
Automatic Blocking of Nested Loops

Robert Schreiber�

Research Institute for Advanced Computer Science

Mail Stop 230-5, NASA Ames Research Center

Mountain View, CA 94035

e-mail: schreiber@riacs.edu

Jack J. Dongarray

Department of Computer Science

University of Tennessee

Knoxville, TN 37996-1301

and

Mathematical Sciences Section

Oak Ridge National Laboratory

Oak Ridge, TN 37831

e-mail: dongarra@cs.utk.edu

May 21, 1990

Abstract

Blocked algorithms have much better properties of data locality and therefore

can be much more e�cient than ordinary algorithms when a memory hierarchy is

�Supported by the NAS Systems Division and/or DARPA via Cooperative Agreement
NCC 2-387 between NASA and the University Space Research Association (USRA).

ySupported by the Applied Mathematical Sciences subprogram of the O�ce of Energy
Research, U.S. Department of Energy, under Contract DE-ACOS-84OR21400.

1

involved. On the other hand, they are very di�cult to write and to tune for par-

ticular machines. Here we consider the reorganization of nested loops through the

use of known program transformations in order to create blocked algorithms auto-

matically. The program transformations we use are strip mining, loop interchange,

and a variant of loop skewing in which we allow invertible linear transformations

(with integer coordinates) of the loop indices. In this paper, we solve some prob-

lems concerning the optimal application of these transformations. We show, in a

very general setting, how to choose a nearly optimal set of transformed indices.

We then show, in one particular but rather frequently occurring situation, how to

choose an optimal set of block sizes.

Keywords: block algorithm, parallel computing, compiler optimization,
matrix computation, numerical methods for partial di�erential equations,
program transformation, memory hierarchy.

AMS(MOS) subject classi�cations: ???? 05C50, 15A23, 65F05, 65F50,
68M20.

1 Introduction

An essential fact of life in very-large-scale integrated circuits is that tran-
sistors are cheap and wires are expensive. The concomitant fact in high-
performance computing, especially parallel computing, is that computation
is cheap and communication is expensive. The two types of communication
that we are primarily concerned with here are communication between the
processors in a multicomputer and communication between processors and
main memory.

Both these forms of communication are characterized by long latency
and low bandwidth compared to the CPU rate. For instance, in the CRAY-
1 memory was able to provide only 80 Mwords per second to the vector
unit, which could produce one result and take in two operands per clock
at 80 MHz; thus the memory was too slow by a factor of three. This same
phenomenon can be observed in the i860 RISC today, the NEC-SX supercom-
puters, the Alliant machines, the CM-2, and most other high-performance
machines. Communication speeds are likewise slower than processor speeds

2

in multicomputers such as the Intel iPSC/2. In that machine, processors
communicate over 1-bit-wide channels but have full word-wide paths to local
memory. While newer message passing machines will employ byte-wide com-
munication channels, the evolving microprocessor already provides memory
ports of 8 or 16 bytes.

The principal architectural solution to these problems is to provide a small
but fast local memory at each processor. The memory may be managed by
hardware on a demand basis (cache) or managed explicitly by software, either
operating system or application. If the processor is B times faster than the
data path to memory or to other processors, then it must make reference
to that slow data path only once for every B operations in order not to be
slowed down. For this to happen, it must get its data from the local memory
roughly B�1 times out of every B. Software must organize the computation
so that this \hit ratio" can be achieved.

1.1 Block algorithms: Matrix Multiplication as an

Example

To achieve the necessary reuse of data in local memory, researchers have
developed many new methods for computation involving matrices and other
data arrays [6, 7, 16]. Typically an algorithm that refers to individual ele-
ments is replaced by one that operates on subarrays of data, which are called
blocks in the matrix computing �eld. The operations on subarrays can be
expressed in the usual way. The advantage of this approach is that the small
blocks can be moved into the fast local memory and their elements can then
be repeatedly used.

The standard example is matrix multiplication. The usual program is

for i = 1 to n do

for j = 1 to n do

for k = 1 to n do

c[i; j] = c[i; j] + a[i; k] � b[k; j] ; od
od

3

od

The entire computation involves 2n3 arithmetic operations (counting addi-
tions and multiplications separately), but produces and consumes only 3n2

data values. As a whole, the computation exhibits admirable reuse of data.
In general, however, an entire matrix will not �t in a small local memory.
The work must therefore be broken into small chunks of computation, each
of which uses a small enough piece of the data. Note that for each iteration
of the outer loop (i.e., for a given value of i) n2 operations are done and n2

data is referred to | no reuse. For �xed values of i and j, n computation
and n data referred too | again, no reuse.

Now consider a blocked matrix-multiply algorithm.

for i0 = 1 to n step b do

for j0 = 1 to n step b do

for k0 = 1 to n step b do

for i = i0 to min(i0 + b� 1; n) do
for j = j0 to min(j0 + b� 1; n) do

for k = k0 to min(k0 + b� 1; n) do
c[i; j] = c[i; j] + a[i; k] � b[k; j] ; od

od

od

od

od

od

First, note that in this program exactly the same operations are done on the
same data; even round-o� error is identical. Only the sequence in which in-
dependent operations are performed is di�erent from the unblocked program.
There is still reuse in the whole program of order n. But if we consider one
iteration with �xed i0, j0, and k0, we see that 2b3 operations are performed
(by the three inner loops) and 3b2 data are referred to. Now we can choose
b small enough so that these 3b2 data will �t in the local memory and thus

4

achieve b-fold reuse. (If this isn't enough | if b < B in other words | then
the machine is poorly designed and needs more local memory.) Put the other
way, if we require B-fold reuse, we choose the block size b = B.

The subject of this paper is the automatic transformation of ordinary
programs to blocked form.

Our motivation for seeking such a capability is as follows. Many algo-
rithms can be blocked. Indeed, recent work by numerical analysts has shown
that the most important computations for dense matrices are blockable. A
major software development of blocked algorithms for linear algebra has been
conducted as a result [5]. Further examples, in particular in the solution of
partial di�erential equations by di�erence and variational methods, are abun-
dant. Indeed, many such codes have also been rewritten as block methods
to better use the small main memory and large solid-state disk on Cray su-
percomputers [14]. All experience with these techniques has shown them to
be enormously e�ective at squeezing the best possible performance out of
advanced architectures.

On the other hand, blocked code is much more di�cult to write and to
understand than point code. Writing it is a di�cult and error-prone job.
Blocking introduces block size parameters that have nothing to do with the
problem being solved and which must be adjusted for each computer and
each algorithm if good performance is to be achieved. Unfortunately, the
alternative to having blocked code is worse: poor performance on important
computations with the most powerful computers. For these reasons, Kennedy
has stated that compiler management of memory hierarchies is the most
important and most di�cult task facing the writers of compilers for high-
performance machines [12].

1.2 Program Transformation and Blocking; Previous

Work

We can view the reorganized matrix-multiply program in two ways. First, we
can consider the matrices A, B, and C as n

b
�

n
b
matrices whose elements are

b� b matrices. In this case, the inner three loops simply perform a multiply-
add of one such block-element. This is the view taken by most numerical

5

analysts. Second, we can derive the blocked program form the original, un-
blocked program by a sequence of standard program transformations. First,
the individual loops are strip mined. For example, the loop

for i = 1 to n do

� � � od

is replaced by

for i0 = 1 to n step b do

for i = i0 to min(i0 + b� 1; n) do
� � � od

od

(Strip mining is a standard tool for dealing with vector registers. One may
apply it \legally" to any loop. By legally, we mean that the transformed
program computes the same result as before.) Strip mining, by itself, yields
a six-loop program, but the order of the loops is not what is needed for a
blocked algorithm. The second transformation we use is loop interchange.
In general, this means changing the order of loops and hence the order in
which computation is done. To block a program, we endeavor to move the
strip loops (the i0, j0, and k0 loops above) to the outside and the point loops
(the i, j, and k loops above) to the inside. This interchange is what causes
repeated references to the elements of small blocks. In the matrix-multiply
example, the interchange is legal, but there are many interesting programs
for which it is not, including LU and QR decompositions and methods for
partial di�erential equations.

This approach to automatic blocking, through loop strip mining and in-
terchange, was �rst advocated by Wolfe [18]. It is derived from earlier work
of Abu-Sufah, Kuck, and Lawrie on optimization in a paged virtual-memory
system [1]. Wolfe introduced the term tiling. A tile is the collection of work
to be done, i.e., the set of values of the point loop indices, for a �xed set
of values of the block or outer loop indices. We like this terminology since
it allows us to distinguish what we are doing | which is to decompose the

6

work to be done into small subtasks (the tiles) | from the quite di�erent
task of decomposing the data a priori into small subarrays (the blocks), even
though each tile does, in fact, act on blocks. Following Wolfe, we call the
problem of decomposing the work of a loop nest index space tiling.

Other authors have treated the issue of management of the memory hi-
erarchy [8]. Some other treatments of the problem of automatic blocking
have recently appeared [11], [4], [17], [18], [19]; none, however, gives the
quantitative statments of the problem and the solution that we provide here.

1.3 StripMining and Loop Interchange Are Not Enough

Consider the one-dimensional, discrete di�usion process

for t = 0 to m do

for i = 1 to n� 1 do
u[i; t] = f(u[i� 1; t� 1]; u[i; t� 1]; u[i+ 1; t� 1]); od

od

At each time step (each iteration of the t loop) at every grid point, the value
of u(i) is updated by using the data at the three grid points i � 1, i, and
i + 1 from the previous time step, t � 1. This process is typical of PDE
computations. Let us apply strip mining and loop interchange to this code.
The resulting program, which follows, is incorrect.

for t0 = 0 to m step bt do

for i0 = 1 to n� 1 step bi do

for t = t0 to min(m; t0 + bt� 1) do
for i = i0 to min(n� 1; i0 + bi� 1) do

u[i; t] = f(u[i� 1; t� 1]; u[i; t� 1]; u[i+ 1; t� 1]); od
od

od

od

7

One cannot advance the computation in time for a �xed subset of the grid
points without advancing it for their neighbors; to update the values at the
edge of the block of grid points, we require values from neighboring grid points
outside the block that have not been computed. In other words, the loop
interchanges that we performed were illegal and, the transformed program
produces meaningless results.

Wolfe's second paper on tiling recognizes this fact. He advocates the use
of a technique called loop skewing [19]. (This was also discussed by Irigoin
and Triolet [11].) By loop skewing, Wolfe means changing the index of the
inner loop from the natural variable (i above) to the sum or di�erence of the
old inner index and an integer multiple of the outer loop index. With this
transformation, the code above can be changed as follows:

for t = 0 to m do

for r = t+ 1 to t+ n� 1 do
u[r � t; t] = f(u[r � t� 1; t� 1]; u[r� t; t� 1]; u[r� t+ 1; t� 1]); od

od

Here we have used r = i+ t as the inner loop index. Note that the inner
loop now ranges over oblique lines in the (i; t) plane. We may now legally
strip mine and interchange to get a tiled program:

for t0 = 0 to m step bt do

for r0 = t0 + 1 to t0 + n� 1 step br do

for t = t0 to min(m; t0 + bt� 1) do
for r = max(r0; t+ 1) to min(t+ n� 1; r0 + br � 1) do

u[r � t; t] =
f(u[r � t� 1; t� 1]; u[r� t; t� 1]; u[r� t+ 1; t� 1]); od

od

od

od

Figure 1 shows the tiles of computation in the original coordinates (i; t).

8

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

6

-
i

t

bt

br

t0 = 0
r0 = 1

t0 = 0
r0 = br + 1

t0 = bt
r0 = br + 1

Figure 1: Tiled index space, with new inner index r � t+ i.
.

9

In this paper, we consider the following generalization of Wolfe's loop
skewing. We allow all of the loop indices to be replaced by linear combina-
tions of the original, natural indices. Let the computation be a loop nest of
depth k. Let the natural indices be (i1; i2; : : : ; ik). Let A be an invertible,
k � k integer matrix. We would like to use (j1; j2; : : : ; jk) as the indices in a
transformed program, where

j = AT i :

We can carry out this transformation in two steps. First, we replace every
reference to any of the natural loop indices in the program by a reference to
the equivalent linear combination of the transformed indices. If the rational
matrix F = [fpq]kp;q=1 = A�T (A�T denotes the inverse of AT), then we replace
a reference to i1, for example, by the linear combination

f11 � j1 + f12 � j2 + : : :+ f1;k � jk :

Second, we compute upper and lower bounds on the transformed indices. We
call this program rewriting technique loop index transformation.

The �rst contribution of this work is a method for choosing the loop in-
dex transformation A. We start from the assumption that the computation
is a nested loop of depth k in which there are some loop-carried dependences
with �xed displacements in the index space. We then consider the prob-
lem of determining which loop index transformations A permit the resulting
index-transformed loop nest to be successfully tiled through strip mining and
interchange. (The mechanics of automating these program transformation is
discussed in the compiler optimization literature [3].) We show that this
problem amounts to a purely geometric one: �nding a basis for real k-space
consisting of vectors with integer components that are constrained to lie in
a certain closed, polygonal cone de�ned by the dependence displacements.
The basis vectors are then taken to be the columns of the loop index trans-
formation A. We further show that the amount of reuse that can be achieved
with a given amount of local memory, which is determined by the ratio of
the number of iterations in a tile to the amount of data required by the tile,
is dependent on A in a simple way. It is proportional to the (k� 1)th root of
det(�A) where �A is the matrix obtained by scaling the columns of A to have
euclidean length one.

10

We give a heuristic procedure for determining such an integer matrix A
that approximately maximizes this determinant. We report on the results of
some experiments to test its performance and robustness.

Finally, we consider the optimal choice of tile size and shape, once the
basis A has been determined. We show that it is straightforward to derive
block size parameters that maximize the ratio of computation in a tile to
data required by the tile, given knowledge of the
ux of data in the index
space and the blocking basis A.

1.4 Notation

We use uppercase letters for matrices. The notation X = [x1; x2; : : : ; xk]
means that X has columns x1; x2; : : : ; xk. The notation X = [xi;j] means
that X has elements xi;j.

In general, we use lowercase Greek letters for scalars. Let

�ij �

(
1 if i = j

0 otherwise

The following symbols have the indicated meaning

S The index space | the set of values of the loop index vector
A The matrix that transforms natural to new loop indices
�A The matrix A with its columns scaled

to have euclidean length one
F A�T

D The matrix of dependences
C The matrix of data
uxes
� The ratio of the volume of a tile to its surface area
b = [�j] The vector of block size parameters
aj A normal vector to a tiling hyperplane; one of the columns of A
� A bound on the size of local memory.
! The time required to perform the computation at a point

in the index space.

11

�j The time required to move data across one unit of area
in the hyperplane normal to aj.

We shall make considerable use of determinants. If X = [x1; : : : ; xn] is
a real, square matrix, then the real-valued function det(X) is the volume of
the parallelepiped subtended by the columns of X:8<

:
nX

j=1

�jxj j 0 � �j � 1

9=
; :

Thus, det(I) = 1. Also det(X) = det(XT). If Y is also n�n, then det(XY) =
det(X) det(Y). If T = [ti;j] is a triangular matrix, then det(T) = (t11 �
t22 � � � tnn).

Let spfzg denote the one-dimensional subspace spanned by the vector z,
and let spfzg? denote its orthogonal complement.

Lemma 1 Let x1 have length one. Let X1 � [x2; : : : ; xn]. Let P1 be the

orthogonal projection matrix on spfx1g
?. Then

det(X) = det(P1X1) :

Proof: Let c = (c2; : : : ; cn)T be a k � 1-vector chosen so that for each
2 � j � n, xj � cjx1 is orthogonal to x1. Construct the matrix

C =

1 �cT

0 In�1

!
:

Then, since C is triangular and has unit diagonal, det(C) = 1. Since x1 is a
vector of length one, XC = [x1; P1X1]. Thus,

det(X)2 = det(XTX)

= det(CTXTXC)

= det([x1; P1X1]
T [x1; P1X1])

= det

1 0
0 (P1X1)T (P1X1)

!

= det(P1X1)
2 :

12

2 Statement of the Problem

We are given a convex set of lattice points S 2 Zk. This is the set of all values
of the k dimensional natural index i = (i1; i2; : : : ; ik) in the loop nest. We call
S the index space of the loop nest, which is the standard term, even though S
is a �nite subset of Zk. We are also given a set of dependence displacements
D = [d1; : : : ; dm] where each integer vector dj 2 Zk is the displacement in the
index space from iterations that produce values to iterations that use them.
The integer m is the number of such dependences. Hence, for all points
i 2 S and for each 1 � j � m, if i� dj 2 S, then iteration i� dj must have
been performed before we perform iteration i. We may also consider anti-
dependences and output dependences and treat them in the same manner.
(See [8] for the de�nition of the various kinds of dependences.)

We now consider the blocking problem. The problem is to partition S

S = S1 [S2 [: : : [Sp (1)

where the subsets of index points fSjg are disjoint. The jth tile is the task
of executing the loop body for all values of the loop index in Sj .

Some restrictions are in order if this partition of S is to be of any use.
The key restriction was stated by Wolfe [19]:

\Each tile is a unit of computation to be scheduled on a pro-
cessor. Once a tile is scheduled : : : it runs to completion without
preemption. A tile will not be initiated until all dependence con-
straints for that tile are satis�ed, so there will never be a reason
that a tile, once started, should have to relinquish the processor."

We call this the atomicity requirement.

The second, less fundamental but nevertheless important restriction is
that the tiling should be expressible as a transformation of the original pro-
gram. For this reason, we restrict our attention to partitions of S achieved
by cutting S along hyperplanes. Wolfe's original tilings used planes normal
to the natural coordinate axes. Here, we allow arbitrary planes with integer
normals. If we want to cut up S along hyperplanes normal to the integer

13

vector a, we �rst apply loop index transformation to one of the original loops,
replacing its index with aT i. We then strip mine this loop and bring the strip
loop to the outermost position.

2.1 De�nitions

First, we de�ne the type of partition of S that we are considering. Let an
integer vector a 2 Zk and an integer block size parameter � be given. The
partition induced by a and � is given by (1) where

Sj = fi 2 S j (min
i2S

aT i) + (j � 1)� � aT i < (min
i2S

aT i) + j�g :

(Imagine a knife aligned so that a is normal to its
at side, cutting S into
slices of equal thickness �.)

We associate with S and D the dependence graph G = G(S;D) with
vertices S and edges

E = f(i; i0) 2 S � S j 9 a column dj of D 3 i+ dj = i0g :

We assume that G is acyclic. (If the dependence graph comes from a loop
nest in an imperative language like Fortran, then G has to be acyclic.)

De�nition 1 The set

C = C(D) � fx 2 Rk
j DTx > 0g

is called the time cone of D. (The inequality is interpreted componentwise.)

Note that C is an open, convex set closed under multiplication by a positive
scalar { i.e., C is in fact a cone. It is polygonal, the intersection of the
half spaces fdTj x > 0gmj=1. We call C the time cone, without mentioning D,
whenever there is no ambiguity.

The closure of C is also important; it is de�ned by

�C = �C(D) � fx 2 Rk
j DTx � 0g :

14

Two subsets of �C are important here. First, we must choose, as the
normals to the hyperplanes used to partition S, integer vectors in �C. The
intersection of �C with the surface of the unit sphere inRk (with the euclidean
norm) also plays a role.

Lemma 2 If C is nonempty, then G(S, D) is acyclic.

For the proof, observe that the iterations may be performed in order of in-
creasing value of xT i where x is any vector in C. Because all dependence
displacements dj make an acute angle with such an x, no dependence con-
straint is violated. We may therefore interpret xT i as the time at which
iteration i is to be performed, hence the name we have given C. Points of S
with equal value of xT i are independent of one another and can be executed
in any order { or in parallel, for that matter. This is the essence of Lamport's
hyperplane method for the parallel execution of do-loops [13].

Again, if D results from a loop nest in Fortran or a language like it, we
can show that C is not empty. In fact, it is easy to see that D has the
property that the �rst nonzero element of every column is positive (i.e. it is
lexicographically positive.) From this, the nonemptyness of C easily follows.

We can now show how to choose hyperplanes for partitioning S in such
a manner that Wolfe's atomicity requirement is satis�ed. First, we restate
the requirement in terms of the quotient of the dependence graph under the
partition (1).

De�nition 2 The quotient graph of G = G(S ;D) under the partition (1) is

the graph with vertices fS1; : : : ;Ssg and edges

f(Sp;Sq) j 9 ip 2 Sp and iq 2 Sq 3 (ip; iq) is an edge of Gg :

The atomicity requirement is equivalent to the requirement that the quo-
tient graph be acyclic. A su�cient condition for this is the following.

Lemma 3 The quotient graph of G(S, D) under the partition induced by a

and � is acyclic if a 2 �C.

15

For the proof, observe that, by their de�nition, the subsets of the partition
induced by a and � may be ordered according to the values taken by aT i on
them. It follows from the de�nition of �C that no point in a lower numbered
subset can depend on any point in a higher numbered subset; if there were
such a pair, say a point x that depends on a point y such that x � y = d

for some column d of D, then d makes an obtuse angle with a, i.e., aTd < 0,
since by assumption aTx < aTy. But by de�nition, aTd � 0 for all columns
d of D.

Moldovan and Fortes [15] have used this technique for the synthesis of
systolic arrays without cyclic data
ow, which allows the array to be used to
solve problems larger than the array. They gave no method for choosing the
hyperplanes. The material of this section was also presented by Irigoin and
Triolet [11].

2.2 Tiling with Hyperplanes

From the discussion above, we see that a valid partition of S may be obtained
by choosing any integer vector in �C. The tiles so obtained are slices of the
index space S. These are not su�ciently small, however, to allow for all their
necessary data to �t in the local memory of a given computer.

In terms of the corresponding program, tiling by slicing with a single
hyperplane can be achieved by a loop reindexing of one loop followed by strip
mining of that loop (and only that loop) and interchange to make the one
resulting strip-loop outermost. In the case of matrix multiply, for example,
this would result in a four-loop program in which the innermost three loops
do n2b operations and use n2 data. (For, no matter which loop we strip mine,
one of the matrices is indexed by the two unchanged loop indices and so is
completely accessed.)

As the matrix multiply example indicates, we need to be able to strip
mine all the loops in order to be able to work with tiles whose data sets can
be made arbitrarily small. In this section we investigate the problem of fully
tiling loop nests.

We can state this problem as follows. Given the index space S � Zk

16

and the dependence matrix D, choose k linearly independent vectors A �

[a1; : : : ; ak] (the columns of A are a basis for k-space) such that each aj 2 �C.

The partition induced by A and a k-vector of block size parameters b is
obtained by slicing S into slices of thickness �1 with a knife aligned perpen-
dicular to a1, then slicing again with thickness �2 and with the knife rotated
so that it is perpendicular to a2 (making long, narrow strips rather than
slices) and so on, until one has sliced k times, �nally obtaining tiles that are
shaped, except at the boundaries of S, like parallelepipeds whose faces are
perpendicular to the basis vectors.

Thus, in order to fully tile a loop nest with arbitrary dependences D, we
must be able to choose a basis in the cone �C.

Should we be satis�ed with any such basis? What if its elements are
nearly linearly dependent? Then we have tiles that are quite elongated,
with some very small angles and a low ratio of volume (which measures the
number of lattice points, or iterations to be performed) to surface area. The
surface area is a measure of the amount of data that must be moved into
local memory in order to carry out the work of a tile. In general, the data
moved in is the data required because of dependences of iterations in the tile
on iterations of other tiles. The iterations near the edges require this data
from outside.

The (k � 1) dimensional volume of the tile, which grows like
Qk

j=1 �j, is
also a measure of the amount of local memory needed to carry out the work
of each tile.

Let us therefore calculate how the choice of A determines the volume-to-
surface ratio of the induced tiles. We �rst answer the question for the tiling
that results when b = (�; �; : : : ; �)T . We obtain a formula for the ratio when
� � 1, then we show how varying � changes both the ratio and the amount
of local storage needed. In later sections we consider generalizing to tiles
with non-unit aspect ratios.

17

2.3 Geometric Considerations

First, we note that if a 2 �C, then so is �a for any positive scalar �. The
partition induced by A and b is unchanged if we scale the columns of A by
arbitrary positive amount and scale the corresponding components of b by
the reciprocal amounts. There is therefore no loss of generality if we replace
A with �A, the matrix obtained by scaling the columns of A to have unit
euclidean length.

We �rst assume that b = (�; �; : : : ; �)T . Let � � 1. Then except at the
boundaries, all tiles are congruent to

T = fx 2 Rk
j 0 � xTaj < 1 ; 8 1 � j � kg : (2)

T is a parallelepiped subtended by the columns of the inverse of �A
T
. In other

words, if F = [f1; : : : ; fk] � �A
�T
, then

T = fx =
kX

j=1

�jfj j 0 � �j � 1g : (3)

To see this, note that fTk aj = �kj, so for any x that satis�es (3), xTaj =
�jf

T
j aj = �j, and since 0 � �j � 1, equation (2) is satis�ed.

Let V (T) denote the volume of T . Then

V (T) = jdet(F)j = jdet(�A)j�1 :

Let us now consider the faces of T . Without loss of generality, consider the
face T (1)subtended by f2; : : : ; fk. The face is itself a (k � 1) dimensional
parallelepiped. We want to know its surface area, or in general its (k � 1)
dimensional volume, which we denote V (T (1)).

Lemma 4 V (T (1)) = jdet(F)j = V (T).

We give a proof, unfortunately algebraic rather than geometric in nature, in
the Appendix.

What are the consequences of the lemma? we see that all the faces have
the same area and that it is equal to the volume of T . Thus, the ratio �(T) of
the volume to the total surface area of T is just the reciprocal of the number
of sides, 2k:

18

Theorem 5 For any k � k matrix �A with unit-length columns, the paral-

lelepiped T de�ned by (2) has a ratio of volume to surface area of

� = �(k) =
1

2k
:

At �rst this is surprising, since if �A is far from having orthogonal columns
we would expect a lower ratio. The explanation is that the constant ratio has
been obtained because the size of T grows as �A loses orthogonality. (Scaling
up the size of any k-dimensional object by a factor � increases the ratio by
the factor �).

The problem we have is to make the ratio � as big as possible subject
to some limit, � on the tile cross section. This is because, as we shall show
in detail later (and it is clear intuitively), the cross section of a tile is pro-
portional to the amount of local memory needed to execute it. The cross
section of T is also roughly equal to jdet(F)j. To satisfy such a bound, we
must change the size of T . To keep the problem simple, we shall for the
present consider rescaling b by a constant factor �. Let � be chosen so that
the area of a face, F (T), is exactly �. We have that the volume and area of
the rescaled tile are

V (T) = �k
jdet(F)j

and
F (T) = �(k�1)

jdet(F)j :

Thus, we must choose

� � (� jdet(�A)j)1=(k�1) :

We can then achieve the ratio of volume to surface area

�max(�; �A) =
(� jdet(�A)j)1=(k�1)

2k
:

On the other hand, if we wish a ratio �? of volume to surface area, we need
tiles of dimension �? = 2k�?. Therefore, we must be able to hold tiles whose
sides have area

�min =
(�?)k�1

jdet(�A)j
(4)

=
(2k�?)k�1

jdet(�A)j
: (5)

19

We can, because of these observations, now state the optimality problem
we would like to solve: Given a cone �C, �nd an integer basis whose elements
are in the cone. Choose them so that the matrix having the scaled basis vec-
tors as columns has largest possible determinant. (We call the determinant
of this scaled matrix the normalized determinant .

This problem is related to, but is not the same as, choosing �A to minimize
its spectral condition number under the constraints DT �A � 0. (See [10] for
the de�nition and properties of matrix condition numbers.) Consider the
vector of singular values of �A. The normalization condition places it on the
unit sphere in Rk. The condition number is the ratio of the largest to the
smallest component; the determinant is the product of the components. In
the unconstrained case, both are optimized by the vector of equal singular
values. In the constrained case, however, the optimizing matrices can di�er.

Of course, for general �C, there may be no maximizer among the integer
bases in the cone. And we do not know whether there is always a maximizing
choice when �C comes from an integer dependence matrix D.

We can view this problem as the maximization of the real valued function
jdet(�A)j over the k2 dimensional space of integer matrices A, subject to m
linear inequality constraints DTA � 0. It might be fruitful to use a standard
method for the continuous problem and then convert the solution to integer
by some rounding-o� procedure; we have not pursued this approach.

In the next section, we consider a heuristic method for choosing the basis
A.

3 A Procedure for Choosing the Tiling Basis

In this section, we describe a practical procedure for choosing a tiling basis
A given the dependence matrix D. The procedure's complexity is a function
of k, the nesting depth of the loop; m, the number of dependence directions;
and p, the number of rays of the cone �C. (We de�ne what we mean by
the rays of a polygonal cone below.) In these terms, the complexity of the
procedure is O(pk2 + k3 + mk�1k2). While the exponential term here may
be cause for some uneasiness, the reader should keep in mind that in the

20

practical application of these ideas k will rarely exceed four.

The procedure can be described as follows:

1. Construct the set of rays of the cone �C. A ray is a vector r 2 Zk that
is on the boundary of �C and is at the intersection of at least k� 1 of the half
spaces fdTj r = 0g. Thus, the rays satisfy

D�r �
h
d�(1); d�(2); : : : ; d�(k�1)

iT
r = 0 (6)

where � = f�(1); �(2); : : : ; �(k�1)g is a subset of the integers f1; 2; : : : ;mg.
This is a necessary condition. Let us suppose that there is a unique integer
solution (up to scaling) of equation (6). For the solution r to be a ray,
we must check whether DT r � 0. We also check to see whether DT r � 0
because, if that is the case, then �r is a ray of �C. If we �nd that the rows
of D selected by � are linearly dependent so that (6) has a two or more
dimensional subspace of solutions, then we just ignore the set �.

The method we use for the construction is simply to form all of the
m

k � 1

!
subsets � and then solve (6) for r. Our implementation uses a

QR factorization with column pivoting, which is very e�ective at detecting
linear dependence of the columns D� [10]. It is straightforward to �nd the
integer solution to (6) by computing a solution in
oating-point and then
�nding the smallest scalar multiple that makes the solution integer (after
perturbations on the order of roundo� error). Implementations that use only
integer arithmetic would also be feasible and perhaps better.

The complexity of these decompositions is O(k3). However, we may up-
date the QR decomposition after changing one column of the matrix at cost
O(k2). Bischof has recently shown how to do so and still monitor the linear
independence of columns [2]. In our experiments, we do not use such an
updating procedure.

We must consider the case in which DT itself has a nontrivial null space,
which in fact happens quite often. In this case, the set �C is a wedge,

�C = N � �C1

where N is the null space of DT and �C1 is the intersection of �C with the
orthogonal complement of N , the row space of DT . To detect this case, we

21

0

500

1000

1500

2000

2500

3 3.5 4 4.5 5 5.5 6

 Operation Counts for Selection in 2 Dimensions

 Number of Rays

 O
pe

ra
tio

ns

Figure 2: Operation counts versus number of rays for selection in 2 dimen-
sions. Solid line: Subset selection; Broken line: Exhaustive search.

always start with a QR factorization of DT itself. This allows us to �nd the
rank of D and an integer basis for the null space of DT in a standard manner.
We then construct the rays of �C1 by applying a variant of the procedure above
to the augmented matrix [D;N], where the columns of N are the computed
basis for N . In the variant, the subsets � always include all of the columns
of N , and enough other columns to make up a set of k � 1. The resulting
rays must therefore be members of �C1; together with the columns of N they
are the of rays of �C.

Having obtained the rays as the columns of a matrix R � [r1; r2; : : : ; rp],
we next choose as our �rst approximation to the optimal basis a subset of
these rays. As the cone is invariant under scaling of these rays, we normalize
them so that their length is one. Then we select a subset of k of them,
chosen to approximately minimize the condition number of the subset. (We
show below that this also results in a nearly maximum determinant.) This
is a standard problem, called subset selection, in statistics. We employ the
heuristic procedure of Golub, Klema, and Stewart [9], which is described in

22

0

0.5

1

1.5

2

2.5
x104

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

 Operation Counts for Selection in 3 Dimensions

 Number of Rays

 O
pe

ra
tio

ns

Figure 3: Operation counts versus number of rays for selection in 3 dimen-
sions. Solid line: Subset selection; Broken line: Exhaustive search.

the text of Golub and Van Loan [10]. This procedure involves a singular
value decomposition (SVD) of R and the QR decomposition with column
pivoting of a matrix that is part of the SVD, with an overall cost of rk2+6k3

oating-point operations (and operation being a
oating-point addition and
a
oating-point multiplication).

We know of no method for �nding the optimal subset of rays other than

an exhaustive search, at a cost of 1
3

p

k

!
k3
ops. The relative costs of our

implementation and exhaustive search for the optimum subset are illustrated
in Figures 2 | 4. Obviously, the exhaustive procedure is prohibitively
expensive for large problems, but may be used for k = 2, for k = 3 and
p < 6, and for k = 4 and p < 6. On the other hand, subset selection does
very well. In a test of 1000 randomly generated 3 � 6 matrices D, subset
selection produced a suboptimal choice in 18 cases. In the worst of these,
the determinant of the basis that it found was 17% smaller than that of the
optimum basis.

23

0

0.5

1

1.5

2

2.5

3
x105

5 6 7 8 9 10 11 12

 Operation Counts for Selection in 4 Dimensions

 Number of Rays

 O
pe

ra
tio

ns

Figure 4: Operation counts versus number of rays for selection in 4 dimen-
sions. Solid line: Subset selection; Broken line: Exhaustive search.

24

The basis chosen at this point may be far from optimal. Consider the
case

D =

1 1
0 1

!
:

The two rays of the cone are the columns of

R =

0 1
1 �1

!
:

These rays make an angle of 135�; clearly there are orthogonal bases whose
elements are in �C, but not all at the boundaries. To catch cases like this, we
have implemented a generalized orthogonalization process. Let angle(x; y)
denote the angle between the vectors x and y, given by

angle(x; y) = arccos

xTy

(xTx)1=2(yTy)1=2

!
:

The procedure is

for j = 1 to k do

Find 1 � i � k such that angle(ai; aj) is maximum;
if angle(ai; aj) > �=2

aj = aj � (aTi aj=a
T
j aj)ai

so that aj is orthogonal to ai;
Replace aj with an integer vector in �C

of approximately the same direction; �
od

if DTA � 0 and the normalized determinant is larger than before
improvement, accept the new A, else use the old one; �

In a test of 1000 randomly generated 3 � 6 dependence matrices D, the
basis selected by �nding the rays of �C and then using the subset selection
procedure above was improved by this procedure. The average determinant
was improved 14%, from .63 to .71 . In comparisons with several similar pro-
cedures, this one did the best job of maximizing the normalized determinant.
We also considered the following variants:

25

1. As above, but replace ai rather than aj after making it orthogonal to
aj.

2. For j = 1 to k, aj is made orthogonal to each other basis vector with
which it makes an obtuse angle; this continues until there are no such
obtuse angles involving aj .

3. For every pair of basis vectors ai and aj with i < j, orthogonalize aj
and ai by adding a multiple of aj to ai.

4. For every pair of basis vectors ai, and aj with i < j, orthogonalize aj
and ai by adding a multiple of ai to aj.

Procedures 2, 3, and 4 are more costly with little in the way of improved
performance. Procedure 1 actually does worse. Thus, we recommend the use
of the procedure above.

4 Other Applications

The same technique of tiling loop nests can be used in other contexts, for
example:

1. The synthesis of systolic arrays. We may design an array large enough
to handle a single tile of some given size; the overall computation can be
performed by the small systolic array regardless of the size of the data, by
tiling the index space and using the array on the individual tiles. This
technique was proposed originally by Moldovan and Fortes [15], who did
not specify how to choose the hyperplanes; we have �lled in that gap.

2. The decomposition of work into tasks that can be executed in par-
allel on a shared-memory multiprocessor. This technique can �nd tasks of
medium to large granularity that require little communication through shared
memory. It is straightforward to prove that, for su�ciently large block sizes,
the dependence vectors in the quotient index space are all positive. Thus,
we may execute tiles simultaneously if the sum of their tile indices is equal.
This approach is currently being pursued by some manufacturers of shared-

26

memory parallel MIMD machines. This paper enhances that technique by
allowing for more e�ective decompositions.

5 Precise Storage and I/O Requirements

In this section, we develop formulae that give precise measures of the storage
required for execution of a tile and of the number of data (input and output
from local memory) required for execution of a tile. These can be used
to state more precisely the optimization problem that should be solved in
determining the tiling basis.

Consider I/O requirements �rst. Now, let E be an integer k�m0 matrix
whose columns represent the data required to satisfy the true dependences
in an index space. Consider the loop nest

for i = 1 to n do

for j = 1 to n do

a[i; j] = a[i; j � 1] + b[i; j � 1] ; od
b[i; j] = a[i; j � 1] + b[i� 1; j � 1] + c[i] ; od

od

In this loop nest, the dependences are

D =

0 1
1 1

!
:

A given iteration requires one datum from the iteration at distance (1 1)T

and two data from the iteration at distance (0 1)T . Thus, the matrix E is

E =

0 0 1
1 1 1

!
:

In addition to the data computed at other iterations in the index space,
for which dependence directions have been established, other data may be

27

required in order to execute a tile, for example, the c data in the example
above. We express these data requirements through a second matrix, C.
Each column of C corresponds to a datum (such as c[i] in the example)
that is used in common by a number of iterations. It gives the smallest
displacement in the index space between iterations that use the datum. For
the example above,

C =

0
1

!
;

since all iterations with �xed i use the value c[i]. If, for example, c0[i] were
used for j = 0; 2; : : : ; n � 1 and c1[i] were used at iterations j = 1; 3; : : : ; n,
then we would have

C =

0
2

!
:

We are now ready to state the I/O required to execute a tile. We assume
that no data are available in local memory to begin with and that all data that
may be needed later must be written back from local memory at completion
of the tile's execution. Let E = [er]m

0

r=1. Let C = [cr]m
00

r=1. The amount of data
is given by

Data(A; b) =
kX

j=1

2
4V (T (j))

0
@ m0X

r=1

(2eTr �aj) +
m00X
r=1

(2cTr �aj)

1
A
3
5

=
kX

j=1

V (T (j))
�
eT ([2E;C]T�aj)

�
:

Here V (T (j)) is the volume of the face of the tile normal to the tiling basis
vector aj, �aj is a normalized tiling basis vector, and eT = (1; 1; : : : ; 1). That
this is correct follows from the observation that the grid points at the face
of a tile depend on values created at iteration points in a \shadow"; the
shadow points are points not in the tile from which a dependence into the
tile emanates. For each column d of E the corresponding shadow has as its
base a face of the tile, say the face normal to aj, and as one of its sides the
vector whose direction is �d and whose tail is at any corner of the face. This
shadow has height dT�aj and base area V (T (j)), so it has volume V (T (j))dT�aj.
The factor 2 multiplying E expresses the fact that data that are responsible

28

for dependences must be read in and written out, while data that are used
but not created are read in but not written back.

The volume of faces is explained in Section 2.3.

5.1 Choosing the Ordering of the Block Loops

A consequence of the requirement that DTA � 0 is that the block loops may
appear in any order. Suppose, without loss of generality, that

eT ([2E;C]T�a1) =
k

max
j=1

eT ([2E;C]T�aj) :

Then the
ux of data per unit surface area across the faces of the tiles normal
to a1 is greater than that across the other faces. We would choose to make the
j1 block loop innermost. This is because we would avoid storing to memory
the data that
ow across the faces normal to a1 when going from one tile to
the next. This has the e�ect, for example, of causing us to choose a \left-
looking" block Gaussian elimination or block Householder QR method in
preference to a \right-looking" method, which helps to reduce the memory
tra�c further. See the examples of Section 7 for illustration of how this
technique should be applied.

5.2 Local Memory Requirements

We will make the simplifying assumption that the same computation, pro-
ducing and consuming the same number of data, is done at every point of
S. The memory required to execute a tile depends on the order in which
the individual points of the tile are executed. For this analysis, we assume
that the points along hyperplanes normal to a given integer k-vector � are
executed simultaneously. We need to store the values produced at earlier it-
erations that are required by the iterations on this hyperplane. The number
of such values is again given by the sum of volumes of \shadows" as

Mem(A; b; �) = [max
t

V (�; t)]
�
eT ([2E;C]T ��)

�
:

29

Here V (�; t) is the volume of the intersection of the hyperplane �T i = t and
the given tile, i.e., of the set of iteration points computed at time t. The
maximum is taken over the relevant values of t.

This largest volume is a function of the tile dimensions and of the shape
of the tile as well as of the time coordinate � . In general, it can be larger
than the faces, but by no more than a constant factor (at most 2k�1). It may
be much smaller, as in this case: Let

A =

1 10
0 1

!

and let �1 = 1 and �2 = 10 so that the tiles are long and narrow and are
nearly aligned with the i1 axis. The faces of these tiles have lengths of 10
and about 10.5. If we take � = (0 1)T , then the set of points in the tile that
are simultaneously executed is small; there are at most two. On the other
hand, if we choose � = (1 0)T , then there are 10 such points. So our earlier
assertion that face volume is a good measure of memory required is in doubt.

This is not, however, a real possibility. The example above depends on
highly elongated tiles. This happens because the basis vectors (the columns
of A) are close, and this in turn is due to a narrow cone �C. But in order for
� to be used in scheduling as described above, we must have � 2 C. The
di�culties described above are associated with a choice of � nearly orthogonal
to all of the basis vectors a, which are con�ned to lie in a narrow cone. Such
a vector cannot also be in the cone.

6 Optimal Choice of Block Size

In this section we present solutions to two important instances of the general
problem of optimal choice of the block size parameters b = [�1; : : : ; �k]. We
assume that a set of tiling hyperplane normals A has been chosen and that
the data
uxes E and C are known, as are the dependences D. The choice
of the outermost point loop index | � , will also play a role.

Here our viewpoint is somewhat more realistic than in Section 3. We
take into account the fact that not all the data required by the execution

30

of a tile must be read a priori . Instead, we consider the order in which the
tiles iterations are processed and assume that the needed data are read (or
written) at the time they are needed.

We need some constants to make our estimates precise. Let the amount
of work per grid point be ! (the appropriate units for ! and the constants
�j that follow are seconds, so that the machine characteristics are included
through these constants). Let the
ux of data per unit surface area across
the face normal to aj be �j. The way that �j depends on E, C, and aj was
explained in Section 5.

First we consider the case k = 2 with the assumption that � is one of the
two tiling vectors, say � = a1. Then the amount of local memory required is
proportional to �2 and is independent of �1. The total work done is !�1�2 and
the amount of data referred to is �1�1+�2�2. Thus the ratio of computation
time to memory access time is

� �
!�1�2

�1�1 + �2�2
�

!�2

�1

as �1 ! 1. (We have rede�ned the dimensionless parameter � here). See
Figure 5.

In this case, therefore, we always take �1 as large as possible (subject only
to the size of the problem being solved) and obtain the ratio shown. This
ratio is the product of a ratio of work per iteration ! to data per iteration
�1 and the number of grid points �2 that �t in the local memory. Note in
particular that for large problems, for which �1 can be taken so large that the
asymptote is approached, neither the data per unit surface in the direction of
a2 (that is, �2) nor the particular choice of tile length in the a1 direction (that
is, �1) plays a role. Similar conclusions are reached if we model execution
time rather than the computation to communication ratio �. Note also that
if the ratio �1=�2 is larger than �2=�1, then we choose � = a2 instead of a1.

The discussion above is little changed if we allow arbitrary � . What
matters is that we �x all but one of the block size parameters and allow
the other to grow, provided that with the given choice of � the memory
requirement is independent of this one parameter. For that to be true, all
we need is that � should not be close to a2 rather than the much stronger
requirement � = a1.

31

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

beta_1

rh
o

Figure 5: Reuse ratio � vs. tile length. Note: ! = �2 = �2 = �1 = 1

32

Next let us take � = a1 and k > 2. Again, we �x all but one of the block
size parameters, in this case �2; : : : ; and�k and allow the other one to grow,
limited only by problem size.

Let B =
Qk

2 �j. Memory size places some upper limit on B. Let the
memory required per unit surface in the hyperplane normal to a1 be M .
Thus, for the given choice of the block size parameters, the local memory
required isMB=jdet(�A)j. If the available local memory has room for � data,
then B is constrained by

B � � jdet(�A)j=M : (7)

The amount of work per unit distance in the a1 direction is !B=jdet(�A)j.

Finally, the data required per unit distance in the a1 direction is

B

jdet(�A)j

!
kX

j=2

�j

�j
:

Thus
� =

!Pk
j=2 �j=�j

:

With the constraint on b given by (7), the maximizing choice of b is

�j = �j(�� jdet(�A)j=M)1=(k�1)

where � �
Qk

j=2 �j.

7 Blocking Examples

Our �rst example is an algorithm that uses plane rotations for the QR factor-
ization of realm�nmatrixX. In the description of these example algorithms
we suppress all irrelevant detail. To that end, we use the notation f(x; y; z)
to mean a generic function of the arguments x; y, and z which may be a
di�erent function at every occurrence.

33

for k = 1 to n do

for i = m to k + 1 step �1 do
(1) (c; s) = f(x(i; k); x(i� 1; k));

for j = k + 1 to n do

(2)

"
x(i� 1; j)
x(i; j)

#
= f

 "
x(i� 1; j)
x(i; j)

#
c; s

!
; od

od

od

There are two distinct true dependences here. Statement (2) at iteration
(i; j; k) depends on statement (2) at iterations (i + 1; j; k) (because x(i,j)
is changed there) (i � 1; j; k � 1) (because x(i-1,j) is changed there). Each
iteration (i; j; k) of statment (2) depends on statement (1) at iteration (i; k),
so that (0; 1; 0)T is a column of C. Furthermore, statement (1) depends on
statement (2) at iterations (i; k; k�1) and (i�1; k; k�1). Therefore, through
the uses of c and s, statement (2) depends on itself at iterations (i; k; k � 1)
and (i�1; k; k�1); this dependence is weaker that a dependence on iteration
(i; j � 1; k � 1) and (i� 1; j � 1; k � 1), so if we take these to be the actual
dependences we are going to be safe. There are also antidependences and
output dependences, but these can be ignored for the moment. Thus,

D =

0
B@
�1 1 0 1
0 0 1 1
0 1 1 1

1
CA

and

C =

0
B@

0
1
0

1
CA

In this case, there are only three rays of the cone, namely,

0
B@

0 0 �1
1 �1 0
0 1 1

1
CA

34

After improvement we arrive at the basis

0
B@

0 0 �1
1 0 0
0 1 1

1
CA

Thus, the new indices are j, k, and k � i.

After replacing the index i by r � k � i we have the following program:

for k = 1 to n do

for r = k �m to �1 do
(c(r; k); s(r; k)) = f(x(k � r; k); x(k � r � 1; k));
for j = k + 1 to n do"

x(k � r � 1; j)
x(k � r; j)

#
= f

 "
x(k � r � 1; j)
x(k � r; j)

#
c(r; k); s(r; k)

!
; od

od

od

Strip mining produces

for k0 = 1 to n step b do

for k = k0 to min(n; k0 + b� 1) do
for r0 = k0�m to �1 step b do

for r = max(r0; k �m) to min(�1; r0 + b� 1) do
(c(r; k); s(r; k)) = f(x(k � r; k); x(k � r � 1; k));
for j0 = k0 + 1 to n step b do

for j = max(k + 1; j0) to min(n; j0 + b� 1) do"
x(k � r � 1; j)
x(k � r; j)

#
= f

 "
x(k � r � 1; j)
x(k � r; j)

#
c(r; k); s(r; k)

!
; od

od

od

od

od

35

od

Then loop interchanging produces

for k0 = 1 to n step b do

for r0 = k0 �m to �1 step b do

for j0 = k0 to n step b do

for k = k0 to min(n; k0 + b� 1) do
for r = max(r0; k �m) to min(�1; r0 + b� 1) do

if j0 = k0 then (c(r; k); s(r; k)) = f(x(k � r; k); x(k � r � 1; k));
for j = max(k + 1; j0 + 1) to min(n; j0 + b� 1) do"

x(k � r � 1; j)
x(k � r; j)

#
= f

 "
x(k � r � 1; j)
x(k � r; j)

#
c(r; k); s(r; k)

!
; od

od

od

od

od

od

This rather complicated blocked algorithm works as follows. We illustrate
with m = 20, n = 15, b = (5; 5; 5). Elements of X are eliminated by plane
rotations in patches, as shown in Figure 6. The values of k0 and r0 at which
elements are eliminated is shown in each patch. The rotations used to do
the elimination are applied only to columns in the current patch (during the
block operation with j0 = k0). These rotations are stored and later applied
to columns to the right of the patch (when j0 > k0).

For another example, consider the following program for the QR factor-
ization which uses Householder transforms rather than plane rotations. In
this pseudo-code we use the notation x(k : m; j) to refer to the vector of
elements [x(k; j); x(k + 1; j) : : : ; x(m; j)]. We include it as an example of a
program that can be blocked without using linear loop index transformation.

36

@
@

@
@

@
@

@ @

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@ @

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@ @

k0 = 1

r0 = �19

k0 = 1

r0 = �14

k0 = 1

r0 = �9

k0 = 1

r0 = �4

k0 = 6

r0 = �14

k0 = 6

r0 = �9

k0 = 6

r0 = �4

k0 = 11

r0 = �9

k0 = 11

r0 = �4

Figure 6: Blocking of the QR factorization of an 20� 15 matrix with � = 5.

37

for k = 1 to n do

s(k) = kx(k : m;k)k;
x(k; k) = f(x(k; k); s(k));
for j = k + 1 to n step do

s0(k; j) = f(s(k); x(k : m;k)Tx(k : m; j));
x(k : m; j) = x(k : m; j) + s0(k; j) � x(k : m;k); od

od

In Fortran, loops would be triply nested. The compiler, on detecting
a dependence of some subsequent statement on the whole of an inner loop
implementing a reduction operation, such as the norm and the inner product
in the example, should choose to view those loops as atomic and therefore
work with an index space of reduced dimension.

The dependences in (j; k) space are

D =

1 0
0 1

!
:

The basis chosen is the obvious one: A = I. Thus, no skewing is done.

Now, we choose the order of the block loops. The measure of data
ux
given in Section 5 is the same for a2 and for a1; so neither order is preferred.

Note, however, that the two dependences are di�erent in character. The
(0; 1)T dependence is a true dependence at every point of the index space.
The other, (1; 0)T expresses the dependence of iteration (j; k) on \iteration"
(k; k) (the task performed outside the inner loop for given k); the data that
are required are used in common by all the iterations with �xed k. Thus,
for the purpose of determining data
ux, this dependence direction should
be given weight 1 (as are columns of C), not 2. If we make this change, the

ux is greater for a2, so we make the k block loop innermost. This procedure
yields a left-looking method in which all groups of Householder transforms
are applied to a block of columns just before that block is triangularized.
This allows the block to be held in local memory during the application of
these transforms.

38

Acknowledgement We would like to thank Ilse Ipsen for her help at
the beginning of our work on this problem and Mike Wolfe for his at the
end.

Appendix. Proof of Lemma 3.

Let the k�k�1 matrices F1 = [f2; : : : ; fk] and A1 = [a2; : : : ; ak]. The
face T (1) is subtended by the columns of F1 . Let the matrix F1 be factored

F1 = QR (8)

= [Q1 q1]

"
R1

0

#
: (9)

where Q is an orthogonal matrix, R is an upper triangular matrix, Q1 is
k � k � 1, and R1 is k � 1 � k � 1; thus F1 = Q1R1 = QR, and q1 is a
unit vector in the direction normal to the range of F1 , which is the span
of fa1g. The matrix P1 � Q1Q

T
1 is the orthogonal projector on fa1g?. The

factorization (9) always exists and is unique up to signs on the diagonal of
R [10].

The columns of R1 are the coordinates of the columns of F1 with respect
to the orthonormal basis (for the subspace ofRk in which T (1) lies) consisting
of the columns of Q1. Thus

V (T (1)) = jdet(R1)j :

We must therefore show that jdet(R1)j = jdet(F)j = jdet(A)j�1.

From the identity I = F TA it follows that Ik�1 = F1
T A1 = RT

1Q
T
1 A1 ;

thus
jdet(R1)j = jdet(QT

1 A1)j
�1 :

The proof is complete if we can show that det(QT
1 A1) = det(A). But

since QT
1Q1 = Ik�1,

det(QT
1 A1)

2 = det([A1
TQ1Q

T
1][Q1Q

T
1 A1])

39

= det([P1 A1]
T [P1 A1]) :

The result now follows from Lemma 1.

References

[1] W. A. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. On the performance
enhancement of paging systems throught program analysis and trans-
formations. IEEE Transactions on Computers, C-30:341{356, 1981.

[2] Christian H. Bischof. Incremental condition estimation. Technical Re-
port ANL-MCS-P15-1088, Argonne National Laboratory, 1989.

[3] David Callahan, Steve Carr, and Ken Kennedy. Improving register al-
location of subscripted variables. In Proceedings of the ACM SIGPLAN

`90 Conference on Programming Language Design and Implementation,
Association for Computing Machinery, 1990.

[4] Steve Carr and Ken Kennedy. Blocking linear algebra codes for memory
hierarchies. In Proceedings of the Fourth SIAM Conference on Parallel

Processing for Scienti�c Computing, Society for Industrial and Applied
Mathematics, 1989.

[5] James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
Sven Hammarling, and Danny Sorensen. Prospectus for the development

of a linear algebra library for high-performance computers. Technical
Report, Argonne National Laboratory, 1987.

[6] J.J. Dongarra and D.C. Sorensen. Linear algebra on high-performance
computers. In U. Schendel, editor, Proceedings of Parallel Computing

85, pages 3{32, JACK: WHAT PUBLISHER?, 1986.

[7] K.A. Gallivan, R.J. Plemmons, and A.H. Sameh. Parallel algorithms for
dense linear algebra computations. SIAM Review, 32(1):54{135, 1990.

[8] Dennis Gannon, William Jalby, and Kyle Gallivan. Strategies for cache
and local memorymanagement by global program transformation. Jour-
nal of Parallel and Distributed Computing, 5(5):587{616, 1988.

40

[9] G. H. Golub, V. Klema, and G. W. Stewart. Rank degeneracy and least

squares problems. Technical Report TR-456, Department of Computer
Science, University of Maryland, 1976.

[10] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins, Baltimore, MD, Second edition, 1989.

[11] F. Irigoin and R. Triolet. Supernode partitioning. In Conference Record

of the 15th Annual ACM Symposium on Principles of Programming Lan-

guages, pages 319{329, Association for Computing Machinery, 1988.

[12] Ken Kennedy. Talk at the fourth SIAM conference on parallel processing
for scienti�c computing. Chicago, Illinois, 1989.

[13] Leslie Lamport. The parallel execution of do loops. Communications of

the Association for Computing Machinery, 17:83{93, 1974.

[14] H. Lomax and T. H. Pulliam. A three-dimensional implicit code for
the ILLIAC IV. In Garry Rodrigue, editor, Computational Physics on

Parallel Computers, Academic Press, New York, NY, 1982.

[15] Dan I. Moldovan and Jose A. B. Fortes. Partitioning and mapping algo-
rithms into �xed size systolic arrays. IEEE Transactions on Computers,
C-36:1{12, 1986.

[16] Robert Schreiber. Block algorithms for parallel machines. In Numerical

Algorithms for Modern Parallel Computer Architectures, pages 197{208,
Springer-Verlag, New York, NY, 1988.

[17] Michael E. Wolf and Monica S. Lam. An algorithm to generate se-

quential and parallel code with improved data locality. Technical Report,
Computer Systems Labortory, Stanford University, 1989.

[18] Michael Wolfe. Iteration space tiling for memory hierarchies. In
Garry Rodrigue, editor, Parallel Processing for Scienti�c Computing,
pages 357{361, Society for Industrial and Applied Mathematics, 1989.

[19] Michael Wolfe. More iteration space tiling. In Proceedings Supercom-

puting '89, pages 655{664, Association for Computing Machinery, 1989.

41

