication.

In this report we describe and illustrate the problems and, where possible, suggest

solutions so that others may be aware of the potential pitfalls and either avoid them

or, if that is not possible, ensure that their software is not used on heterogeneous

networks.

1 Introduction

There are special challenges associated with writing reliable numerical software on net-

works containing heterogeneous processors, that is processors which may do 
oating point

arithmetic di�erently. This includes not just machines with completely di�erent 
oating

point formats and semantics (e.g. Cray machines running `Cray arithmetic' versus work-

stations running IEEE standard 
oating point arithmetic), but even supposedly identical

machines running with di�erent compilers, or even just di�erent compiler options or

runtime environments.

�The University of California at Berkeley
yThe University of Tennessee at Knoxville and Oak Ridge National Laboratory
zThe University of Tennessee at Knoxville and The Numerical Algorithms Group Ltd, Oxford
xThe University of Tennessee at Knoxville
{The University of California at Berkeley



The basic problem occurs when making data dependent branches on di�erent processors.

The 
ow of an algorithm is usually data dependent and so slight variations in the data

may lead to di�erent processors executing completely di�erent sections of code.

This report represents the experience of two groups developing numerical software for

distributed memory message-passing systems, both of whom became aware, at about the

same time, that the software being developed may not perform correctly on heterogeneous

systems. We brie
y describe the work of these two groups in Section 2.

In Sections 3, 4 and 6 we look at three areas that require attention in developing software

for heterogeneous networks: machine parameters, where we discuss what the values of

machine parameters, such as machine precision should be; checking global arguments

and communicating 
oating point values; and algorithmic integrity, that is, how can we

ensure that algorithms perform correctly in a heterogeneous setting. The particular case

of communicating 
oating point values on IEEE machines is brie
y discussed in Section

5.

2 Motivation and Background

The challenges of heterogeneous computing discussed in this report came to light during

the development of ScaLAPACK (Choi, Demmel, Dhillon, Dongarra, Ostrouchov, Petitet,

Stanley, Walker and Whaley, 1995) and the NAG Numerical PVM Library (NAG, 1995).

ScaLAPACK is a library of high performance linear algebra routines for distributed

memory MIMD machines. It is a continuation of the LAPACK project, which has de-

signed and produced an e�cient linear algebra library for workstations, vector super-

computers and shared memory parallel computers (Anderson, Bai, Bischof, Demmel,

Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Ostrouchov and Sorensen,

1995). Both libraries contain routines for the solution of systems of linear equations, lin-

ear least squares problems and eigenvalue problems. The goals of the LAPACK project,

which continue into the ScaLAPACK project, are e�ciency so that the computationally

intensive routines execute as fast as possible; scalability as the problem size and number

of processors grow; reliability, including the return of error bounds; portability across

machines; 
exibility so that users may construct new routines from well designed com-

ponents; and ease of use. Towards this last goal the ScaLAPACK software has been

designed to look as much like the LAPACK software as possible.

Many of these goals have been attained by developing and promoting standards, especially

speci�cations for basic computational and communication routines. Thus LAPACK re-

lies on the BLAS (Lawson, Hanson, Kincaid and Krogh, 1979; Dongarra, Du Croz, Ham-

marling and Hanson, 1988; Dongarra, Du Croz, Du� and Hammarling, 1990), particularly

the Level 2 and 3 BLAS for computational e�ciency, and ScaLAPACK relies upon the

BLACS (Dongarra and Whaley, 1995) for e�ciency of communication and uses a set of

parallel BLAS, the PBLAS (Choi, Dongarra, Ostrouchov, Petitet, Walker and Whaley,

1995), which themselves call the BLAS and the BLACS. LAPACK and ScaLAPACK will



run on any machines for which the BLAS and the BLACS are available. A PVM ((Geist,

Beguelin, Dongarra, Jiang, Manchek and Sunderam, 1994)) version of the BLACS has

been available for some time and the portability of the BLACS has recently been further

increased by the development of a version that uses MPI (Message Passing Interface

Forum, 1994; Gropp, Lusk and Skjellum, 1994; Snir, Otto, Huss-Lederman, Walker and

Dongarra, 1996).

The NAG Numerical PVM Library is a small library of numerical routines also for distrib-

uted memory MIMD machines that contains routines for dense and sparse linear algebra,

including some ScaLAPACK routines, quadrature, optimization, random number gen-

eration and various utility routines for operations such as data distribution and error

handling. This Library uses much the same model for distributed memory computing as

ScaLAPACK and was developed with the same goals in mind (Hammarling, 1994).

Both ScaLAPACK and the NAG Numerical PVM Library were developed with hetero-

geneous environments in mind, as well as standard homogeneous machines. But, in both

cases during development is was realized that we could not guarantee the safe behaviour

of all our routines in a heterogeneous environment and so, for the time being, both lib-

raries are only fully supported on homogeneous machines, although they are tested on

networks of IEEE machines and are believed to work correctly in such environments. It

is, though, intended to be able to fully support other heterogeneous environments in the

near future.

3 Machine Parameters

A simple example of where an algorithmmight not work correctly is an iteration where the

stopping criterion depends on the value of the machine precision. If the precision varies

from processor to processor, di�erent processors may have signi�cantly di�erent stopping

criteria. In particular, the stopping criterion used by the most accurate processor may

never be satis�ed if it depends on data computed less accurately by other processors.

Many such problems can be eliminated by using the largest machine precision among

all participating processors. In LAPACK routine DLAMCH returns the (double precision)

machine precision (as well as other machine parameters). In ScaLAPACK this is replaced

by PDLAMCH which returns the largest value over all the processors, replacing the unipro-

cessor value returned by DLAMCH. Similarly, one should use the smallest over
ow threshold

and largest under
ow threshold over the processors being used. In a non-homogeneous

environment the ScaLAPACK routine PDLAMCH runs the LAPACK routine DLAMCH on

each processor and computes the relevant maximum or minimum value. We refer to

these machine parameters as the multiprocessor machine parameters.

It should be noted that if the code contains communication between processors within

an iteration, it will not complete if one processor converges before the others. In a het-

erogeneous environment, the only way to guarantee termination is to have one processor

make the convergence decision and broadcast that decision. This is a strategy we shall



see again in later sections.

The NAG Numerical PVM Library will use an equivalent mechanism.

4 Global Arguments and Floating Point Values

The high level routines in both ScaLAPACK and the NAG Numerical PVM Library check

arguments supplied by users for their validity in order to aid users and provide as much

reliability as possibility. In particular, global arguments are checked. When these are


oating point values they may of course, for the reasons already discussed, have di�erent

values on di�erent processors.

This raises the question of how, and even whether, such arguments should be checked,

and what action should be taken when a failure occurs. If we compare the values, they

may not be the same on di�erent processors, so we need to allow a tolerance based upon

the multiprocessor machine precision. Alternatively, we can check a global argument on

just one processor and then, if the value is valid, broadcast that value to all the other

processors. Of course this alternative approach has extra overhead, but it may be the

most reliable solution, since the library routine has algorithmic control, and puts slightly

less burden on the user.

Similar issues occur whenever we communicate a 
oating point value from one processor

to another. Unless we have special knowledge, and one such case will be discussed in the

next section, we should not assume that the target processor will have exactly the same

value as the sending processor and we must write the code accordingly.

5 Communicating Floating Point Values on IEEE Machines

The IEEE standard for binary 
oating point arithmetic (IEEE, 1985) speci�es how ma-

chines conforming to the standard should represent 
oating point values. We refer to

machines conforming to this standard as IEEE machines1. Thus, when we communicate


oating point numbers between IEEE machines we might hope that each processor has

the same value. This is a reasonable hope and will often be realized.

For example, XDR (External Data Representation, SunSoft (1993)) uses the IEEE rep-

resentation for 
oating point numbers and so a message passing system that uses XDR

will communicate 
oating point numbers without change2. PVM is an example of a sys-

tem that uses XDR. MPI suggests the use of XDR, but does not mandate its use (Snir

et al., 1996, Section 2.3.3), so presumably we cannot assume that 
oating point numbers

will be communicated without change on IEEE machines when using MPI unless we have

additional information about the implementation.

1It should be noted that there is also a radix independent standard (IEEE, 1987).
2It should be noted that it is not clear whether or not this can be assumed for denormalized numbers.



6 Algorithmic Integrity

The suggestions we have made so far certainly do not solve all the problems. We are still

left with many of those problems associated with the major concern of varying 
oating

point representations and arithmetic operations between di�erent processors, di�erent

compilers and di�erent compiler options. We illustrate the di�culties with just two

examples from ScaLAPACK, the second example giving rather more severe di�culties

than the �rst.

Consider the LAPACK routine DLARFG which computes an elementary re
ector (House-

holder transformation matrix) H such that

Hx = �e1;

where � is a scalar, x is an n element vector and e1 is the �rst column of the unit matrix.

H is represented in the form

H = I � �vvT ;

where � is a scalar and v is an n element vector. Since H is orthogonal we see that

j�j = kxk
2
:

If j�j is very small (sub-normal or close to being sub-normal), DLARFG scales x and

recomputes kxk
2
. This computation is at the heart of the LAPACK QR, and other,

factorizations (see for example (Golub and Van Loan, 1989)).

In the case of the equivalent ScaLAPACK routine PDLARFG, x will usually be distributed

over several processors, each of which participates in the computation of kxk
2
and, if

necessary, scales its portion of the vector x and recomputes kxk
2
. From the previous

discussion we can see that we clearly need to take care here, or else, in close cases, some

processors may attempt to recompute kxk
2
, while others do not, leading to completely

erroneous results, or even deadlock.

There are many other routines in the LAPACK and ScaLAPACK libraries where scal-

ing takes place, either to avoid problems associated with over
ow and under
ow, or to

improve numerical stability, as in the equilibration routines for linear equations.

One way to ensure correct computation is to put one processor in control of whether or

not scaling should take place, and for that processor to request the other processors all

either to scale, or not to scale. Having a controlling processor is a common way to solve

such problems on heterogeneous networks.

As a somewhat harder problem consider the method of bisection for �nding the eigen-

values of symmetric matrices performed by the ScaLAPACK routine PDSYEVX. In this

algorithm, the real axis is broken into disjoint intervals to be searched by di�erent pro-

cessors for the eigenvalues contained in each interval. Disjoint intervals are searched in



parallel. The algorithmdepends on a function, say count(a,b), that counts the number of

eigenvalues in the half open interval [a, b ). Using count, intervals can be subdivided into

smaller intervals containing eigenvalues until the intervals are narrow enough to declare

the eigenvalues they contain as being found. The problem here is that two processors

may not agree on the boundary between their intervals. This could result in multiple

copies of eigenvalues if intervals overlap, or missing eigenvalues if there are gaps between

intervals. Furthermore, the count function may count di�erently on di�erent processors,

so an interval [a, b ) may be considered to contain 1 eigenvalue by processor A, but

0 eigenvalues by processor B, which has been given the interval by processor A during

load balancing. This can happen even if processors A and B are identical in hardware

terms, but if the compilers on each one generate slightly di�erent code sequences for

count. In this example we have not yet decided what to do about all these problems,

so we currently only guarantee correctness of PDSYEVX for networks of processors with

identical 
oating point formats (slightly di�erent 
oating point operations turn out to be

acceptable). See (Demmel, Dhillon and Ren, 1995) for further discussion. Assigning the

work by index rather than by range and sorting all the eigenvalues at the end may give

the desired result with modest overhead. Of course, if 
oating point formats di�er across

processors, sorting is a problem in itself. This requires further investigation.

Similar problems, although not usually with quite such potentially severe consequences,

could occur in the adaptive quadrature routines of the NAG Numerical PVM Library,

where again di�erent processors are assigned di�erent intervals on which to perform

numerical integration.

Redundant work on di�erent processors which is intended to result in identical results,

may not do so in a heterogeneous environment. One approach for parallelizing the sym-

metric eigenproblem is to perform a tridiagonal QR iteration redundantly on all pro-

cessors and accumulate the resulting Givens rotations in parallel. This results in O(n2)

redundant work, O(n3) parallel work, and requires no communication. Since QR is not

forward stable, slight di�erences in the underlying arithmetic can lead to completely

di�erent rotations and completely incorrect results. This can be solved by having one

processor compute all the re
ectors and broadcast them to the other processors, but the

communication cost is substantial: O(n2).

7 Closing Remarks

We have tried to illustrate the potential di�culties concerned with 
oating point com-

putations on heterogeneous networks. Some of these di�culties are straightforward to

address, while others require considerably more thought. All of them require some ad-

ditional level of defensive programming to ensure the usual standards of reliability that

users have come to expect from packages such as LAPACK and libraries such as the

NAG Library.

We have suggested reasonably straightforward solutions to the problems associated with


oating point machine parameters and global values, and have suggested the use of a



controlling processor to solve some of the di�culties of algorithmic integrity. This can

probably be used to solve most of these problems, but in some cases at the expense of

considerable additional overhead.

A topic that we have not discussed is that of the additional testing necessary to give

con�dence in heterogeneous environments. The testing strategies that are needed are

similar to those already employed in reputable software packages such as LAPACK and

the NAG Library, but it may be very hard to produce actual test examples that would

detect incorrect implementations of the algorithms because, as we have seen, the failures

are likely to be very sensitive to the computing environment, and in addition may be

non-deterministic.

8 Acknowledgments

We thank Inderjit Dhillon and Huan Ren of the University of California at Berkeley

for valuable input to this paper, and our other ScaLAPACK and NAG colleagues for a

number of useful discussions on heterogeneous computing.

References

Anderson, E., Bai, Z., Bischof, C. H., Demmel, J., Dongarra, J. J., Du Croz, J., Green-

baum, A., Hammarling, S., McKenney, A., Ostrouchov, S. and Sorensen, D. C.

(1995). LAPACK Users' Guide, 2nd edn, SIAM, Philadelphia, PA, USA.

Choi, J., Demmel, J., Dhillon, I., Dongarra, J. J., Ostrouchov, S., Petitet, A. P., Stan-

ley, K., Walker, D. W. and Whaley, R. C. (1995). ScaLAPACK: a portable linear

algebra library for distributed memory computers { design issues and performance.

LAPACK Working Note No.95, Technical Report CS-95-283, Department of Com-

puter Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301,

USA.

Choi, J., Dongarra, J. J., Ostrouchov, S., Petitet, A. P., Walker, D. W. and Whaley,

R. C. (1995). A proposal for a set of Parallel Basic Linear Algebra Subprograms.

LAPACK Working Note No.100, Technical Report CS-95-292, Department of Com-

puter Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301,

USA.

Demmel, J., Dhillon, I. and Ren, H. (1995). On the correctness of parallel bisection in


oating point, ETNA 3: 116{149.

Dongarra, J. J., Du Croz, J., Du�, I. S. and Hammarling, S. (1990). A set of Level 3 Basic

Linear Algebra Subprograms, ACM Trans. Math. Software 16: 1{28. (Algorithm

679).



Dongarra, J. J., Du Croz, J., Hammarling, S. and Hanson, R. J. (1988). An extended

set of FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Software

14: 1{32. (Algorithm 656).

Dongarra, J. J. and Whaley, R. C. (1995). A users' guide to the BLACS v1.0. LAPACK

Working NoteNo.94,Technical Report CS-95-281, Department of Computer Science,

University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA.

Geist, A., Beguelin, A., Dongarra, J. J., Jiang, W., Manchek, R. and Sunderam, V.

(1994). PVM: Parallel Virtual Machine. A Users' Guide and Tutorial for Networked

Parallel Computing, MIT Press, Cambridge, MA, USA.

Golub, G. H. and Van Loan, C. F. (1989). Matrix Computations, 2nd edn, The Johns

Hopkins University Press, Sudbury, MA, USA.

Gropp, W., Lusk, E. and Skjellum, A. (1994). Using MPI: Portable Programming with

the Message-Passing Interface, MIT Press, Cambridge, MA, USA.

Hammarling, S. (1994). Parallel library work at NAG, in J. J. Dongarra and B. Tour-

ancheau (eds), Environments and Tools for Parallel Scienti�c Computing, SIAM,

Philadelphia, PA, USA, pp. 172{182. (Proceedings of the Second Workshop, Town-

send, TN, USA).

IEEE (1985). ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754-1985,

IEEE Press, New York, NY, USA.

IEEE (1987). ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic:

Std 854-1987, IEEE Press, New York, NY, USA.

Lawson, C. L., Hanson, R. J., Kincaid, D. and Krogh, F. T. (1979). Basic Linear

Algebra Subprograms for FORTRAN usage, ACM Trans. Math. Software 5: 308{

323. (Algorithm 539).

Message Passing Interface Forum (1994). MPI: A Message-Passing Interface standard,

Int. J. Supercomputer Applics. 8(3/4).

NAG (1995). NAG Numerical PVM Library Manual, Release 1, The Numerical Al-

gorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK.

Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W. and Dongarra, J. J. (1996).

MPI: The Complete Reference, MIT Press, Cambridge, MA, USA.

SunSoft (1993). The XDR Protocol Speci�cation. Appendix A of \Network Interfaces

Programmer's Guide", SunSoft.


