
Overview of VPE: A Visual Environment for Message-Passing

Peter Newton

Jack Dongarra

Computer Science Department

University of Tennessee

Knoxville, TN, 37996-1301

Abstract

VPE is a fully integrated visual heterogeneous paral-

lel programming environment with a message-passing

orientation. It is intended to provide a simple human

interface to the process of creating message-passing

programs. Programmers describe the process structure

of a program by drawing a graph in which nodes rep-

resent processes and messages 
ow on arcs between

nodes. They then annotate these computation nodes

with program text expressed in C or Fortran which

contains simple message-passing calls. The VPE envi-

ronment can then automatically compile, execute, and

animate the program, even on heterogeneous targets.

VPE uses PVM as its initial implementation vehi-

cle, but it is designed so as to support targeting other

message-passing systems later. It's GUI provides di-

rect user management of a heterogeneous collection of

machines to be used as a virtual parallel machine.

1 Introduction

Many existing parallel computing languages and
environments are somewhat di�cult to use. This fact
limits their acceptance among computational scien-
tists, especially when they have little prior experience
with parallel programming. Heterogeneous environ-
ments greatly exacerbate the di�culties by compli-
cating the programmer's machine model and for more
prosaic reasons such as the di�culties involved in man-
aging compiles on multiple machines.

VPE addresses these issues by providing an in-
tegrated visually-oriented programming environment
which allows users to

1. Express process structure visually, thus simplify-
ing the programming model,

2. Directly manage the hosts in a heterogeneous vir-
tual parallel machine,

3. Automatically build and distribute executables to
all machines,

4. Automatically start execution and provide run-
time monitoring facilities.

VPE is implemented on top of PVM [3], and many
aspects of its use will be familiar to PVM program-
mers. Since PVM supports heterogeneous environ-
ments, so does VPE. However, VPE programmers do
not directly use PVM primitives. Instead, VPE is de-
signed to also be readily implemented on top of other
message-passing libraries such as MPI [4].

1.1 Visual Representation

One of the hallmarks of VPE is that the program-
mer speci�es the parallel structure of his or her pro-
gram visually, by drawing a picture. VPE computa-
tions are graphs in which nodes represent processes,
and arcs represent paths upon which messages 
ow
from one process to another. Figure 1 shows an exam-
ple VPE graph that multiplies two matrices (Cannon's
algorithm). The programmer has entered a computa-
tion in C or Fortran for each node and these com-
putations make explicit calls to VPE message-passing
library routines to send and receive messages via the
named \ports" that are attached to the nodes. This
program will be fully explained in Section 3.

Visual representations have a number of advan-
tages. They permit programmers to easily view and
directly modify the structure of a program. Thus, pro-
grammers understand their programs' structure, and
this is important since high performance depends upon
careful structural design. Factors that programmers
must keep in mind include what processes their pro-
gram creates, where (machine and machine type) they



Figure 1: VPE Graph: Matrix Multiply

run, what computations the processes perform, which
processes communicate with which other processes,
the size of messages, the conditions under which mes-
sages are sent, and the granularity of the computation
that takes place between interactions with other pro-
cesses.

Graphs are a natural mechanism for organizing
such information statically. Furthermore they lend
themselves to the dynamic display via animation of
runtime performance and structural data. Animation
can be performed directly on the program as rep-
resented by the programmer. Programmers are not
forced to manually relate animated displays to sepa-
rate textual program representations.

VPE's visual program representation also lends it-
self to the development of a complete programming
environment since computations are encapsulated in
visual constructs. Such an environment can easily in-
tegrate and automate many of the steps in the pro-
gramming process including program editing, program
compiling, relating compile-time errors to speci�c at-
tributes that are in error, program execution and de-
bugging, and animation.

Many of these tasks are tedious (and serious stum-
bling blocks to novices) when using existing parallel
environments and are even worse in heterogeneous dis-
tributed environments.

The VPE project has a number of goals. They are
summarized below.

1. Allow users to specify process structure visually.
Message sources and destinations are speci�ed
graphically.

2. Automate process creation at runtime. Program-
mers need not use explicit \spawn" calls.

3. Incorporate simple message-passing primitives to
be called from node computations.

4. Be capable of using common message-passing li-
braries such as MPI and PVM as its execution
target.

5. Support heterogeneous execution if the target
message-passing library supports it.

6. Automate program compiles even in heteroge-
neous environments.

7. Automate program execution and relate runtime
performance data and animation back to the
user's original program representation.

8. Use a hierarchical name space to permit the cre-
ation of libraries (at the source level) in a simple
manner that eliminates the need for complex con-
text speci�cations.

9. Permit reuse of existing C and Fortran sequential
subprograms.

10. Add little runtime overhead to what is already
inherent in the target message-passing library.

1.2 Related Work: HeNCE and CODE

A number of other visual parallel programming lan-
guages and environments have been developed (see [6]
for a survey). In fact, the authors are associated with
the development of two previous systems, HeNCE [1],
[2] and CODE 2.0 [5][6]. VPE and HeNCE and CODE
have similar general goals, but the systems di�er sub-
stantially in detail, just as HeNCE and CODE dif-
fer. The CODE model is data
ow oriented while
HeNCE programs are (necessarily) structured \paral-
lel 
owcharts" in which nodes must declaratively spec-
ify access to shared variables in a global name space.

All three environments are based upon the idea
that nodes represent computation, and arcs represent
interactions (of some form) among nodes. HeNCE
and CODE, however, are not based upon a tradi-
tional message-passing model. The fundamental dif-
ference between them and VPE is that HeNCE and
CODE nodes represent sequential computations in
which communications with other nodes occur only
at the beginning and ending of the computation. Fur-
thermore, these communications are expressed at a
higher level of abstraction than are communications in
VPE. HeNCE and CODE programmers make no ex-
plicit calls to message-passing library routines as VPE
programmers must.



The HeNCE and CODE approach has many de-
sirable properties. Nodes are essentially calls to se-
quential subroutines expressed in standard languages.
The calls are embedded in an abstract visual spec-
i�cation of parallel structure. Programmers bene�t
from a separation of concerns. They �rst specify a
set of sequential computations and then, separately,
specify how they are to be composed into a parallel
program. Also, the debugging process can be parti-
tioned into the tasks of debugging a set of sequential
routines and debugging the parallel interactions of the
routines (which are then viewed as being atomic).

HeNCE and CODE arguably (it has not been
demonstrated by implementation) enhance the porta-
bility of parallel programs in the sense of running well
on multiple targets rather than the sense of running at
all. This is because their models lends themselves to
automatic analysis by intelligent translators. The pro-
gram's sequential components are of known (or mea-
surable) granularity and their interactions are speci-
�ed at an abstract level that promotes analysis due to
their direct and unambiguous representations. Such
analysis is far more di�cult for VPE programs since
calls to communication routines are embedded within
arbitrary C or Fortran computations.

The problem with the HeNCE/CODE approach is
that it forces computations to be split into separate
nodes when communications occur or when branching
decisions control communications. This can result in
complicated, awkward, and large graphs. Consider a
simple imaginary computation in which F and G are
sequential functions.

array A, B, C; scalar x = 0, y, z;

1: receive A from some process.

2: B = F(A);

3: Send parts of B to a set of processes, S;

4: For each process in S, receive z; x += z;

5: if (x < 0) receive y from one processes;

6: else receive y from some other process;

7: C = G(A, y, x);

Since communications cannot be embedded within
HeNCE and CODE node computations, this program
must be split into multiple nodes. In HeNCE a new
computation node is required for lines 1, 4, 5, and 6
and four additional control 
ow nodes are needed as
well. Thus eight nodes must be drawn, and six re-
quire annotation. Since communications are explicit
(however abstract) in HeNCE and CODE, the pro-
grammer must state all communications such as the
fact that the node running line 7 needs data from
the processes running nodes 1, 4, and 5 or 6. This

is wordy. CODE su�ers from similar complexities in-
volving multiple nodes or as few as one node that �res
multiple times and has very complicated explicit �ring
conditions which are supplied by the programmer.

If F and G are truly large-grain routines that are
logically decoupled, the HeNCE and CODE programs
may be reasonable, but if they are not VPE's repre-
sentation will be much simpler and more natural since
all seven lines above may be regarded as pseudo-code
for a single VPE node computation. Also, the com-
putation G always follows F due to data dependences.
The HeNCE and CODE implementations must per-
form analysis to determine that both should be run
within a single processor to avoid the overhead of send-
ing A. The VPE implementation will naturally do the
right thing since VPE directly implements the process
structure speci�ed by the programmer.

Finally, we should note that the VPE model is a su-
perset of the HeNCE and CODE models in the sense
that it is possible for the user to choose to create nodes
that communicate only at the beginning and end of
computations. VPE is less abstract than HeNCE and
CODE but provides greater expressive range. Its com-
munications are speci�ed less abstractly, but are sim-
pler than those provided by most message-passing li-
braries since VPE uses graphical speci�cation for the
sources and sinks of messages. It is also closer to cur-
rent programming practice. For better or worse, this
suggests users will be comfortable with VPE since its
learning curve is less steep.

2 Overview of VPE Environment and

Language

Programs in VPE consist of a set of graphs which
can call one another, thus permitting hierarchical pro-
gram development much as subroutines do in conven-
tional languages. Each graph contains computation
(comp) nodes that represent processes that are spec-
i�ed as C and Fortran computations which contain
calls to VPE message-passing routines. Messages 
ow
on arcs that interconnect named ports attached to
nodes. Message-passing calls reference port names.
Also, comp nodes can be replicated, in which case in-
stances are distinguished by integer-valued indices.

VPE's language is explicitly parallel. Programmers
directly specify the parallel structure of their programs
and must choose appropriate parallel structures in or-
der to achieve good performance. VPE's visual repre-
sentations assist in this task.

The VPE environment itself runs on UNIX work-



stations under X windows, although the parallel pro-
grams created within it may be executed on di�erent
types of machines. VPE programs consist of several
elements each of which is stored in a separate �le.

1. There is one project �le (ending in \.proj") that
lists all of the graphs in the program. There is
thus one project �le per program.

2. There is a graph �le (ending in \.gr") for each
graph in the project.

It is possible for a single graph �le to be included
in multiple projects. Thus, graph �les may be stored
in libraries. It is also possible for a graph �le to exist
without being in any project �le. Such a graph is
simply not used in any program at the moment.

2.1 The VPE Graphical User Interface

When VPE is run, one or more windows will appear
on the workstation screen. The project window will
always be open and will display the contents of the
project �le and the state of the virtual parallel ma-
chine. In addition, zero or more graph edit windows
will display graphs. VPE's graphical user interface is
implemented using the Tcl/Tk toolkit [7] developed
by John Ousterhout.

2.1.1 The Project Window

The project window (Figure 2) serves three purposes.
First, it lists the names of the graphs that are a part
of the current project. It is these graphs (not the set
of graphs that are open in edit windows) that will
be translated to form a complete parallel program.
Second, it lists all hosts in the current virtual paral-
lel machine as well as providing a place to show host
state during program execution. Finally, it contains
an output area for output from parallel programs and
messages from VPE.

Menu picks in the project window allow both the
list of graphs in the project and the virtual paral-
lel machine to be managed. For example, users can
add and delete items to the respective lists. VPE has
keyboard alternatives for all frequently selected menu
items.

2.1.2 Graph Edit Windows

Graphs are viewed and edited in graph edit windows
such as the one shown in Figure 1. VPE users can
open graphs even if they are not in the project since
they may wish to view a graph in another project while

Figure 2: VPE Project Window

working on the current one. Or, they may wish to cut
and paste nodes between graphs from di�erent pro-
grams.

The VPE graph editor is designed to be familiar
to users of popular personal computer based drawing
programs. Users select tools with the mouse from the
toolbar on the left and then use the tool in the white
space drawing area on the right. For example, to draw
a comp node, the user selects the Comp tool (second
down) and then clicks on white space. The Select tool
(top) is used to select objects to cut, copy, delete,
move, resize, etc. It is possible to select multiple ob-
jects simultaneously. The Open tool is used to open
attribute forms for an object.

2.1.3 Attribute Windows

Many objects in VPE have attributes that the user
must be able to view and edit. Other than required
node names, attributes are edited in attribute win-
dows which are opened by clicking the Open tool on
an object or special part of an object. For example,
to enter the computation of a computation node, the
user clicks the Open tool on the box labeled \comp"
shown on all comp nodes.

2.2 The VPE Language

Programs in VPE consist of nodes of various kinds,
arcs, and textual annotations. There are four types of
nodes and Figure 3 shows them all. Three of the four
are used in hierarchical program structuring, allowing
one graph to call another.

2.2.1 Compute Nodes

Compute (comp) nodes represent processes and are
displayed as variable sized boxes with single vertical



Figure 3: VPE Node Types

lines on the left and right side. Messages enter and
leave comp nodes via named input and output ports.
The programmer may add any number of ports to a
comp node. The programmer may also add a replica-
tion box to the node. This permits multiple copies of
the node to be run. The copies are distinguished by
integer valued indices.

Comp nodes have several attributes which the pro-
grammer must set. The node's computation is the
most important. It consists of an ordinary C or For-
tran subprogram body which contains calls to the
VPE message-passing library. These calls send mes-
sages out on ports or receive them from them.

Figure 4 shows a trivial example program as well as
the text of the nodes' computations. Node N1 sends a
single message containing an integer to node N2. The
message leaves port X and enters port Y since an arc
leads from one to the other. Notice that the node
computations mention only local port names. Thus,
nodes are \black boxes" that can be wired (by arcs)
into any graph they are pasted into. The key calls are
to vpe psend and vpe precv.

vpe_psend(Data, NumToSend, Type,

PortToSendOn);

vpe_precv(Data, DataSize, Type, NumRecvd,

PortToRecvOn);

The VPE library contains many other routines as
well. They are generally reminiscent of PVM and in-
clude bu�er management, message packing and un-
packing, and multicast routines.

The programmer may also specify the computer (or
computer type) that a node is to run on. In Figure
4, N1 runs on a machine called \comet" and N2 runs
on any IBM RS/6000 that is in the current virtual
parallel machine. A value of \any" allows a node to
run on any host in the virtual parallel machine. When
it must choose, VPE allocates nodes to machines in a
simple round robin fashion.

Figure 4: Simple Example

Finally, the programmer must supply replication
expressions for all replication boxes that have been
added to comp nodes. The syntax is

IndVar = <FromExpr>, <ToExpr>; or

IndVar = <FromExpr>, <ToExpr> by <StepExpr>;

For example, one could enter the following expres-
sion to create a two-dimensional array of nodes, all
running in parallel.

i = 1, N+1; j = 1, M;

Variables i and j are may be referenced in the
node's computation. They will contain the values of
the node instance's indices. N and M may be con-
stants or graph parameters- variables that can be read
from anywhere in the graph, but can be given values
only at graph creation time. Parameters are discussed
in detail in Section 2.2.2.

2.2.2 Call and Interface Nodes

Call nodes permit one graph to call another. In this
way, VPE supports hierarchical program development.
Call nodes have ports which correspond to actual pa-
rameters. Graphs that are called have input and
output interface nodes which are formal parameters.
There is always a port on the call node for every inter-
face node in the graph it calls. No recursion is allowed
in calls, and calls have inlining semantics.

Figure 5 shows an example of one graph (foo) call-
ing another (bar) by means of a call node named Call1.
A message that leaves port Y 1 in foo goes to port IN
of the call node and then to input interface node IN in
graph bar. From there, it follows the arc to port X on
comp node Bar 1. Similarly, messages that leave this
node's port Y , end up at port Z on comp node Cat.

Graphs also have attributes called \parameters"
and \initialization computations." Parameters are
variables that are given values by the programmer's



Figure 5: Example Call

initialization computation before any comp node pro-
cesses are started. Then, the parameters can be ac-
cessed as ordinary variables from within comp node
computations. In other words, �rst the initializa-
tion computation runs giving values to parameters,
then these values are broadcast to all comp node be-
fore they begin to run. This is a convenient way to
broadcast graph-wide information such as array sizes.
Parameters are so named because they parameterize
graphs. Once a comp node is running, changes it
makes to a parameter are not propagated to other
nodes; each node has a local copy.

Parameters can also optionally be bound in calls.
Figure 5 shows foo's parameters N and Y bound to
bar's parameters M and IN . Since foo calls bar, its
initialization computation is run �rst. Then, as bar's
initialization computation starts, M and IN have the
same values as N and Y .

3 Example program

In this section, we return to the matrix multiplica-
tion program shown in Figure 1 and explain it in full.
It demonstrates a computation involving a replicated
node.

The program is based on Cannon's algorithm, a
space-e�cient algorithm in which the input matrices
A and B are divided in block fashion on an logical
N x N grid of processors. Each logical processor will
allocate storage for only a single block of A, B, and
the output matrix C. The algorithm will involve com-
munication steps in which entire blocks are sent from
one processor to another. The algorithm is as follows.

1. Every processor (i, j) shifts its block ofA by i pro-
cesses to the left and its block of B by j processes
up, wrapping in both cases.

2. Repeat for N times, each processor (i, j) forms
C = C+A�B, where A, B, and C, are the blocks
it currently holds, and then it shifts its block of A

Figure 6: Cannon's Algorithm

one processor up and its block of B one processor
left.

Upon completion, each processor contains its block
of C. Figure 6 shows an N x N array of processors
and the step two shifting patterns of A and B.

This algorithm is quite easy to express in VPE.
The program contains two nodes. Node Driver is not
replicated, and node Mult is replicated N2 times in a
two dimensional grid fashion, as its replication shows
in Figure 1. Driver simply assigns values to A and B
and then distributes blocks of them to the appropriate
instances of Mult. Finally, it awaits a message from
each Mult instance containing a block of C.

Driver's sending phase is shown below. Blocks do
not occupy either contiguous storage or storage at a
�xed stride in conventional arrays so each row of a
block is packed separately into the message by calls
to vpe pkdouble. BSIZE is the length of a row in
a block. Notice that it and N are parameters in the
graph. Their values are set in the graph's initialization
computation.

The message containing the blocks of A and B is
sent by the call to vpe send. Here, X is the name of
the port the message will exit, and i and j are the
indices of the receiving instance of Mult. Notice that
there is an arc from port X to port BKS. The in-
stances of Mult will receive their blocks on the latter
port.

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

/* Pack a block of A and B */

vpe_initsend(VpeDataDefault);

for (k = 0; k < BSIZE; k++)

vpe_pkdouble(&A[(i*BSIZE+k)*r+j*BSIZE],

BSIZE, 1);

for (k = 0; k < BSIZE; k++)

vpe_pkdouble(&B[(i*BSIZE+k)*r+j*BSIZE],



BSIZE, 1);

/* Send blocks to node Mult[i][j] */

vpe_send(X, i, j);

}

Driver's code to receive the blocks of C follows. It
is roughly the reverse of its send code, but only one
block is in each message. Arguments i and j in the
vpe recv call are the indices of the sending instance of
Mult. The message arrives on port Y .

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

/* recv block of C from Mult[i][j] */

vpe_recv(Y, i, j);

/* Unpack block of C */

for (k = 0; k < BSIZE; k++) {

ind = (i*BSIZE+k)*r+j*BSIZE;

vpe_upkdouble(&C[ind],

BSIZE, 1);

}

}

There are three phases to the Mult nodes' com-
putation. The index variables in Mult's replication
are i and j, thus these variables are constants in the
node that identify its index. In the �rst phase, Mult
receives a message containing its block of A and B

and then performs the initial shift (which Driver could
have done). Notice that there are no indices in the
vpe recv(BKS) call. This is because Driver is not
replicated.

VPE psend and precv calls are used for the commu-
nication of blocks among the instances of Mult. These
combine all necessary initialization, packing, and com-
munication operations into one call. In all cases, the
last two arguments are the indices of the other node
involved in the communication.

vpe_recv(BKS); /* recv blocks of A, B */

vpe_upkdouble(A, n, 1);

vpe_upkdouble(B, n, 1);

/* initially shift A[i][j] by i processes to

the left and B[i][j] by j processes up,

wrapping in both cases */

vpe_psend(A, n, VPE_DOUBLE, PA,

i, pmod(j-i, N));

vpe_precv(A, n, VPE_DOUBLE, &alen, PA,

i, pmod(j+i, N));

vpe_psend(B, n, VPE_DOUBLE, PB,

pmod(i-j, N), j);

vpe_precv(B, n, VPE_DOUBLE, &alen, PB,

pmod(i+j, N), j);

Step two of the algorithm involves multiplication of
the local blocks followed by block shifting among the
Mult instances, all within a loop. Notice that there
are input and output ports called PA and PB for the
block shift messages.

for (k = 0; k < N; k++) {

MultBlocks(A, B, C, BSIZE);

if (k == N-1) break; /* we are done */

/* shift A one left and B one up */

vpe_psend(A, n, VPE_DOUBLE, PA,

i, pmod(j-1, N));

vpe_precv(A, n, VPE_DOUBLE, &alen, PA,

i, pmod(j+1, N));

vpe_psend(B, n, VPE_DOUBLE, PB,

pmod(i-1, N), j);

vpe_precv(B, n, VPE_DOUBLE, &alen, PB,

pmod(i+1, N), j);

}

Finally, each Mult instance sends its block of C to
Driver. There are no indices in the vpe psend call
since Driver is not replicated.

/* send block of C to Driver */

vpe_psend(C, n, VPE_DOUBLE, C);

Since one of the virtues of Cannon's algorithm is
to allow each node to contain storage for only a single
block ofA, B, and C, it is wasteful to have node Driver
gather them all in one place (unless needed for some
other reason). This could be avoided by having the
Mult nodes do their own I/O, and this could be done
using UNIX facilities assuming execution on a work-
station network. However, this example points out the
value an integrated parallel I/O library would have for
VPE and many other message-passing systems.

4 Building and Running Programs

VPE programs are built by picking \Build" from
the project window's Build menu. VPE will �rst
translate all graphs in the project into C or Fortran
(with PVM calls) and then distribute this source to
all necessary machines. It will then compile the source
on all of the needed machine types (in parallel). Er-
ror messages are displayed in project window's output
area.

The program can then be run by picking \Run"
from the project window's Run menu. PVM tasks



will be started on all necessary machines, and output
written to stdout and stderr will be gathered and dis-
played in the output area. VPE also allows programs
to be run manually, when VPE itself is not running.
There is no animation or host status display in this
case.

5 Animation

A runtime program animation facility is planned for
VPE. This animationwill be performed directly on the
programmer's VPE graphs. It will include highlight-
ing arcs when messages are sent on them as well as
host utilization displays in the boxes to the right of
host names in the project window.

6 VPE Versus PVM

The goal of VPE is to reduce the complexity of par-
allel programs without paying large overheads. VPE's
success can be measured by comparing it to lower-level
programming, such as simply writing programs with
PVM. This section presents some comparisons for the
matrix multiply example (N = 2, BSIZE = 100).

In terms of some simple complexity measurements
of the program text the user must write, the VPE pro-
gram is substantially simpler than its PVM equivalent.
The PVM program requires 67% more lines (com-
ments removed for all) and 85% more library (vpe
and pvm ) calls than the VPE program. Of course,
this is a small example.

VPE's performance on this program is not measur-
ably slower since it maps quite directly to PVM. VPE
spawns one more task (for initialization computations)
and sends N+1 more messages (for initialization).

7 VPE Implementation Status

At the time of this writing, most aspects of VPE are
complete, but implementation is ongoing. The follow-
ing items are implemented: program editing, annota-
tion, and drawing, virtual machine management and
dynamic host list display, program building (assuming
all machines share a common �le systems), program
execution with output capture, and online help. The
examples in this paper and many others build and run
with no manual intervention. Items remaining include
program animation and status display of the hosts in
the virtual machine. Also, building in heterogeneous

environments needs work (especially for cases where
a shared �le system is not available). Implementation
of the latter is facilitated by experiences with HeNCE
and by the use of PVM itself as �le transport and
remote execution (of build commands) facility. The
portability and support for heterogeneous computa-
tion of PVM itself is also a key enabling technology.

Contact newton@cs.utk.edu for information on how
to obtain VPE. It is free and available to all in source
or binary form.

Acknowledgments

This research is supported in part by NSF
grant NSF-ASC-9214149 and by PICS subcontract
11B99737C.

References

[1] A. Beguelin, J. Dongarra, G. A. Geist, R.
Manchek, and V. S. Sunderam, \Graphical de-
velopment tools for network-based concurrent su-
percomputing," Proceedings of Supercomputing 91,
pp. 435-444, Albuquerque, 1991.

[2] A. Beguelin, J. Dongarra, G. A. Geist, and V. S.
Sunderam, \Visualization and Debugging in a Het-
erogeneous Environment," IEEE Computer, Vol.
26, No. 6, June, 1993.

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, V. Sunderam, PVM: Parallel Vir-

tual Machine: A User's Guide and Tutorial for

Networked Parallel Computing, MIT Press, Cam-
bridge, MA, 1994.

[4] Message Passing Interface Forum, \MPI: A
Message-Passing Interface Standard," Journal of

Supercomputing Applications, Vol. 8, No. 3/4,
1994.

[5] P. Newton and J.C. Browne, \The CODE 2.0
Graphical Parallel ProgrammingLanguage," Proc.
ACM Int. Conf. on Supercomputing, July, 1992.

[6] P. Newton, \A Graphical Retargetable Parallel
Programming Environment and Its E�cient Im-
plementation," Technical Report TR93-28, Dept.
of Computer Sciences, Univ. of Texas at Austin,
1993.

[7] J. Ousterhaut, Tcl and the Tk Toolkit, Addison-
Wesley, Reading, MA,1994.


