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The Chebyshev tau method is examined in detail for a variety of eigenvalue problems
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concentrate on determining the whole of the top end of the spectrum in parameter ranges

beyond those often explored. The method employing a Chebyshev representation of the

fourth derivative operator, D4; is compared with those involving the second and �rst

derivative operators, D2;D, respectively. The latter two representations require use of

the QZ algorithm in the resolution of the singular generalised matrix eigenvalue problem
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1. Introduction

There has been much recent attention directed at solving di�cult eigenvalue problems for

di�erential equations like the Orr - Sommerfeld one, with particular interest in the removal

of spurious eigenvalues or calculations in high Reynolds number ranges, cf. Abdullah &

Lindsay [1], Davey [7], Fearn [13], Gardner et al. [14], Huang & Sloan [17], Lindsay & Og-

den [18], McFadden et al. [19], Orszag [22], and Zebib [30]. Equations of Orr-Sommerfeld

type govern the stability of shear and related ows which have important application in

many �elds. One such �eld is climate modelling with questions like determining an expla-

nation for the origin of the mid-latitude cyclone which in turn is responsible for producing

the high and low pressure regions from which variable weather patterns arise. Another

application is to shear ows in electrohydrodynamic (EHD) systems which have industrial

relevance in the invention of devices employing the electroviscous e�ect or those utilizing

charge entrainment, such as EHD clutch development, or EHD high voltage generators.

Yet other important mundane applications include the prediction of landslides, and ow

over an aeroplane wing covered in de-icer. These topics will form part of future research.

The goal of this paper is to describe how to implement in an e�cient way a Chebyshev

tau - QZ algorithm method for �nding eigenvalues and eigenfunctions in di�cult but

practical problems which occur in hydrodynamical contexts. We employ a technique which

systematically writes the di�erential equations which occur as systems of second order

equations in order to utilise the growth properties of the Chebyshev matrices which arise.

One could argue that there are several other methods of �nding eigenvalues/eigenfunctions

and this is true. Indeed, we mention �nite di�erence discretization coupled with a matrix

technique such as the QR algorithm. We believe the method advocated here is, in general,

more accurate and e�cient. Other options are to employ a �nite di�erence technique

followed by inverse Rayleigh iteration, or use of compound matrices; the latter is discussed

in e.g. Drazin & Reid [11], Straughan & Walker [27]. These are two viable options if one

is primarily interested in only one eigenvalue. In certain hydrodynamic stability problems

one may be interested in only one eigenvalue, namely the (dominant) one which is likely

to contribute the most destabilizing mode in a linear instability analysis. If one can show

a priori that a particular eigenvalue is the dominant one then a method which tracks a

single eigenvalue is useful. However, for stability problems where the uid layer is sheared

it is usually not possible to show one eigenvalue is dominant. In addition, recent work

has demonstrated the necessity to calculate many eigenvalues, see e.g. Butler & Farrell

[3], Reddy & Henningson [23]. The Chebyshev tau - QZ algorithm method we describe

�nds all the eigenvalues / eigenfunctions we require in a very e�cient manner. Finally, one
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might wish to use a pseudospectral (collocation) technique, see e.g. Huang & Sloan [17].

Again, this is a very viable alternative. However, we believe the Chebyshev tau technique

is easier to implement for problems in a cylindrical or spherical geometry where there are

terms like (m=r)d=dr present. Also, the growth properties of the Chebyshev tau method

are likely to be better. We describe below three versions of the Chebyshev tau method

which we refer to as D4;D2 and D methods due to the order of the highest derivatives we

discretize. It will be seen that we basically recommend the D2 alternative because it has

better growth properties than the D4 one, whereas it makes more e�cient use of the QZ

algorithm than the D method which requires matrices which are twice as large.

In order to introduce some of the notation used in the uid dynamics literature and also

to describe the Chebyshev tau technique we consider a very elementary, but illuminating,

example. Consider the equation and boundary conditions,

Lu �u00 + �u = 0; x 2 (�1; 1);
u(�1) = u(1) = 0;

(1:1)

where the di�erential operator L is de�ned as indicated.

Now write u as a �nite series of Chebyshev polynomials

u =

N+2X
k=0

ukTk(x); (1:2)

although the underlying logic is that (1.2) represent truncations of an in�nite series. Due

to the truncation, the tau method argues that rather than solving (1.1) one instead solves

the equation

Lu = �1TN+1 + �2TN+2; (1:3)

where �1; �2 are tau coe�cients which may be used to measure the error associated with the

truncation of (1.1). In an ordinary di�erential equation setting as opposed to an eigenvalue

background, explicit use of the tau coe�cnets as error bounds may be found in Fox [13].

To reduce (1.1) to a �nite-dimensional problem the inner product with Ti is taken of

(1.3) in the weighted L2(�1; 1) space with inner product

(f; g) =

Z 1

�1

fgp
1� x2

dx ;

and associated norm k � k: The Chebyshev polynomials are orthogonal in this space, and

then from (1.3) we obtain (N + 1) equations

(Lu; Ti) = 0 i = 0; 1; : : : ;N: (1:4)
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There are two further conditions which arise from (1.3),

(Lu; TN+j) = �jkTN+jk2; j = 1; 2;

and these may e�ectively be used to calculate the � 's. The two remaining conditions are

found from the boundary conditions, which since Tn(�1) = (�1)n; yield

N+2X
n=0

(�1)nun = 0;

N+2X
n=0

un = 0: (1:5)

Equations (1.4) and (1.5) yield a system of (N + 3) equations for the (N + 3) unknowns

ui; i = 0; : : : ;N + 2:

The derivative of a Chebyshev polynomial is a linear combination of lower order Cheby-

shev polynomials, in fact

T 0

n = 2n

n�1X
k=1

Tk; n even;

T 0

n = 2n

n�1X
k=2

Tk + nT0; n odd:

(1:6)

Then (1.4) become

u
(2)

i + �ui = 0; i = 0; : : : ;N; (1:7)

where the coe�cients u
(2)

i are given by

u
(2)

i =
1

ci

p=N+2X
p=i+2
p+i even

p(p2 � i2)up; (1:8)

with the numbers ci being de�ned by c0 = 2; ci = 1; i = 1; 2; : : : : (Actually, (1.8) is really

a truncation to the N + 2nd polynomial of an in�nite expansion.) Equations (1.7) and

(1.5) represent a matrix equation

Ax = ��Bx; (1:9)

with x = (u0; : : : ; uN+2)
T : However, the B matrix is inevitably singular due to the way

the boundary condition rows are added to A: Indeed, the last two lines of B are composed

of zeros, while the upper left (N + 1)� (N + 1) part is simply the identity.
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To clarify this point, we observe

u0 =

N+2X
s=0

usT
0

s(x)

=

N+2X
s=0

us

�N+2X
r=0

DrsTr

�

=

N+2X
r=0

�N+2X
s=0

Drsus

�
Tr

and so we may make the identi�cation

u(1)r =

N+2X
s=0

Drsus:

Similarly,

u00 =

N+2X
r=0

�N+2X
s=0

Drsu
(1)
s

�
Tr

and, therefore,

u(2)r =

N+2X
s=0

Drsu
(1)
s

=

N+2X
s=0

Drs

N+2X
k=0

Dskuk

=

N+2X
s=0

N+2X
k=0

DrsDskuk :

This allows us to introduce the di�erentiation matrix D; and second di�erentiation matrix

D2 which are shown to have components

D0;2j�1 = 2j � 1; j � 1;

Di;i+2j�1 = 2(i + 2j � 1); i � 1; j � 1;

D2
0;2j =

1

2
(2j)3; j � 1;

D2
i;i+2j = (i + 2j)4j(i+ j); i � 1; j � 1;

(1:10)

or

D =

0
BBBBB@

0 1 0 3 0 5 0 7 0 9 : : :

0 0 4 0 8 0 12 0 16 0 : : :

0 0 0 6 0 10 0 14 0 18 : : :

0 0 0 0 8 0 12 0 16 0 : : :

0 0 0 0 0 10 0 14 0 18 : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

1
CCCCCA
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D2 =

0
B@

0 0 4 0 32 0 108 : : :

0 0 0 24 0 120 0 : : :

0 0 0 0 48 0 192 : : :

: : : : : : : : : : : : : : : : : : : : : : : :

1
CA

where we observe D2 = D � D in the sense of matrix multiplication. These matrices are

started at (0; 0) and truncated at column N + 2: However, from (1.5), we easily eliminate

uN+1; uN+2: To do this, suppose for de�niteness N is odd, then

uN+1 = �(u0 + u2 + : : :+ uN�1)

uN+2 = �(u1 + u3 + : : :+ uN)
(1:11)

and thus the N + 1 and N + 2 rows of D2 may be removed and the N + 1; N + 2

columns eliminated using (1.11). This yields an (N + 1) � (N + 1) matrix D2, and the

matrix problem which results from (1.9) does not su�er from B being singular due to zero

boundary condition rows.

The outcome is that equation (1.1) is replaced by a system

Ax = ��x (1:12)

where x = (u0; : : : ; uN); and where A is now the D2 matrix with the boundary condition

rows removed as described above.

If we instead consider the solution to (1.1) by writing as a system of �rst order equations

then we must solve
u0 = v; v0 = ��u;
u(�1) = u(1) = 0:

(1:13)

Regard u and v as independent variables and write

u =

N+1X
k=0

ukTk(x); v =

N+1X
k=0

vkTk(x);

and then we see that solving (1.13) by a tau method requires us to solve

L1(u; v) � u0 � v = �1TN+1;

L2(u; v) � v0 + �u = �2TN+1;
(1:14)

and thus we obtain 2(N + 1) equations

�
L1(u; v); Ti

�
= 0; i = 0; : : : ;N;�

L2(u; v); Ti
�
= 0; i = 0; : : : ;N;

(1:15)
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and two equations for the tau coe�cients,

�
Lq(u; v); TN+1

�
= �qkTN+1k2; q = 1; 2: (1:16)

The boundary conditions in (1.13) are again equivalent to (1.5). The �nite dimensional

system to be solved is then

u
(1)

i � vi = 0; v
(1)

i + �ui = 0; i = 0; : : : ;N; (1:17)

and
N+1X
n=0

(�1)nun = 0;

N+1X
n=0

un = 0; (1:18)

where

u
(1)

i =
2

ci

p=N+1X
p=i+1
p+i odd

pup; (1:19)

with a similar expression for v
(1)

i :

Note that in (1.19) all the boundary conditions refer to ui and none to vi: Hence, we

require the solution of the matrix problem

0
BBB@

D �I
BC1 0 : : : 0

0 D

BC2 0 : : : 0

1
CCCA
�
u

v

�
= �

0
BBB@

0 0
0 : : : 0 0 : : : 0

�I 0
0 : : : 0 0 : : : 0

1
CCCA
�
u

v

�
(1:20)

where BC1; BC2 refer to the conditions on the ui in (1.18). We are unable to remove the

boundary condition rows as before since we do not have conditions on vi:

It is typical of the discretizations obtained in this paper that we have to solve a gener-

alised eigenvalue problem like (1.20) and we refer to such problems in the form

Ax = �Bx; (1:21)

where B is, in general, singular. While the scheme leading to (1.12) yields all the eigenval-

ues accurately with the aid of the QZ algorithm, it is reported in Straughan & Walker [27]

that (1.20) leads to the production of a spurious eigenvalue. By this we mean a number

which is seen in the eigenvalue list but is not a solution to the di�erential equation. To

elucidate on this, the QZ algorithm of Moler & Stewart [20] does not produce the eigen-

values �i but reduces A and B to upper triangular form with diagonal elements �i and �i:

The eigenvalues are

�i =
�i

�i
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when division makes sense. In [27] it was found that for (1.17) one value of �i is O(10
�15)

and this yields a spurious eigenvalue O(1017): By changing N this value of � is seen to

oscillate from a very large negative value to a very large positive one and vice versa. In

the uid dynamics literature such \eigenvalues" are referred to as spurious eigenvalues and

several of the references quoted deal with this topic. Indeed, McFadden et al. [19] write

that the occurrence of spurious eigenvalues is due to rows of zero's in B; in this case the

N + 2 and 2(N + 2) rows of B as in (1.20).

Before proceeding we should mention that the technique of writing the di�erential equa-

tions as systems of �rst order ones and discretizing is advocated by Lindsay & Ogden [18]

who dealt with the Orr-Sommerfeld equation and some other equations from hydrodynam-

ics, although they did not speci�cally mention the tau coe�cients. Also, the idea of using

(1.11) to remove boundary condition rows in the D2 matrix was advanced by Haidvogel &

Zang [15] who dealt with the solution of Poisson's equation in a two-dimensional rectangle.

To begin our discussion of hydrodynamic stability eigenvalue problems we shall consider

the Orr-Sommerfeld equation

(D2 � a2)2� = iaRe(U � c)(D2 � a2)�� iaReU 00�; z 2 (�1; 1); (1:22)

see Drazin & Reid [11], equation (25.12), where D = d=dz; Re; a and c are Reynolds

number, wavenumber, and eigenvalue (growth rate), respectively, and � is the amplitude

of the stream function. For Poiseuille ow U = 1 � z2; whereas for Couette ow U = z:

Equation (1.22) is to be solved subject to the boundary conditions

� = D� = 0; z = �1: (1:23)

In Poiseuille ow the basic ow is driven by a pressure gradient in the x-direction whereas

Couette ow is driven by the upper boundary being sheared relative to the lower one. The

latter is known as shear ow but the whole class of such ows is known as parallel ow.

Equation (1.22) governs the two-dimensional stability problem for parallel ow where

Squire's theorem is employed to reduce the three-dimensional problem to a two-dimensional

one. This is standard knowledge in the uid dynamics literature, cf. Drazin & Reid [11].

The function � is related to the stream function  by

 = �(z)eia(x�ct): (1:24)

System (1.22), (1.23) has an in�nite number of eigenvalues and associated eigenfunctions.

Since the real part of the temporal growth rate in (1.24) is ecit; c = cr+ ici; the eigenvalue

which has largest imaginary part is the most dangerous in a linear instability analysis.
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The component in (1.24) of the solution associated with an eigenvalue is referred to as a

mode and the one with largest imaginary part is known as the dominant, or leading, mode

(eigenvalue). For Poiseuille ow the �rst occurrence of ci > 0 is when the Reynolds number

is approximately 5772, see Drazin & Reid [11]. Thus, according to linearised instability

theory the ow becomes unstable when Re � 5772: However, it has long been known from

experimental evidence, that instabilities are seen at much lower Reynolds numbers, even

around Re = 1100: This has led to very recent analyses which investigate the possible

interaction of more than one mode, and guided by experiments, interactions of modes

which pertain to a three-dimensional structure solution. Butler & Farrell [3] and Reddy

& Henningson [23] are particularly interesting studies which investigate the kinetic energy

associated with a �nite number of modes arising in the linearised theory. For example,

Butler & Farrell [3] show that modes associated with eigenvalues which have ci < 0 can

lead to energy growth, over a �xed time interval, of many orders of magnitude (perhaps

1000 times) greater than that associated with the leading eigenvalue. They then argue

that when this happens very rapid growth is present and three-dimensional instabilities

can possibly give rise to growing nonlinear terms which lead to instability at Reynolds

numbers well below those of classical linear theory. The analyses of [3] and [23] are very

interesting and show that one ought to consider several eigenvalues in the spectrum, not

just the one with greatest imaginary part. For this reason we believe it is important to

have a method which yields many eigenvalues/eigenfunctions very accurately and also in

an e�cient manner. The purpose of this paper is to describe such a technique, one which

we refer to as the D2 Chebyshev tau - QZ algorithm method. When we refer to the top

end of the spectrum we mean those eigenvalues with ci largest. Usually we here restrict

attention to those ci with ci > �1: In analyses such as those of [3], [23] this ought to be

su�cient, although lower values of ci are easily found.

2. The Chebyshev tau methods for solving the Orr-Sommerfeld problem.

The D4 Chebyshev tau method. Here we write, cf. Gardner et al. [14],

� =

N+4X
i=0

�iTi(z); (2:1)

in equation (1.22). Then we use the fact that

D4� =

N+4X
i=0

�
(4)

i Ti(z); (2:2)
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where

�
(4)

i =
1

24ci

p=N+4X
p=i+4
p+i even

p
�
p2(p2 � 4)2 � 3p4i2 + 3p2i4 � i2(i2 � 4)2

�
�p: (2:3)

This expression, together with expressions like (1.8) allow us to reduce (1.22) to a system

of N+1 equations for �0; : : : ; �N+4; by taking the inner product with Ti: To see this de�ne

the di�erential operator

L� � D4�� 2a2D2�� iaRe(U � c)(D2 � a2)� + (a4 � iaReU 00)�; (2:4)

and then we solve exactly the equation

L� = �1TN+1 + �2TN+2 + �3TN+3 + �4TN+4; (2:5)

where �i denote tau coe�cients. There should not be any confusion with our earlier use

of L as it is clear from the context which operator we are referring to. We take the inner

product of (2.5) with Ti for i = 0; : : : ;N: The inner product with Ti for i = N+1; : : : ;N+4

leads to four equations for the tau coe�cients. The four remaining conditions are obtained

from the boundary conditions (1.23), and since T 0

n(�1) = (�1)n+1n2; these are

N+4X
i=0

(�1)i�i =
N+4X
i=0

�i =

N+4X
i=0

(�1)i+1i2�i =

N+4X
i=0

i2�i = 0: (2:6)

(Due to the way the terms split in the discretization of (1.22) when U = 1 � z2 it is then

better to write (2.6) as

i=N+3X
i=0
i even

�i = 0;

i=N+4X
i=1
i odd

�i = 0;

i=N+4X
i=1
i odd

i2�i = 0;

i=N+3X
i=2
i even

i2�i = 0: (2:7)

In this way, one may see that the matrix problem which arises can be split into two

problems, one involving �i, i odd, the other �i; i even. Then one has to solve much

smaller generalised eigenvalue problems. In the general case, however, one cannot reduce

the di�erential equation to separate even and odd mode calculations.)

Equations (2.7) can be solved to write �N+j j = 1; 2; 3; 4; as a linear combination of

�0; : : : ; �N : The terms �N+j; j = 1; 2; 3; 4; can then be removed in a manner not dissimilar

to that for the simple example in section 1, and what results is a generalised eigenvalue

problem like (1.21) with x = (�0; : : : ; �N); although the matrix B which results is non-

singular.
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Even though B is non-singular it is important to realise that the discretization involving

the fourth order derivative D4 leads to a matrix whose terms grow like O(M7); where

M = N+1 is the number of polynomials. This is evident from (2.3). In actual calculations

we �nd that a large number of polynomials are required, perhaps M = 500; and thus this

growth rate can lead to serious round o� error problems. It is worth noting that in

speci�c calculations we use the form for D4 given by Canuto et al. [4], p. 196, which

rearranges (2.3) to give smaller round o� error. Nevertheless, even with the Canuto et al.

rearrangement the growth is still O(M7): Thus, we believe it is desirable to reduce the

order of the di�erential equations whenever possible.

The D2 Chebyshev tau method. A D2 method writes (1.22) as two equations

L1(�; �) � (D2 � a2)� � � = 0;

L2(�; �) � (D2 � a2)� � iaRe(U � c)� + iaReU 00� = 0:
(2:8)

We solve exactly the equations

L1(�; �) = �1TN+1 + �2TN+2;

L2(�; �) = �3TN+1 + �4TN+2;
(2:9)

by writing

� =

N+2X
i=0

�iTi(z); � =

N+2X
i=0

�iTi(z);

and then by multiplying each of (2.9) in turn by Ti; i = 0; : : : ;N: This yields 2(N + 1)

equations for the coe�cients �i; �i: The equations obtained by taking the inner product of

(2.9) with TN+1; TN+2 yield equations for the tau coe�cients. The di�culty with the above

approach, as pointed out by McFadden et al. [19], p. 232, is that the boundary conditions

are all on �i and none are on �i: Thus, we cannot remove boundary condition rows by

removing the �N+1; �N+2; �N+1; �N+2 terms which arise in the resulting D2 matrices. (If

the boundary conditions are those appropriate to surfaces free of tangential stress then

there are two boundary conditions on � and two on � and one can remove the o�ending

boundary condition rows. This we have done for Orr-Sommerfeld problems and we obtain

highly accurate results and no spurious eigenvalues. Also, in a practical multi-component

di�usion problem involving penetrative convection Straughan & Walker [28] arrived at

similar conclusions. For porous convection problems the natural boundary conditions

allow boundary condition removal in the A matrix and very satisfactory results are yielded,

Straughan & Walker [26,27].)

We may instead write in the boundary conditions as rows of the matrix. This is also done

by Lindsay & Ogden [18] who generalized the Gardner et al. [14] method and solved (1.22),
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(1.23) as a system of four �rst order equations. We refer to their technique as a D-method

and outline this below. As we have pointed out in section 1 when we use the Lindsay &

Ogden [18] technique on the simple harmonic motion equation with homogeneous boundary

conditions we detect a spurious eigenvalue.

A D2-method for (1.22), (1.23) appropriate to Poiseuille ow eventually solves an equa-

tion like (1.21) where

x = (�0; : : : ; �N+2; �0; : : : ; �N+2)
T ;

with

Ar =

0
BBBBBBB@

D2 � a2I �I
BC1 0 : : : 0
BC2 0 : : : 0

0 D2 � a2I

BC3 0 : : : 0
BC4 0 : : : 0

1
CCCCCCCA
; Ai =

0
BBBBBBB@

0 0
0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0

�2aReI aRe(P � I)
0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0

1
CCCCCCCA

and

Br = 0; Bi =

0
BBB@

0 0

0 �aReI
0 : : : 0
0 : : : 0

1
CCCA

where P is the Chebyshev matrix representing z2; A = Ar + iAi; and B = Br + iBi: (P

is the matrix obtained by writing z2 = 1
2
(1 + T2(z)); and then taking the inner product

(Ti; z
2�):)

The rows BC1; : : : ; BC4 refer to the boundary conditions on �n and for the Orr-

Sommerfeld problem we �nd it preferable to use the form (2:7)1 as BC1; BC2 and (2:7)2

as BC3; BC4:

The D Chebyshev tau method. In this case we write (1.22) as four equations

L1Y � D�� � = 0;

L2Y � D� � � = 0;

L3Y � D� �  = 0;

L4Y � D � �2a2 + iaRe(U � c)
�
� +

�
a4 + ia3Re(U � c) + iaReU 00

�
� = 0;

(2:10)

where Li denote the operators indicated and Y = (�;�; �; ): Then write

� =

N+1X
i=0

�iTi(z); � =

N+1X
i=0

�iTi(z); � =

N+1X
i=0

�iTi(z);  =

N+1X
i=0

iTi(z): (2:11)
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Now solve exactly the tau system

LmY = �mTN+1; m = 1; : : : ; 4; (2:12)

by multiplying each equation by Ti: This yields

(LmY; Ti) = 0; m = 1; : : : ; 4; i = 0; : : : ;N; (2:13)

and the tau coe�cients may be determined from

(LmY; TN+1) = �mkTN+1k2: (2:14)

Equations (2.13) give 4(N+1) equations for the coe�cients (�0; : : : ; �N+1); (�0; : : : ; �N+1);

(�0; : : : ; �N+1); (0; : : : ; N+1): Here, a similar problem arises with the boundary conditions

as with the D2 method. The boundary conditions (2.7) involve two conditions on each of

�i; �i; but none on �i; i; although they are somewhat simpler being

i=NX
i=0
i even

�i = 0;

i=N+1X
i=1
i odd

�i = 0;

i=NX
i=0
i even

�i = 0;

i=N+1X
i=1
i odd

�i = 0: (2:15)

The matrix problem thus becomes (1.21) with

Ar =

0
BBBBBBBBBBBBBBBBB@

D �I 0 0
BC1 0 : : : 0 0 : : : 0 0 : : : 0

0 D �I 0
BC2 0 : : : 0 0 : : : 0 0 : : : 0

0 0 D �I
0 : : : 0 BC3 0 : : : 0 0 : : : 0

a4I 0 �2a2I D

0 : : : 0 BC4 0 : : : 0 0 : : : 0

1
CCCCCCCCCCCCCCCCCA

Ai =

0
BBBBBBBBBBBBBBB@

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0

0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0

0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

a3ReU + aReU 00 0 aReU 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

1
CCCCCCCCCCCCCCCA
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Bi =

0
BBBBBBBBBBBBBBB@

0 0 0 0

0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0

0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0

0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

a3ReI 0 �aReI 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

1
CCCCCCCCCCCCCCCA

with

Br = 0

where in this case BC1�BC4 are (2:15)1 � (2:15)4: The vector x is now

x = (�0; : : : ; �N+1; �0; : : : ; �N+1; �0; : : : ; �N+1; 0; : : : ; N+1)
T :

It should be observed that in each of the D2 andD methods the B matrices involve rows

of zero's in addition to zero blocks. This is due to the way the boundary condition rows

are added to A: Further, from (2.3), (1.8), and (1.19), the growth of the matrix coe�cients

for each of the D4, D2; and D methods is O(M7); O(M3) and O(M): Finally, the D4,

D2; and D methods essentially give generalised eigenvalue problems which involve A;B of

order M �M , 2M � 2M; and 4M � 4M:

The recent papers of Gardner et al. [14] and McFadden et al. [19] are very relevant to

the present contribution and a brief discussion is in order. Gardner et al. [14] reduce a

fourth order system to two second order ones, or, in general, reduce systems of fourth order

equations to systems of second order ones. While in uid dynamics one is often faced with

an even order system, the system is not necessarily one composed of a system of fourth

order equations. Gardner et al. [14] illustrate their method by application to the equation

d4u

dx4
+R

d3u

dx3
� s

d2u

dx2
= 0; x 2 (�1; 1);

in which R is a constant and s is the eigenvalue. The boundary conditions they take are

u = 0; x = �1; u0 = 0; x = �1:

To solve this they write as a second order system

v00 +Rv0 � sv = 0; u00 = v; (2:16)
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and use a tau method with

u(x) =

N+2X
i=0

uiTi(x); v(x) =

N+2X
i=0

viTi(x):

By multiplying (2.16) by Ti they derive 2(N+1) equations for the ui; vi and four equations

for the tau coe�cients. The boundary conditions yield a further four equations for the

coe�cients ui; vi:

The procedure of [14] is to eliminate the vi coe�cients since the boundary conditions

are all on ui: To do this they partition the resulting �nite dimensional system as

B1b+B4y � sb1 = 0;

B2b+B5y � sb2 = 0;

T = B3b+B6y � sy;

b = Qa;

(2:17)

where the matrices B1; : : : ; B6 and Q are de�ned in [14] and where the vectors are de�ned

by

b = (b0; : : : ; bN )
T ; b1 = (b0; : : : ; bN�2)

T = Q1a;

b2 = (bN�1; bN )
T = Q2a;

y = (bN+1; bN+2)
T ; T = (�1; �2)

T ; a = (a0; : : : ; aN+2)
T :

In [14] they �rst solve for y and then reduce (2.17) to a single equation in a, namely

(B1Q �B4B
�1
5 B2Q)a = s(Q1 �B4B

�1
5 Q2)a: (2:18)

This is of form (1.21) and may be solved by the QZ algorithm. This method is extended

in [14] to the Orr-Sommerfeld problem. Although the boundary condition rows may ef-

fectively be removed in this manner the problem of growth of matrix coe�cients is still

present. This is due to the matrices in (2.18) (equation (3.9b) of [14]). The matrices B1

and Q each involve �2F2 (in the notation of [14]) and this term is like O(M3); thus the

product grows at least as O(M6) and hence the modi�ed tau method of [14] still does not

remove the growth problem. Also, it is not so evident how one would extend the Gardner

et al. [14] method to more complicated systems such as the Butler & Farrell [3] one in

three-dimensions, or the two uid system studied in section 6 of this article.

McFadden et al. [19] discuss the fourth order and second order Chebyshev tau methods,

paying particular attention to the di�erential equation system

d4u

dx4
= �

d2u

dx2
; x 2 (�1; 1);

u(�1) = ux(�1) = 0:
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They suggest a modi�ed tau method by discretizing (2.19) as it stands to obtain an equa-

tion of type

u
(4)

i = �u
(2)

i (2:20)

together with boundary conditions of type (2.6). They write equation (2.20) plus boundary

conditions in the form (1.21) and then suggest setting the last two columns of the B matrix

equal to zero in order to remove spurious eigenvalues. They then include an elegant proof

to show that this approach is in some ways equivalent to a D2 method which they call

a stream - function vorticity method. Of course, the formulations cannot be entirely

equivalent due to the growth of coe�cients in the respective matrices. McFadden et al.

[19] also discuss the Orr-Sommerfeld problem for Poiseuille ow.

In the two-dimensional case for the Orr-Sommerfeld equation the D2 method is essen-

tially the stream function - vorticity technique discussed by McFadden et al. [19]. For, in

that case, the vorticity has only one component, in the y-direction, ! = !2 with

! =u;z � w;x

= ;zz +  ;xx

=eia(x�ct)(D2 � a2)�:

Thus the functions � and � are essentially  and !:

We believe that the D2 method is more general than the stream function - vorticity

method. For example, the Butler & Farrell [3] problem for Poiseuille and Couette ow in

three dimensions results in a coupled system involving a fourth order equation for w and

a second order equation for the normal vorticity !3 = v;x � u;y: In this three-dimensional

situation one may still reduce things to three second order equations and use a D2 method

which is then not equivalent to the usual stream function - vorticity method. Other areas

where the D2 method di�ers are in three-dimensional convection studies in anisotropic

porous media where the principal axes of the permeability tensor are not orthogonal to the

layer, or the Hadley ow problem, see Straughan & Walker [26,28], respectively. Although

we do not include explicit details of analysis for problems such as that of Butler & Farrell [3]

we stress that the extension to such three-dimensional studies is very important. Details

of such studies together with the consequences for the relevant uid mechanics may be

found in a porous media setting in [26,28], although the treatment of boundary conditions

is di�erent for porous media ow.

In the remainder of the paper we make a systematic study of Chebyshev tau methods

applied to Poiseuille ow, Couette ow, Hagen-Poiseuille ow, and �nally we show how

to apply the method to the situation where one uid is overlying another. We stress
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that we concentrate on �nding many eigenvalues, including eigenvalues which are di�cult

to obtain, and we investigate parameter ranges which have previously proved di�cult.

Consideration is given to loss of accuracy due to the various D4;D2 or D methods, and

to loss of accuracy due to insu�cient polynomials, or insu�cient resolution due to lack of

precision in the representation of real numbers.

3. The eigenvalue problem for plane Poiseuille ow

In this section we study (1.22), (1.23) with U = 1� z2: There have been many calculations

of the spectral behaviour for Re not too large, say Re � 104; see Butler & Farrell [3],

Drazin & Reid [11], Orszag [22], Reddy & Henningson [23], and the references therein.

Abdullah & Lindsay [1], Davey [7] and Fearn [12] report studies on particular eigenvalues

for Re extending to 109: We use the D2 (stream function - vorticity) method and show

what can go wrong in calculating the spectrum for large Re and how one can put things

right.

We have written our own codes for the D4, D2 and D methods, and a comparison of

results for these methods is now given.

Undoubtedly the advantage of the D2 method is the growth rate removal, and in this

respect the D method is even better, with terms growing only like O(M); this important

feature does not appear to have been realised in Lindsay & Ogden [18]. Against this,

the time taken by the QZ algorithm appears to scale like O(M3
size) where Msize is the

matrix width, i.e. Msize = M; 2M; 4M; with the D4;D2;D methods, respectively. The

problems associated with doubling the matrix size have been commented on by McFadden

et al. [19]. For example, on a SUN sparc station (ipc), with 50 polynomials, the D4;D2;D

methods take, respectively, 4.1 seconds, 17.1 seconds, and 112.3 seconds. One test of the D

method with M = 150 took 2940.7 seconds, i.e. approximately 49 minutes. Clearly, when

many computations are required this is an important factor. Additionally, the memory

requirements of the D method are substantial, requiring approximately 16MB for the

150 polynomial case (using full precision). The D2 method we have found to yield high

accuracy, although as reported below, for Re high enough extended precision arithmetic is

required. Unless explicitly stated, our calculations are based on full precision, i.e. 64 bit,

arithmetic.

The D2 and D methods necessarily produce a B matrix in (1.21) which has one or

more rows of blocks of 0's and so is singular. One approach to solving this problem is

the QZ algorithm of Moler & Stewart [20]. This algorithm relies on the fact that there



Chebyshev tau - QZ algorithm methods Page 17

exist unitary matrices Q and Z such that QAZ and QBZ are both upper triangular.

The algorithm then yields sets of values �i; �i which are the diagonal elements of QAZ

and QBZ: The eigenvalues �i of (1.21) are then obtained from the relation �i = �i=�i;

provided �i 6= 0: This is very important, since the way we have constructed B means it

contains a singular band, corresponding to in�nite eigenvalues, and the �i = 0 must be

�ltered out. Indeed, with the technique advocated here one ought always to consider the

�i and �i; since as Moler & Stewart [20] point out, the �i and �i contain more information

than the eigenvalues themselves. The QZ algorithm is available in the routines ZGGHRD,

ZHGEQZ and ZTGEVC of the LAPACK Fortran Subroutine library, Anderson et al. [2].

The coe�cients of the eigenvector x yielded by the QZ algorithm are extremely useful

convergence indicators. In this regard we throughout render the eigenvector unique by

normalising so that the sum of squares of the moduli of the components is equal to one and

the component of largest modulus is real. In fact, the eigenvectors can be used to indicate

the presence of spurious eigenvalues. We have found by computation that the \eigenvector"

for such a spurious eigenvalue typically does not demonstrate the convergence evident in

the eigenvector for a real eigenvalue. An alternative way is to compute the � - coe�cients,

cf. Gardner et al. [14], but as these are based on the eigenvector we �nd it simpler to just

examine the eigenvectors themselves.

Another possible method of assessing whether an eigenvector is spurious is to compute

the residuals for (1.21), i.e. compute

r(i) = �iAx
(i) � �iBx

(i):

When an \eigenvalue" is spurious we have found these to have all components between

O(1022) and O(1018): For a real eigenvalue, the residuals corresponding to those �i = 0

are O(1018) as are two or three corresponding to the presence of spurious eigenvalues,

whereas the rest converge from O(106) down to O(10�8); which is consistent with the fact

that the discretization only allows us to see the \top end" of the true spectrum. Even

though we are using a D2 method we do �nd a spurious eigenvalue may be produced.

When we apply the method to the problem of two uids in section 6 then we always see

spurious eigenvalues. In connection with this, we have calculated the sensitivities for the

eigenvector, cf. Stewart & Sun [25], and these indicate that the spurious eigenvalues are

connected with the discretization procedure rather than the QZ algorithm used to �nd

the matrix eigenvalues. Details appropriate to the superposed uid problem are given in

section 7. A referee has kindly pointed out that relying on the eigenvector or the residuals

assumes the forward stability of the QZ algorithm which cannot be assumed. However, we
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have found numerically that these are reliable guides and our computations agree with, or

are better than, numerical results reported by other workers.

Orszag [22] gives for Re = 104 and a = 1;

c = 0:23752649 + 0:00373967i (3:1)

as the exact value of the �rst eigenvalue (to 8 d.p.). He used 56 polynomials to achieve this

accuracy (although he only uses even ones, thereby only 28 terms are in his expansion).

The D4 method gives

c = 0:23752708 + 0:00373980i

with M = 50: We found this to be the best approximation and thereafter on increasing

M the value diverges from (3.1). The D2 and D methods, however, agree with (3.1) for

M = 56 and beyond. We can also �nd the eigenfunctions very accurately. For example,

the D2 method with 56 polynomials yields �r and �i as in �gure 4.20 of Drazin & Reid

[11]. With the boundary conditions (2.7) or (2.15), respectively, by using the D2 and D

methods we obtained only even modes for cases when the eigenfunction is symmetric and

odd modes in the skew symmetric case, and the convergence is better than that for the D4

technique. Another feature of the D4 method is that even though the boundary conditions

are removed we still saw two values in the list with � = 0: The corresponding � values

were large, O(1015); and real. These we believe are spurious but are easily �ltered out

by examining the �i given by the QZ algorithm. This does raise an important point. It

questions whether the only way spurious eigenvalues can arise is through rows of zero's in

the B matrix due to inserting boundary condition rows in the equivalent row(s) of A:

Orszag [22] table 5 gives a list of the 32 least stable modes for Re = 104; a = 1: With

the D2 method we obtained complete agreement with this list in the sense: for the �rst

12 eigenvalues with 70 polynomials, for the �rst 14 eigenvalues with 80 polynomials, and

complete agreement with all 32 eigenvalues by using 96 polynomials. We did, however,

�nd an extra eigenvalue; between positions 17 and 18 of Orszag [22] table 5 we obtain the

value

c = 0:21272578� 0:19936069i: (3:2)

The eigenvector coe�cients from the D2 method (normalised as indicated earlier) with 96

polynomials indicate the value (3.2) corresponds to a skew-symmetric solution and with

this number of polynomials the eigenvector had converged to O(10�13); O(10�14); for the

� and A (= D2�� a2�) terms. Interestingly, we �nd both symmetric and skew symmetric

modes with the D (and D2) method(s). Lindsay & Ogden [18] appear to report only

symmetric ones. For Re = 104; a = 1; the spectrum, in the range ci 2 (�1; 0); cr 2 (0; 1);
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is given in �gure 1, indicating which are even and which are odd modes. When we refer

to the spectrum in a �gure here and throughout the paper we mean that part displayed in

the relevant �gure.

We have produced an mpeg movie which may be accessed with a web browser, such as

Mosaic or Netscape, at

http://www.epm.ornl.gov/~walker/eigenproblems.html

This movie contains the parametric evolution of the spectrum of the plane Poiseuille

ow problem for a = 1; with Re ranging from 100 to 104 in steps of 10. This may yield

useful insight into resonance mechanisms. The evolution of the upper branches is clearly

visible and the emanence of the eigenvalues from cr = 2=3 is evident.
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Figure 1 The spectrum for plane Poiseuille ow. Re = 104; a = 1; open circle (�) =

even eigenfunction, cross (�) = odd eigenfunction. The upper right branch consists of

\degenerate" pairs of even and odd eigenvalues.

When Re is increased eventually mode crossing is seen, i.e. eigenvalues exchange posi-

tions in the sense that the imaginary part of one eigenvalue decreases relative to that of

another eigenvalue whose imaginary part eventually becomes larger than that of the for-

mer. Abdullah & Lindsay [1] are critical of the papers of Davey [7] and Fearn [12] in their

analysis of higher Re values. According to linear theory for (1.22) and (1.23) the most

unstable eigenvalue has largest imaginary part, i.e. ci largest. Davey [7] claims the most

unstable mode is symmetric, presumably on the basis that this is so for Re = 104; a = 1:

Fearn [12] solves a symmetric problem and simply refers to the solution to (1.22), con-

�rming Davey's [7] results. Abdullah & Lindsay [1] claim that these writers are using a

tracking technique and miss the leading eigenvalue since mode crossing occurs. We have

partially con�rmed the �ndings of Abdullah & Lindsay [1] and Lindsay & Ogden [18] who

only give the �rst �ve eigenvalues, although it would appear they �nd only symmetric
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ones. This is especially important, since for Re = 105; a = 1; we con�rm mode crossing

has occurred, but we �nd the leading eigenvalue to be skew-symmetric. We present in

table 1 the leading eigenvalues for Re = 105 and a = 1; our calculations being made by

a D2 method, but determining odd modes and even modes separately, with M = 200 in

each case, i.e. equivalent to M = 400 for the full problem.

It is seen from table 1 that the \leading" eigenvalue is a skew - symmetric one. In table

2 we include components of the (normalised) eigenvector for this skew mode. It is seen that

machine precision is reached with 86 odd polynomials, i.e. up to T171: (All components

are not included, just a sample to demonstrate convergence.)

We have used the separate \odd" and \even" codes with M = 200 to compute the

behaviour of the eigenvalues in the transition region. For a = 1; in table 3 it is seen that

the structure at Re = 104 is maintained at Re = 80; 822 but by Re = 80; 828 the �rst two

eigenvalues exchange positions, then by Re = 80; 830 the eigenvalue which is second at

Re = 80; 828 exchanges with the one occupying third position for the same Re value. The

position of these three is maintained in table 1.

Abdullah & Lindsay [1] report further mode crossings for higher Re values. However,

much care must be taken when Re increases. We now report �ndings for the spectrum

and in particular in the region near the joining of the so called A, P and S branches - the

three groups of branches in �gure 1. As indicated in the �gure the A branches are the

upper left ones, the P branch is the upper right one composed of degenerate pairs, and the

S branch is the lower one emanating from cr = 2=3: This notation is standard in the uid

dynamics literature, see Drazin & Reid [11]. The eigenvalues near the branch point are

particularly sensitive to change, Orszag [22], and we �nd great care must be taken even

with Re around 2:3� 104:

We have computed many cases and �gures 2-5 below are just a sample. Even though

they are only for even modes they illustrate the important points regarding round o� error.

The same �ndings are true for odd mode cases, and for the full code which �nds odd and

even modes together.

Figures 2 to 5 are obtained with the D2 method solving (1.22), (1.23) for even modes

only, i.e. employing only even polynomials, using full precision arithmetic (64 bit) in

�gures 2 to 4, whereas extended precision (128 bit) is employed in �gure 5. Figure 2

demonstrates inaccuracy caused by having insu�cient polynomials, even though M = 85;

(equivalent to 170 in the odd and even code). This splitting in the tail is symptomatic of

insu�cient polynomials and we �nd similar behaviour in all of the problems reported here.

By increasing the number of polynomials we are able to overcome the splitting of the tail

problem as in �gure 3 where M = 200: Nevertheless, the eigenvalues at the intersection
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are not accurate. Increasing the number of polynomials compounds the problem and we

�nd a \triangle of numerical instability" begins to form, �gure 4, whereM = 500:We have

found that this behaviour is due to the precision to which we are working. By increasing

from 64 to 128 bit arithmetic this e�ect is removed (in this case), see �gure 5. We have not

seen the latter e�ect reported before. The 128 bit arithmetic calculations were performed

with the LAPACK routines on an IBM RS 6000 590 machine.

A referee raised the very interesting question as to whether the D2 method operating

at 128 bit arithmetic is as expensive as the D method at 64 bit arithmetic. From the

computational time point of view the two methods are comparable. However, we have ran

the D method in 64 bit arithmetic for the cases of �gures 2 to 4. The instability at the

intersection of the branches is not removed. Thus, the D2 method at 128 bit arithmetic

is not equivalent to the D method at 64 bit arithmetic. The instability seen in �gures 2

to 4 is not due to growth of coe�cients in the A matrix and we believe that it can only

be removed by increasing the precision. This, of course, raises the question of when to

use a certain precision, and how many polynomials we should employ a priori. This point

was succinctly raised by a referee. At present we do not have an analytical answer to this.

We have proceeded by numerical experiment and comparison with previous work. We are

investigating further this aspect and, indeed, the question of how spurious eigenvalues form.

Nevertheless, we believe the �ndings we report here are worthy and ought to be brought

to the attention of workers dealing with practical hydrodynamical stability problems.
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Symmetry Eigenvalue

A :9888191058E + 00� :1116257893E � 01i

A :9798738045E + 00� :2008374163E � 01i

A :9709280339E + 00� :2900433538E � 01i

A :1373944878E + 00� :2956356969E � 01i

A :9619817790E + 00� :3792441466E � 01i

A :9530350180E + 00� :4684401422E � 01i

S :9888195933E + 00� :1116360699E � 01i

S :1459247829E + 00� :1504203085E � 01i

S :9798751271E + 00� :2008635538E � 01i

S :9709305305E + 00� :2900898101E � 01i

S :1982003566E + 00� :3733100660E � 01i

S :9619857994E + 00� :3793148490E � 01i

Table 1. The six odd and six even eigenvalues with largest imaginary part for the Orr-

Sommerfeld problem with U = 1� z2; Re = 105; a = 1: A=anti-symmetric, S=symmetric.

Com. No. �r �i Ar Ai

1 .208839E-03 .409542E-03 .240779E-01 .204308E-01

11 .421908E-03 .289300E-03 -.167597E+00 -.125165E+00

21 .889307E-04 -.897408E-04 -.147664E+00 .148864E+00

31 -.123273E-04 -.114027E-05 .458675E-01 .307459E-02

41 .461222E-06 .686801E-07 -.304143E-02 -.281158E-03

51 -.553081E-08 .346867E-08 .525270E-04 -.400853E-04

61 -.122030E-10 -.307889E-10 .231698E-06 .414265E-06

71 .456178E-13 -.465328E-13 -.665353E-09 .937961E-09

81 -.147851E-14 -.190889E-14 -.960477E-12 .301479E-12

86 .153318E-14 .354368E-14 -.262614E-14 .292893E-14

Table 2. A selection of the components of the eigenvector corresponding to �(1) =

0:9888191058 � 0:01116257893i; Re = 105; a = 1: Com. No. refers to the component

of the eigenvector, � = �r + i�i; A = Ar + iAi: The eigenvector is normalised with the

sum of squares of the moduli of the components equal to one and the component of largest

modulus is real.
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Symmetry Eigenvalue Re

A :9875629891E + 00� :1241421339E � 01i 80822

A :9776125822E + 00� :2233449266E � 01i 80822

A :1470238117E + 00� :3124631640E � 01i 80822

A 9676615245E + 00� :3225401228E � 01i 80822

S :1555554132E + 00� :1241409956E � 01i 80822

S :9875636361E + 00� :1241555934E � 01i 80822

S :9776143504E + 00� :2233791980E � 01i 80822

S :9676648840E + 00� :3226011142E � 01i 80822

A :9875634508E + 00� :1241375347E � 01i 80828

A :9776134133E + 00� :2233366562E � 01i 80828

A :1470203436E + 00� :3124575284E � 01i 80828

A :9676627251E + 00� :3225281822E � 01i 80828

S :1555521082E + 00� :1241509695E � 01i 80828

S :9875640977E + 00� :1241509935E � 01i 80828

S :9776151812E + 00� :2233709233E � 01i 80828

S :9676660845E + 00� :3225891687E � 01i 80828

A :9875636047E + 00� :1241360017E � 01i 80830

A :9776136903E + 00� :2233338998E � 01i 80830

A :1470191935E + 00� :3124557862E � 01i 80830

A :9676631252E + 00� :3225242025E � 01i 80830

S :9875642516E + 00� :1241494596E � 01i 80830

S :1555510002E + 00� :1241538251E � 01i 80830

S :9776154583E + 00� :2233681675E � 01i 80830

S :9676664843E + 00� :3225851880E � 01i 80830

Table 3. The four leading odd and even eigenvalues in the transistion region, M = 200;

a = 1:
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Figure 2 The approximate eigenvalues associated with even modes for plane Poiseuille

ow. E�ect of too few polynomials. Re = 2:7� 104; a = 1;M = 85; 64 bit arithmetic.

Figure 3 The approximate eigenvalues associated with even modes for plane Poiseuille

ow. E�ect of �nite precision. Re = 2:7� 104; a = 1;M = 200; 64 bit arithmetic.

Figure 4 The approximate eigenvalues associated with even modes for plane Poiseuille

ow. E�ect of �nite precision. Re = 2:7� 104; a = 1;M = 500; 64 bit arithmetic.

Figure 5 The approximate eigenvalues associated with even modes for plane Poiseuille

ow. Re = 2:7� 104; a = 1;M = 200; 128 bit arithmetic.
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Remarks. To conclude this section we note that we have drawn attention to three important

types of error which are present in solving di�cult eigenvalue problems. The �rst is round

o� error due to growth of matrix coe�cients. In this respect a D2 method is preferable to

one using D4: Secondly, too few polynomials causes the \tail", i.e. the S branch, to split.

Thirdly, increasing the number of polynomials in a cavalier fashion to compute sensitive

eigenvalues can lead to inaccuracy due to ill conditioning and insu�cient precision in real

number representation. Clearly care must be taken to avoid these errors and while our

work regarding the latter two is heuristic, we believe it is worth drawing attention to these

points, while we continue in a search for analytical tests to determine the correct number

of polynomials coupled with the best precision.

4. The eigenvalue problem for plane Couette ow

The problem of this subsection is (1.22) and (1.23) when U = z: Physically it corresponds

to the lower plate �xed while the upper plate is moved with constant velocity, generating

a linear shear. This problem is always stable according to linear theory, cf. Drazin &

Reid [11]. Nevertheless, it is not a trivial eigenvalue problem from a numerical standpoint.

Indeed, we studied this problem at the suggestion of Dr. Alison Hooper who informed us

she had di�culty in calculating the spectrum for Reynolds numbers as low as 2000.

With 150 polynomials in theD2 method we obtain excellent accuracy for Re = 3000; a =

1; in 64 bit arithmetic. Breakdown at the intersection of the branch points is evident

around Re = 3500: However, the same code operating at 128 bit arithmetic yields an

accurate spectrum.
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In 128 bit arithmetic we are able to extend the calculation well beyond Re = 3800:

With 150 polynomials no di�culty is experienced at Re = 8000; but at Re = 104 a split in

the tail is observed. By using 200 polynomials and 128 bit arithmetic we have been able

to proceed to Re = 13; 000, and the spectrum for this case is shown in �gure 6. For the

bene�t of others who might use this calculation as a yardstick we present actual numerical

values in table 4.
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Figure 6 The spectrum for plane Couette ow, using 200 polynomials. Re = 13; 000; a =

1; 128 bit arithmetic.
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Mode number Eigenvalue c

1 �:8276152337E + 00 � :4751548439E � 01i

2 �:7318167785E + 00 � :1091860424E + 00i

3 �:8694486153E + 00 � :1279149536E + 00i

4 �:6516804277E + 00 � :1594003003E + 00i

5 �:7671186628E + 00 � :1805164930E + 00i

6 �:5801567166E + 00 � :2035572830E + 00i

7 �:6828371673E + 00 � :2251746419E + 00i

8 �:5143995235E + 00 � :2437675825E + 00i

9 �:6082408213E + 00 � :2653481107E + 00i

10 �:4528935800E + 00 � :2811241939E + 00i

11 �:5400219613E + 00 � :3024678732E + 00i

12 �:3947096982E + 00 � :3162828159E + 00i

13 �:4764491821E + 00 � :3373108149E + 00i

14 �:3392256967E + 00 � :3496747907E + 00i

15 �:4164746866E + 00 � :3703603829E + 00i

16 �:2859989475E + 00 � :3816025000E + 00i

17 �:3594042660E + 00 � :4019439818E + 00i

18 �:2347002407E + 00 � :4122880439E + 00i

19 �:3047483827E + 00 � :4322966352E + 00i

20 �:1850762211E + 00 � :4419004929E + 00i

21 �:2521456926E + 00 � :4615944208E + 00i

22 �:1369265577E + 00 � :4705722463E + 00i

23 �:2013199914E + 00 � :4899736516E + 00i

24 �:9008929422E � 01 � :4984093248E + 00i

25 �:1520542459E + 00 � :5175426311E + 00i

26 �:4444142747E � 01 � :5255273887E + 00i

27 �:1041741466E + 00 � :5443892453E + 00i

28 :0000000000E + 00 � :5459244238E + 00i

29 �:5753309952E � 01 � :5705930815E + 00i

30 :0000000000E + 00 � :5782633202E + 00i

31 �:9937461129E � 02 � :5982573646E + 00i

32 :0000000000E + 00 � :6268958614E + 00i

33 :0000000000E + 00 � :6550042769E + 00i

34 :0000000000E + 00 � :6809093456E + 00i

35 :0000000000E + 00 � :7081327166E + 00i

36 :0000000000E + 00 � :7352566431E + 00i

37 :0000000000E + 00 � :7628468874E + 00i

38 :0000000000E + 00 � :7906653030E + 00i

39 :0000000000E + 00 � :8188353645E + 00i

40 :0000000000E + 00 � :8472841070E + 00i

41 :0000000000E + 00 � :8760700653E + 00i

42 :0000000000E + 00 � :9051510243E + 00i

43 :0000000000E + 00 � :9345643207E + 00i

44 :0000000000E + 00 � :9642865284E + 00i

45 :0000000000E + 00 � :9943359829E + 00i

Table 4. The �rst 45 eigenvalues graphed in �gure 6. Conjugate pairs are presented as

one mode.
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5. The eigenvalue problem for circular pipe ow

Symmetric disturbances for the linear instability problem for ow in a circular pipe driven

by a constant pressure gradient (Hagen - Poiseuille ow) are governed by the equation

L2� = iaRe(U � c)L�; (5:1)

where a;Re; c are wavenumber, Reynolds number, and growth rate, respectively, the base

velocity U = 1� r2; r being the radial coordinate, the di�erential operator L is de�ned by

L =
d2

dr2
� 1

r

d

dr
� a2; (5:2)

and (5.1) holds on the domain r 2 (0; 1): The disturbance � is subject to the boundary

conditions

� = �0 = 0; r = 0; 1; (5:3)

cf. Drazin & Reid [11]. Symmetric disturbances governed by (5.1)-(5.3) are believed always

stable, Drazin & Reid [11].

We show how to solve (5.1)-(5.3) by a D2 Chebyshev tau - QZ algorithm method.

This avoids the growth problem associated with direct discretization of the fourth order

derivative. It is worth pointing out that this technique will have wide application since

there are many technologically important problems in uid ows in a pipe, or in a pipe

�lled with porous material. Also, the D2 technique is perfectly suited to hydrodynamic

stability studies of ows in a spherical geometry. The singular terms of form (m=r)d=dr

which occur in such problems may be handled perfectly naturally using the propeties of

Chebyshev polynomials. The boundary value problem (5.1)-(5.3) is solved by a D2 method

by writing
L� = ;

L =iaRe(U � c) ;
(5:4)

subject to (5.3). De�ne L1; L2 by

L1(�; ) � L��  ;

L2(�; ) � L � iaRe(U � c) :
(5:5)

To use the Chebyshev tau method on this system we transform to z = 2r� 1 and then use

the key relation, Orszag [22],

Tm+1(z) + Tm�1(z) = 2zTm(z); m � 1: (5:6)
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In terms of z the operator L becomes

L � 4
d2

dz2
� 4

(z + 1)

d

dz
� a2

and

U =
3

4
� 1

2
z � 1

4
z2:

Then we solve exactly the tau system

L1(�; ) =
�1

(z + 1)
TN+1 +

�2

(z + 1)
TN+2;

L2(�; ) =
�3

(z + 1)
TN+1 +

�4

(z + 1)
TN+2:

(5:7)

To remove the singularity we multiply each equation in (5.6) by (z + 1)Tm and integrate

in the weighted L2(�1; 1) space with weight (1� z2)�1=2: While we now have to calculate

terms like (zTm;
d2�
dz2

) the beauty of using the weighted inner product is the natural removal

of the singular term in L:

After some calculation we arrive at an equation of form (1.21) where

Ar =

0
BBBBB@

4ZD2 + 4D2 � 4D � a2(Z + I) �(Z + I)
BC1 0 : : : 0
BC2 0 : : : 0

0 4ZD2 + 4D2 � 4D � a2(Z + I)
BC3 0 : : : 0
BC4 0 : : : 0

1
CCCCCA

Ai =

0
BBBBB@

0 0
0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0

0 aRe(1
4
Z3 + 3

4
Z2 � 1

4
Z � 3

4
I)

0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0

1
CCCCCA

and

Br = 0; Bi =

0
B@
0 0

0 �aReI
0 : : : 0
0 : : : 0

1
CA

where

x = (�0; : : : ; �N+2;  0; : : : ;  N+2)
T ;

Zn denotes the matrix arising from the Chebyshev representation of the function zn; ZD2

being the Chebyshev representation of zD2. The boundary conditions BC1 � BC4 are

those of (2.7).
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Although we do not include numerical output for the problem of this section we have

carried out many computations. The behaviour seen in sections 3 and 4 is also observed

here. The spectrum has a similar shape to that seen in section 3 and too few polynomials

lead to a split in the tail. Again, for high Reynolds numbers instability is witnessed at the

intersection of the branch points but it may be remedied by increasing the precision.

6. The eigenvalue problem for Orr-Sommerfeld like ows for two superposed

immiscible uids.

Here we study the eigenvalue problem associated to the problem of Couette and / or

Poiseuille ow when one immiscible viscous uid overlies another. This is a problem of

major technological importance with application from the oil industry to �elds such as

de-icing of an aeroplane wing, cf. Chen & Crighton [5]. Many references may be found in

the papers by Chen & Crighton [5], Hooper [16], and Renardy [24]. While we here develop

a D2 method for the situation studied by Hooper [16] we believe the ideas are extendable

to more complicated scenarios such as the one of Chen & Crighton [5]. We stress that the

D2 Chebyshev tau method has wide application to many hydrodynamic stability studies

and we are presenting it here as a guide as to how one would apply it in other two or

multi-layer situations. In particular, we believe it is an ideal method to apply to two or

many layer uid ows in a pipe where the singular terms may be handled as outlined

in section 5. Inclusion of electric and magnetic e�ects greatly increases the order of the

system, but the D2 Chebyshev method is pefectly suited to incorporate such e�ects.

Hooper [16] assumes a uid, denoted by 2, is overlying a di�erent, immiscible uid,

denoted by 1, the con�guration being contained in a horizontal position between planes

y = �1; y = n; with the (x; z)�plane horizontal while the y�axis is vertical (orthogonal
to the bounding planes of the uids). The dynamic viscosities, densities and depths in

each uid are denoted by ��; �� and d�; respectively, � = 1; 2: The upper plane y = n

may be subject to a (dimensionless) velocity in the x�direction, un; and the velocity of

the interface (in the steady state) is Uint: A Reynolds number, Re; is de�ned with respect

to Uint: The basic ow has form

u1(y) =A1y
2 + a1y + 1; �1 < y < 0;

u2(y) =A2y
2 + a2y + 1; 0 < y < n;

(6:1)
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where

A1 =
�(m+ n) +mun

n(n+ 1)
;

a1 =
n2 �m+mun

n(n+ 1)
;

A2 =
A1

m
; a2 =

a1

m
;

(6:2)

with m and n being the viscosity and depth ratios,

m =
�2

�1
; n =

d2

d1
: (6:3)

Hooper [16] observes that un = 0 gives rise to a two uid version of plane Poiseuille

ow, whereas un = (m+n)=m yields Couette ow. Renardy [24], pp. 1762, 1763, includes

a detailed account of the applicability of Squire's theorem to two uid ows and points

out that if there are islands of stability (where the neutral curve consists of one or more

isolated closed curves in addition to the usual convex one, as occurs in multi - component

convection - di�usion, cf. Straughan & Walker [28]) then such a theorem would not be

applicable. In that case one would be faced with a three-dimensional analysis and a D2

method is not equivalent to a stream function - vorticity method. However, we stress that

the D2 method is still applicable in that case. We here follow Hooper [16] and analyse

directly the two-dimensional situation. Hooper [16] shows the e�ective stream function ��

in each uid satis�es the equations

�
d2

dy2
� a2

�2

�1(y) =i�Re

��
u1(y) � c

�� d2

dy2
� a2

�

� u001(y)

�
�1(y); �1 < y < 0;

(6:4)

�
d2

dy2
� a2

�2

�2(y) =
i�Re

m

��
u2(y) � c

�� d2

dy2
� a2

�

� u002(y)

�
�2(y); 0 < y < n;

(6:5)

where a is the wavenumber and c is the growth rate due to a disturbance of form exp[ia(x�
ct)]:

The boundary conditions on the plates are

�1(�1) = 0; �01(�1) = 0; �2(n) = 0; �02(n) = 0: (6:6)
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The interface conditions due to continuity of velocity components and continuity of shear

and normal stresses are, on y = 0;

�1 = �2 (= �(0));

�01 = �02 +
�(0)

[c� u1(0)]
u01(0)

�1�m

m

�
;

�001 + a2�1 = m(�002 + a2�2);

� iaRe
�
[c� u1(0)]�

0

1 + a1�1
�
+ iraRe

�
[c� u1(0)]�

0

2 + a2�2
�

� �0001 + 3a2�01 +m(�0002 � 3a2�02) =
iaRe

[c� u1(0)]

�
1

F 2
+ a2S

�
�;

(6:7)

where r = �1=�2; F is a non-dimensional form of the density di�erence �2 � �1; and S is

a non-dimensional form of the interfacial tension, Yih [29]. Actually, Hooper [16] restricts

attention to equal densities and zero interfacial tension, i.e. r = 1; S = 0; as we do in

computations. However, we wish to indicate that the D2 method may be applied to the

complete boundary condition due to continuity of normal stress, (6:7)4; derived by Yih

[29].

To implement (6:7)4 in practice we use (6:7)2 to rewrite it as

� iaRe
�
[c� u1(0)]�

0

1 + a1�1
�
+ iraRe

�
[c� u1(0)]�

0

2 + a2�2
�

� �0001 + 3a2�01 +m(�0002 � 3a2�02) =
iamRe

u01(0)(1 �m)

�
1

F 2
+ a2S

�
(�01 � �02);

(6:8)

withm 6= 1:A discrete version of (6.8) is easily added to a Chebyshev formulation, following

the lines given below.

Henceforth, we restrict attention to Hooper's [16] problem for which r = 1; S = 0: To

solve (6.4)-(6.7) by a D2 Chebyshev tau - QZ algorithm technique we �rst map y 2 (�1; 0)
and y 2 (0; n) to the domains (�1; 1) by the transformations

z1 = �2y � 1; z2 =
2

n
y � 1; (6:9)

note that z = �1 becomes the interface in both cases.

De�ne now �(z1) = �1(y);  (z2) = �2(y); and then de�ne the di�erential operators
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L1; L2; and functions �; ! by

L1� �
�
4
d2

dz21
� a2

�
�;

L1� =�;

L2 �
�

4

n2
d2

dz22
� a2

�
 ;

L2 =!;

(6:10)

so we rewrite the di�erential equations (6.4), (6.5) as

L1�� � = 0;

L1� � iaReu1� + 2A1iaRe� = �ciaRe�;
L2 � ! = 0;

L2! � i
aRe

m
u2! + 2A2i

aRe

m
 = �ciaRe

m
!:

(6:11)

The idea is to write

� =

N+2X
n=0

�nTn(z1); � =

N+2X
n=0

�nTn(z1);  =

N+2X
n=0

 nTn(z2); ! =

N+2X
n=0

!nTn(z2):

The boundary conditions (6.6) become

�(1) =
d�

dz1
(1) = 0;  (1) =

d 

dz2
(1) = 0: (6:12)

The interface boundary conditions are, on z1 = z2 = �1;

��  = 0;

� + 2a2��m! � 2a2m = 0;

d�

dz1
� 2a2

d�

dz1
+
m

n

d!

dz2
� 2m

n
a2
d 

dz2
= 0;

c

�
d�

dz1
+

1

n

d 

dz2

�
=

d�

dz1
+

1

n

d 

dz2
� a1

2

�1�m

m

�
�:

(6:13)
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The Chebyshev tau version of (6.11)-(6.13) yields a 4(N +3)� 4(N +3) matrix system

like (1.21) where

Ar =

0
BBBBBBBBBBBBBBBBBBB@

4D2 � a2I �I 0 0
BC1 0 : : : 0 0 : : : 0 0 : : : 0
BC2 0 : : : 0 0 : : : 0 0 : : : 0

0 4D2 � a2I 0 0
BC5 BC5 BC5 BC5
BC6 BC6 BC6 BC6

0 0 4
n2
D2 � a2I 0

0 : : : 0 0 : : : 0 BC3 0 : : : 0
0 : : : 0 0 : : : 0 BC4 0 : : : 0

0 0 0 4
n2
D2 � a2I

BC7 BC7 BC7 BC7
BC8 BC8 BC8 BC8

1
CCCCCCCCCCCCCCCCCCCA

Ai =

0
BBBBBBBBBBBBBBBBB@

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

2aA1RI �aRu1 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 2A2aR
m

I �aR
m
u2

0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

1
CCCCCCCCCCCCCCCCCA

Br =

0
BBBBBBBBBBBBBBBB@

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
BC8 BC8 BC8 BC8

1
CCCCCCCCCCCCCCCCA
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and

Bi =

0
BBBBBBBBBBBBBBBBB@

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 �aRI 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

0 0 0 �aR
m
I

0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0
0 : : : 0 0 : : : 0 0 : : : 0 0 : : : 0

1
CCCCCCCCCCCCCCCCCA

where u1 and u2 are the Chebyshev representations of u1(z1); u2(z2); and

x = (�0; : : : ; �N ; �0; : : : ; �N ;  0; : : : ;  N ; !0; : : : ; !N)
T :

Let us assume N is rescaled so that each block is N �N; i.e. each matrix is 4N � 4N:

The BC1 terms, in row N �1, stand for the Chebyshev version of the boundary conditions

�(1) = 0; and the BC2 terms, in row N; mean the boundary condition �0(1) = 0; these are

written with the aid of the properties Tn(�1) = (�1)n; T 0

n(�1) = (�1)n�1n2: Likewise

the BC3 and BC4 terms, in rows 3N�1 and 3N; respectively, overwrite with the boundary

conditions  (1) = 0 and  0(1) = 0: The BC5 - BC8 rows stand for the interface boundary

conditions (6.13). The expression BC5 overwrites with

�(�1) 0 �  (�1) 0

i.e.

1� 1 : : : 1� 1 0 : : : 0 � 1 1 : : : � 1 1 0 : : : 0

where each group, e.g. 1� 1 : : : 1� 1, etc., contains N terms. The expression BC6 stands

for

2a2�(�1) �(�1) � 2a2m (�1) �m!(�1)
while the notation BC7 overwrites with

�2a2 d�
dz1

(�1) d�

dz1
(�1) � 2

m

n
a2
d 

dz2
(�1) m

n

d!

dz2
(�1) :

The interface boundary condition (6:13)4 involving c has to be written into row 4N of Ar

and Br, via BC8; the part going into Ar is

d�

dz1
(�1)� 1

2
a1

�1�m

m

�
�(�1) 0

1

n

d 

dz2
(�1) 0
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whereas into Br we write

d�

dz1
(�1) 0

1

n

d 

dz2
(�1) 0

To check the code we ran it with R = 104; a = 1;m = n = 1; un = 0 and we reproduce

Orszag's [22] results, cf. section 2, although a \degenerate" interface eigenvalue of (1,0) is

found. That this is acceptable follows from boundary condition (6:13)4 where c = 1 is a

solution.

Employing 150 polynomials in each of �; �;  and ! we have made several calculations

of spectra. Our choice of parameters was guided by Hooper's [16] results for the leading

eigenvalue at criticality, i.e. the value of c between linear stability and instability for which

ci = 0: Her numerical technique was an orthonormalization type shooting method which

locates one eigenvalue. We have not previously seen calculations of the spectra for the

superposed uids problem. Hooper [16] reports that for m = 2; n = 1:2 there are two

distinct modes of possible instability if the Reynolds number is su�ciently high; one due

to shear in the bulk of the uids whereas the other is due to the interface e�ect. She

reports that the orthonormalization technique could not determine the growth rates of

the shear mode to su�cient accuracy. We have seen no trouble with this employing the

method outlined here. In �gure 7 we include the spectrum obtained for the parameter

values Re = 104; un = 0;m = 2; n = 1:2; a = 1; which is well into the shear instability

zone of Hooper [16], which she reports begins around Re = 7400: The shear mode is the

one crossing the ci = 0 axis at the upper left whereas the interface mode is the one in the

top right corner. The splitting of the tail is not a numerical instability as we con�rmed by

calculation with 128 bit arithmetic. This feature is, in fact, observed as m increases from

1. The actual numerical values of the two leading eigenvalues in �gure 7 are presented in

table 5.

Mode Type Eigenvalue c

interface 1:003907431 + 0:1791888368E � 02i

shear 0:2578942002 + 0:8778915187E � 03i

Table 5. Numerical values of the two leading eigenvalues in �gure 7.
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Figure 7 The spectrum for (6.11)-(6.13). Re = 104; a = 1;m = 2; n = 1:2; un = 0:

Figure 8 The spectrum for (6.11)-(6.13). Re = 104; a = 1;m = 2; n = 2; un = 0:

Figure 9 The spectrum for (6.11)-(6.13). Re = 25; a = 1;m = 2; n = 10; un = 3:

Figure 10 The spectrum for (6.11)-(6.13). Re = 125; a = 1;m = 2; n = 10; un = 3:
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Figure 8 shows how the tail splits more as n increases. Notice how for n = 2 the shear

mode which is clearly unstable at n = 1:2 has dropped substantially into the stable zone.

Hooper [16] reports that mode crossing occurs as n increases so the two separate modes

which are unstable at n = 1:2 bifurcate at some intermediate value of n to form one stable

mode when n = 10: Our investigations of various cases show the shear mode to be less

inuential when n = 10: For example, calculations with n = 10;m = 2; un = 0; Re = 500

and a = 0:37 and a = 4:5 show one unstable mode, consistent with graph 5b of [16]. The

a = 4:5 spectrum shows evidence of a shear like branch, but the leading eigenvalue of this

branch is well into the stable zone.

We have three further mpeg movies which may be viewed by opening the following URL

with a web browser

http://www.epm.ornl.gov/~walker/eigenproblems.html

These contain the parameter evolution of the spectrum of the Hooper [16] problem.

The parametric studies are (a) Re = 200; a = 2;m = 2; un = 0; with n going from 1.2 to

10 in steps of 0.1, which corresponds to a change from Hooper's [16] �gure 5a to �gure

5b; (b) a = 1; un = 3;m = 2; n = 10; with Re going from 25 to 125 in steps of 1, which

corresponds to �gure 6b of [16]; (c) Re = 100; un = 2;m = 2; n = 10; with a going from

0.3 to 2.3 in steps of 0.02, this corresponding to �gure 6a of [16].

The \evolutionary" behaviour is revealing. In the (b) case we see only one leading

mode which begins in the stable zone then becomes unstable before again returning to the

stable zone, entirely consistent with the neutral curve of [16]. The eigenvalues \emanate"

from two points on the ci = �1 axis, one point just below cr = 1 whereas the other is at

approximately cr = 2:45: The spectra for the extreme cases Re = 25 and Re = 125 are

shown in �gures 9 and 10.

The track in the wave number a; case (c), again shows one leading eigenvalue which

begins in the stable region, goes unstable, then stable, and �nally unstable, which again is

consistent with the neutral curve in [16]. Again, the eigenvalues emanate from two places

on the ci = �1 axis, one of these being cr � 2:1 while the other varies between cr � 0:8

and cr � 0:6: The cases a = 0:3 and a = 2:3 are displayed in �gures 11 and 12.

Variation in n in the movie for case (a) is interesting. The leading eigenvalue begins

unstable and �nishes stable as n is varied from 1.2 to 10, consistent with the neutral

curves of [16]. However, at n � 2:9 this eigenvalue moves sharply down into the stable

region while an eigenvalue below moves sharply upward. To the resolution we have they

appear to almost \bounce" o� each other with the leading eigenvalue then going close to

the ci = 0 axis but remaining stable. (Closer examination reveals the eigenvalues do not,

in fact, overlap.) In this case the eigenvalues appear to emanate from only one point on
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the ci = �1 axis. For n between 1.2 and 2.3 they come from cr � 0:67 and at n � 2:9

this position of emanation begins to move rapidly to the right. Figure 13 displays the

spectrum for n = 10: Those eigenvalues on the left side are left from the ones which came

from below before n � 2:7: There is de�nite evidence of some transistion at n � 2:9; where

several eigenvalues appear to \bounce" o� each other. The two new branches coming from

the main right branch begin to form at n � 3:6: Hooper's [16] comments on a transistion

as n increases are consistent with what we have observed.
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Figure 11 The spectrum for (6.11)-(6.13). Re = 100; a = 0:3;m = 2; n = 10; un = 2:

Figure 12 The spectrum for (6.11)-(6.13). Re = 100; a = 2:3;m = 2; n = 10; un = 2:

Figure 13 The spectrum for (6.11)-(6.13). Re = 200; a = 2;m = 2; n = 10; un = 0:

7. Concluding remarks.

1. As hydrodynamic stability problems become more complex due to incorporation of

technologically important e�ects, the orders of the di�erential equations involved increase

rapidly. Furthermore, there is increasing necessity to calculate a large part of the spectrum.

A very important feature of the D2 Chebyshev tau - QZ algorithm method is that extends
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to arbitrarily large systems which may be found, for example, in multi-component convec-

tion when many constituents are present and even chemical reactions are taking place, or

in such a problem as thermal convection with Hall and ion slip currents simultaneously in

e�ect. The latter problem is twelfth order even without ow e�ects. In this case very large

systems of algebraic equations are encountered especially when the di�erential equations

are sti�, or higher dimensions are considered, as in the plane Poiseuille or Couette ow

problems coupled with e�ects such as multi-component di�usion and thermal convection,

or Hall and ion slip MHD inuences; such problems have a wide practical application, see

e.g. Mulone [21]. For such classes of problem we see that the precision representation

of a real number presents a di�culty. The D method of Lindsay & Ogden [18] would

appear in some ways desirable because of the O(M) growth of coe�cients; however, the

fact that the matrices are each of size JM � JM where J is the order of the system is

a very severe restriction. To give an explicit example, the problem of thermal convection

with two competing species as studied in [28] if coupled with Couette and / or Poiseuille

ow, Hall and ion slip e�ects, in the case of one uid overlying another would give rise to

two 16th order systems and the resulting matrices in the D method would be 32M �32M ;

if we require 200 polynomials for accurate resolution this means �nding the eigenvalues

of a 6400 � 6400 generalised matrix problem. Even a D2 method for a large number of

polynomials and extended precision calculation requires a large amount of memory and a

long run time; the problem alluded to above would require 3200 � 3200 matrices for 200

polynomials. The very large matrix systems which will be encountered in stability studies

on practical problems like that quoted above are precisely the domain for application of

parallel software libraries, such as ScaLAPACK Choi et al. [6], Dongarra & Walker [10].

Unfortunately, however, at the time of writing a parallel version of the QZ algorithm is

not yet available in the ScaLAPACK library. Another line of attack is to use the Arnoldi

(iterative) method, see [6], and this will form part of future work.

2. As a further check on accuracy, we computed the sensitivities, Stewart & Sun [25],

de�ned as

s(i) =
kxikkyik
xHi yi

(7:1)

for the problem (1.1) with A and B de�ned as in this section; here x and y are right and

left eigenvectors of (1.1), respectively. The quantity log10s
(i) is a measure of the number

of digits one loses in accuracy. We also considered using the chordal metric which leads to

sensitivities de�ned as

s(i) =
kxikkyikp

jyHi Axij2 + jyHi Bxij2
(7:2)
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which is a more unitary invariant measure than that given in (7.1). However, it is not clear

which sensitivity measure is best since when B = I the generalized eigenvalue problem

reduces to the standard case, but the sensitivity given in (7.2) does not reduce to the

standard sensitivity. Given that the most appropriate de�nition of sensitivity is open

to debate, we believe that the sensitivity de�ned by (7.1) is adequate for our purposes,

and use this de�nition in table 7 below which gives the absolute values for the �rst ten

\eigenvalues." Note that the �rst three values computed are spurious eigenvalues. By

examining log10s
(i) in table 7 it is seen that even in full precision (64 bit arithmetic) high

accuracy is expected. The sensitivities for the three spurious eigenvalues are also of the

same order as those appropriate to eigenvalues of the physical problem, which indicates

that the spurious eigenvalues arise from the discretization, not the QZ algorithm.

Mode Number Sensitivity cr ci

1 .104875E+05 .9306062397E-01 .5398774786E+05

2 .955170E+04 -.3477822923E+05 .6583840773E+04

3 .955169E+04 .3477831961E+05 .6583707360E+04

4 .192577E+05 .1008716826E+01 .8889416072E-03

5 .133748E+03 .6644993935E+00 -.1242776632E+00

6 .462979E+03 .7467618987E+00 -.1793830027E+00

7 .113398E+04 .7446257506E+00 -.2683049316E+00

8 .160433E+04 .7127003503E+00 -.3747130589E+00

9 .965561E+03 .6933402508E+00 -.5181828296E+00

10 .140640E+04 .6865584144E+00 -.7191848687E+00

Table 6. The sensitivities of the �rst ten computed \eigenvalues". Re = 100; a = 2;m =

2; n = 1:2; un = 0;M = 150:

3. Future work will investigate the implementation of a parallel version of the QZ algo-

rithm, and the use of the Arnoldi method for solving the generalised eigenproblem. In

addition, we intend to examine the regular and singular structure of A � �B, to see if

this has any bearing on the identi�cation of spurious eigenvalues. This may be done by

reducing A � �B to the GUPTRI form of Demmel and Kagstr�om [8,9].
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