
Future Linear Algebra Libraries

Jack Dongarra

November 22, 1996

1. Traditional Libraries. The ultimate development of fully mature parallel scalable libraries

will necessarily depend on breakthroughs in many other supporting technologies. Development of

scalable libraries cannot wait, however, until all of the enabling technologies are in place. The

reason is twofold: (1) the need for such libraries for existing and near-term parallel architectures

is immediate, and (2) progress in all of the supporting technologies will be critically dependent on

feedback from concurrent e�orts in library development.

The linear algebra community has long recognized that we needed something to help us in

developing our algorithms into software libraries. Several years ago, as a community e�ort, we put

together a de facto standard for identifying basic operations required in our algorithms and software.

Our hope was that the standard would be implemented on the machines by many manufacturers

and that we would then be able to draw on the power of having that implementation in a rather

portable way. We began with those BLAS operations designed for basic matrix computations.

Since on a parallel system message passing is critical we have been involved with the development

of message passing standards. Both PVM and MPI have helped in the establishment of standards

and the promotion of portable software that is critical for software library work.

2. User Interfaces. As computer architectures and programming paradigms become increas-

ingly complex, it becomes desirable to hide this complexity as much as possible from the end user.

The traditional user interface for large, general-purpose mathematical and scienti�c libraries is to

have users write their own programs (usually in Fortran) that call on library routines to solve

speci�c subproblems that arise during the course of the computation. When extended to run on

parallel architectures, this approach has only a limited ability to hide the underlying architectural

and programming complexity from the user. As we extend the conventional notion of mathematical

and scienti�c libraries to scalable architectures, we must rethink the conventional concept of user

interface and devise alternate approaches that are capable of hiding architectural, algorithmic, and

data complexity from users.

One possible approach is that of a \problem solving environment," typi�ed by current packages

like MATLAB, which would provide an interactive, graphical interface for specifying and solving

scienti�c problems, with both algorithms and data structures hidden from the user because the

package itself is responsible for storing and retrieving the problem data in an e�cient distributed

manner. Such an approach seems especially appropriate in keeping with the trend toward graphical

workstations as the primary user access to computing facilities, together with networks of compu-

tational resources that include various parallel computers and conventional supercomputers. The

1



ultimate hope would be to provide seamless access to such computational engines that would be

invoked selectively for di�erent parts of the user's computation according to whichever machine

is most appropriate for a particular subproblem. We envision at least two interfaces for a library

in linear algebra. One would be along conventional lines (LAPACK-style) for immediate use in

conventional programs that are being ported to novel machines, and the other would be in the

form of a problem solving environment (MATLAB-style). The two proposed interface styles are

not inconsistent or incompatible: the problem solving environment can in fact be built on top of

software that is based on a more conventional interface.

3. Heterogeneous Networking. Current trends in parallel architectures, high-speed net-

works, and personal workstations suggest that the computational environment of the future for

working scientists will require the seamless integration of heterogeneous systems into a coherent

problem-solving environment. Graphical workstations will provide the standard user interface, with

a variety of computational engines and data storage devices distributed across a network. The di-

versity of parallel architectures means that inevitably di�erent computational tasks will be more

e�cient on some than on others, with no single architecture uniformly superior. Thus, we expect

the \problem-solving environment" envisioned above eventually to migrate to a heterogeneous net-

work of workstations, �le servers, and parallel computation servers. The various computational

tasks required to solve a given problem would automatically and transparently be targeted to the

most appropriate computational engine on the network. System resources would be shared among

many users, but in a somewhat di�erent manner than conventional timesharing computer systems.

We have already made important �rst steps toward achieving these goals with systems like PVM

and MPI, which supplies the low-level services necessary to coordinate the use of multiple work-

stations and other computers for individual jobs, and this system could serve as the foundation for

a complete problem-solving environment of the type we envision.

Network computing techniques such as NetSolve o�ers the ability to look for computational

resources on a network for a submitted problem (which can be a single LAPACK, ScaLAPACK or

Matlab function call), choose the best one available, solve it (with retry for fault tolerance) and

return the answer to the user. This system is available for Fortran, C, and Matlab users.

4. Software Tools and Standards. An ambitious development e�ort in scalable libraries

will require a great deal of supporting infrastructure. Moreover, the portability of any library is

critically dependent on adherence to standards. In the case of software for parallel architectures,

precious few standards exist, so new standards must evolve along with the research and develop-

ment. A particularly important area for scalable distributed-memory architectures is internode

communication. The BLAS have proven to be very e�ective in assisting portable, e�cient software

for sequential and some of the current class of high-performance computers. We are investigating

the possibility of expanding the set of standards that have been developed. There is a need for a

light weight interface to much of the functionality of traditional BLAS. In addition, iterative and

sparse direct methods require additional functionality not in traditional BLAS. Numerical methods

for dense matrices on parallel computers require high e�ciency kernels that provide functionality

similar to that in traditional BLAS on sequential machines.

Software tools are also of great importance, both for developers to use in designing and tuning

the library software, and for end-users to monitor the e�ciency of their applications.

2



Conclusions

1. In spite of a lack of enabling technologies, library development cannot wait for research in

programming languages, compilers, software tools, and other areas to mature, but must be

done in conjunction with work in these areas. The the time to begin is now.

2. The user{library interface needs rethinking. It is not clear that the conventional library

interface will be adequate to hide the underlying complexity from the user.

3. Object-oriented programming will be required to develop portable libraries that allow the

user to work at an appropriate conceptual level.

4. Work on algorithms, particularly linear algebra, is important and cannot be isolated from

general library development.

5. Language standards are important. The lack of language standards is the most signi�cant

obstacle to the development of communication libraries. A language standard must emerge

before a software tool \development sweep" can begin.

These are some of the major research issues in developing scalable parallel linear algebra li-

braries.

3


