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Abstract

The band edge states determine optical and electronic properties of semiconductor nano-structures which can be com-
puted from an interior eigenproblem. We study the reliability and performance of state-of-the-art iterative eigensolvers on
large quantum dots and wires, focusing on variants of preconditioned CG, Lanczos, and Davidson methods. One David-
son variant, the GD + k (Olsen) method, is identified to be as reliable as the commonly used preconditioned CG while
consistently being between two and three times faster.
Published by Elsevier Inc.
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1. Introduction

The computation of optical and electronic properties of large nano-structures such as quantum dots and
wires is an important field of current research. As these particular electronic structure calculations can be for-
mulated as eigenvalue problems, it is pressing to study what can be gained from recent progress on iterative
eigensolvers in the numerical linear algebra community. This current paper addresses this need in comprehen-
sive fashion by investigation of problems of realistic size and state-of-the-art algorithms. It supersedes previ-
ous work [3,42].

The connection of this application to eigenvalue problems stems from the Kohn–Sham approximations
[13], through which one obtains an effective single-particle Schrödinger equation
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E-mail addresses: cvoemel@lbl.gov (C. Vömel), tomov@cs.utk.edu (S.Z. Tomov), OAMarques@lbl.gov (O.A. Marques), OAMarques@

lbl.gov (A. Canning), LWWang@lbl.gov (L.-W. Wang), dongarra@cs.utk.edu (J.J. Dongarra).

mailto:cvoemel@lbl.gov
mailto:tomov@cs.utk.edu
mailto:OAMarques@lbl.gov
mailto:OAMarques@lbl.gov
mailto:OAMarques@lbl.gov
mailto:LWWang@lbl.gov
mailto:dongarra@cs.utk.edu
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Hwi :¼ � 1

2
Dþ V pot

� �
wi ¼ kiwi: ð1Þ
The Hamiltonian H is Hermitian indefinite and consists of the kinetic energy term, represented by the Lapla-
cian D, and the potential V pot. The set fwig denotes the complex orthogonal wave-functions (eigenstates) and
the real fkig their corresponding energies (eigenvalues).

In the context of the self-consistent field iteration for the ground state [26,27], a potentially large number of
eigenstates of (1) needs to be computed, see for example [31] and also the recent review [30]. On the other
hand, when the potential is given, on a real space grid, one often can restrict the computation to only a small

number of interior eigenstates of (1) from which optical and electronic properties can be determined. The lat-
ter setting, the computation of band edge states, is the focus of this work. Section 2 outlines the computational
challenges of this interior eigenvalue problem.

The parallel Energy SCAN (ESCAN) method [4], which solves (1) in a plane wave basis, gives the frame-
work in which eigensolvers are compared. Section 3 gives a short overview of the algorithms and software
packages studied here:

� our own implementation of the preconditioned conjugate gradient (PCG) method [45],
� our own implementation of the locally optimal block preconditioned conjugate gradient (LOBPCG),

derived from [10],
� implicitly restarted Arnoldi/Lanczos (IRL), from P_ARPACK [14,15], and
� Generalized Davidson (GD + k) and Jacobi-Davidson (JD) implementations from PRIMME [17,36,37].

PCG is the current standard method in ESCAN and LOBPCG represents an ‘all-band’ generalization. Both
methods work with subspaces of constant dimension. In contrast, IRL, GD + k and JD represent methods
working with increasing subspaces and use restarts. Section 4 describes the test setup for our evaluation. Sec-
tion 5 analyzes the usefulness of the algorithms, focusing on robustness and performance. Section 6 discusses
our conclusions and possibilities for future work.

2. Computational challenges

2.1. Matrix-free computation

Plane wave computations use a special evaluation of the Hamiltonian H from (1) as it can be dense in both
real and Fourier space. This reduces the cost of the matrix–vector product to OðN log NÞ instead of OðN 2Þ, N

being the dimension of H.
The discrete Laplacian is directly computed in the plane wave basis because it is diagonal. The discretized

potential is typically available only in real space. After a fast Fourier transform of a given plane wave vector
into real space, the potential is evaluated; subsequently the result is re-transformed into the plane wave basis.
Thus, since it is too large to store, H is never computed explicitly, instead it becomes only implicitly available
through matrix–vector products. Hence, one needs to use iterative eigenvalue methods, and the choice of pre-
conditioners is limited.

2.2. Degeneracies, gaps, and interior eigenpairs

There are three principal difficulties that make our eigenproblem challenging. First, physical symmetries in
the system at hand result in eigenvalues of higher multiplicity, say three. Because of its physical relevance, the
multiplicity of a degenerate eigenvalue needs to be reliably computed together with the associated eigenspace.
Second, with an increasing number of electrons in the system, the relative separation of eigenvalues of interest
from their neighbors decreases. Last, we need to solve an interior eigenproblem. We will consider states at the
valence band maximum (VBM), the highest occupied state of the system, and states at the conduction band
minimum (CBM), the lowest unoccupied state. These states at the ‘band gap’ can be separated by several thou-
sand eigenvalues from the left end of the spectrum.
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3. Iterative Hermitian eigensolvers

Based on a short description of the underlying concepts in Section 3.1, we give in Section 3.2 an overview of
the methods studied in this paper. Our emphasis is on highlighting differences and similarities between the var-
ious approaches. For alternative reviews which also influenced this current work, we refer to [1,36,37,47] and
also the monographs [2,7,24,28,40].

3.1. Fundamental concepts

For a given wave function w, define its Rayleigh quotient q (the energy functional) and the residual r as
1 Fo
qðwÞ :¼ w�Hw
w�w

; rðwÞ :¼ Hw� qðwÞw: ð2Þ
It can be shown that there always is an eigenvalue of H within distance krðwÞk2 to qðwÞ, see [24]. Furthermore,
as the residual points in the same direction as rq, the eigenvectors are exactly the stationary points of q. Last,
q is bounded for w 6¼ 0
kminðHÞ ¼ min
w6¼0

qðwÞ; kmaxðHÞ ¼ max
w 6¼0

qðwÞ; ð3Þ
where kminðHÞ and kmaxðHÞ denote the smallest and largest eigenvalue of H, respectively.
For V 2 Cn�k; V �V ¼ I , define the matrix Rayleigh Quotient .ðV Þ :¼ V �HV . For each eigenpair ðli; yiÞ of .,

the Rayleigh–Ritz (also called subspace diagonalization) procedure considers the Ritz value li and Ritz vector
wi :¼ Vyi as an approximation to an eigenpair of H. As the Ritz values only depend on V, the space spanned by
the columns of V, application of (3) to . yields
lminðVÞ :¼ kminð.Þ ¼ min
V3w 6¼0

qðwÞ; lmaxðVÞ :¼ kmaxð.Þ ¼ max
V3w6¼0

qðwÞ: ð4Þ
One way to compute an interior eigenpair closest to a prescribed reference energy eref is to apply the Rayleigh
Quotient qðwÞ ¼ qðH ;wÞ to a spectral transformation of H. The ‘shift-and-invert’ Rayleigh quotient
qððH � eref IÞ�1

;wÞ is not perfectly suitable for our purposes: as the Hamiltonian H is only implicitly available
through matrix–vector products, an additional interior linear solver would be needed. Instead, we consider the
folded spectrum [45] Rayleigh quotient qððH � eref IÞ2;wÞ and Rayleigh–Ritz matrix .ððH � eref IÞ2; V Þ. In this
case, the goal becomes the computation of the smallest positive eigenvalue(s) and associated eigenvector(s) of
the transformed operator.1 In practice, we choose two reference energies: ev closer to the VBM, and ec closer
to the CBM.

3.2. Iterative eigensolvers

Each of the methods in Table 1 constructs a sequence of matrices fV ig, usually with orthonormalized col-
umns, from which subspace diagonalization computes eigenpair approximations. The distinguishing feature of
each method is the way in which V iþ1 is constructed with respect to V i. First, a new orthonormalized direction
can be included to augment the subspace. Second, to reduce the subspace dimension, one or more directions
can be removed. Last, if multiple eigenpairs are desired and an eigenpair converges before the others, the con-
verged pair is ‘locked’, i.e. it is no longer used as an iterate.

3.2.1. PCG and LOBPCG
The methods in this section work with Rayleigh–Ritz projections on subspaces of constant size. Our pre-

conditioned conjugate gradient (PCG) method [45] calculates the smallest eigenpair(s) of the folded spectrum
operator. Given the iterate wPCG

i and a descent direction dPCG
i , one computes
wPCG
iþ1 ¼ arg minfqððH � eref IÞ2;wÞ : w 2 spanðwPCG

i ; dPCG
i Þg; ð5Þ
r alternative spectral transformations for the interior eigenproblem, see for example [23,33,41].



Table 1
Overview of methods studied in this paper

Algorithm Operator Subspace Implementation References Description

PCG Folded Constant Self [45] 3.2.1
LOBPCG Folded Constant Self [10] 3.2.1
IRL Un/folded Increasing P_ARPACK [14,15] 3.2.2
GD + k (Olsen) Un/folded Increasing PRIMME [17,36,37] 3.2.3
JDQMR Un/folded Increasing PRIMME [17,36,37] 3.2.3

Algorithms include preconditioned conjugate gradients (PCG), locally optimal block preconditioned conjugate gradients (LOBPCG),
implicitly restarted Arnoldi/Lanczos (IRL), Generalized Davidson (GD) with restart (the parameter k is explained in Section 3.2.3), and
Jacobi-Davidson with QMR as inner solver (JDQMR). Some algorithms require a spectral transformation with the folded operator,
others can use both the unfolded and folded operator: ARPACK’s IRL allows the computation of eigenstates of smallest magnitude [14],
and PRIMME’s GD + k (Olsen) and JDQMR both can select states closest to one side of the reference shift. Following [1], the algorithms
can be classified as using a subspace of constant or increasing size. Some algorithms are implemented by us, others are obtained from
packages. The last column gives the section in which a description is given.
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where the descent direction is computed using the preconditioned residual as
2 AR
implem
Implic
d̂PCG
i ¼ �P rðwPCG

i Þ þ bid
PCG
i�1 ð6Þ
and the parameter bi is chosen according to Nocedal and Wright [20].
There are various ways to extend PCG to a subspace method, see for example the references in [1,9]. In our

‘band-by-band’ inner–outer iteration, an inner loop performs a number of steps of the inner minimization (5)
on each eigenstate, and the outer loop consists of an orthonormalization of the computed states with subse-
quent Rayleigh–Ritz.

In variation of (5), the locally optimal preconditioned conjugate gradient (LOPCG) method [10] works with
a three-dimensional space, that is
wLOP
iþ1 ¼ arg min qððH � eref IÞ2;wÞ : w 2 spanðwLOP

i�1 ;w
LOP
i ; P rðwLOP

i ÞÞ
n o

: ð7Þ
In the block version, LOBPCG [10], (7) is generalized to use the Rayleigh–Ritz approximations from a set of
iterates W i�1;W i;Ri. Its practical advantage compared to other methods is the absence of parameters to be set
or tuned.

3.2.2. Implicitly restarted Arnoldi/Lanczos

This and the subsequent sections describe restarted projection methods using subspaces of variable size.
The Lanczos algorithm [24] works with the Krylov space sequence KiðH ; vÞ :¼ spanðv;Hv; . . . ;Hi�1vÞ, gener-
ated from a suitable start vector v. It can also use the folded operator. Its characteristic property is the com-
putation of an orthogonal basis V i of Ki by a three-term recurrence. Within this basis, the matrix Rayleigh
quotient .i is a real symmetric tridiagonal whose Ritz pairs simultaneously approximate different eigenpairs
of the original matrix [24].

The implicit restart (IR) procedure [35] in ARPACK [14] and P_ARPACK [15] deflates unwanted Ritz
pairs through the implicitly shifted QR algorithm [24]. The relevance of the QR algorithm as an ideal deflation
technique in the tridiagonal case lies in the fact that it transforms the basis V m;m ¼ k þ p, containing k wanted
and p unwanted Ritz approximations into an orthogonal V þm :¼ ðV þk ; V þp Þ such that (1) the columns of V þk , a
basis of KkðH ; vþ1 Þ, satisfy the three-term Lanczos recurrence, that (2) the matrix .þk :¼ ðV þk Þ

�HV þk is again tri-
diagonal, and that (3) the eigenvalues of .þk are exactly the k Ritz values whose corresponding vectors one
desires to keep in the subspace at restart.2
PACK actually does not explicitly take advantage of the Hermitian structure of the Hamiltonian. Strictly speaking, the
entation uses a generalization of Lanczos, the Arnoldi algorithm. Nevertheless, in exact arithmetic, the procedure is equivalent to

itly Restarted Lanczos (IRL) in our Hermitian context.
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3.2.3. Generalized Davidson and Jacobi-Davidson

This section focuses on two variants of Davidson’s eigenvalue method [6] that are available, as default
methods, in the PRIMME package [17,36,37].

The Generalized Davidson (GD) method [5,18,19] successively augments the projection subspace by direc-
tions of the form
Table
Overvi

System

QD1
QW
QD2

The at
quantu
of cadm
(InAs)
leading
cutoff,
spectru
ð eH � liIÞwGD
iþ1 ¼ �rðwiÞ ð8Þ
with a preconditioner eH approximating the original H and ð eH � liIÞ being nonsingular. The method can re-
start with several vectors without any difficulty. In the GD + k method [19,36,38], one not only includes Ritz
vectors from the current subspace like in a thick-restart, but also k additional ones from the previous iteration.
This is somewhat similar to (7) of LOPCG. As a variation of Olsen’s method [22] due to [39], the GD + k

(Olsen) approach modifies the right-hand side of (8) by adding a multiple of wi, see [17].
The Jacobi-Davidson approach [8,32,33] considers (8) in the subspace w?i . For wi;w�i wi ¼ 1, define the pro-

jector P i :¼ ðI � wiw�i Þ and solve the (generally indefinite) linear system
½P ið eH � liIÞP i�wJD
iþ1 ¼ �rðwiÞ;wJD

iþ1 ? wi ð9Þ
by QMR as an inner solver (see [29] for an overview of QMR and references). Expansion of (9) shows that this
is an implicit formulation of the Olsen approach [33].

4. Test configuration

This section gives the background information for the test results presented in Section 5. Our experiments
were performed on an IBM Power 5 with 8 processors per compute node, each with a peak performance of 7.6
GFlops. Table 2 gives a description of the nano-structures considered for this comparison. These systems have
been selected as representatives for nano-structures of different sizes and levels of model accuracy.

4.1. Memory and important parameter settings

Table 3 gives an overview of the memory requirements. Our test cases were chosen such that memory was
not a constraining factor in the comparison. IRL, GD + k (Olsen), and JDQMR could be run with reasonably

large subspaces. However, to make the comparison fair, it was important to not let the subspace size greatly
exceed the fixed amount of memory used in PCG and LOBPCG, and the restarts where chosen accordingly.
Table 3 also gives a rough indication of what memory costs one might expect to incur in other applications.

For GD + k (Olsen), we used k ¼ 1 similar to [36], that is one extra vector for maintaining the CG-like
recurrence. This results in a minimum restart size mþ 2 in Table 3. (We note that in exact arithmetic, LOB-
PCG with a given block size b is theoretically equivalent to a Generalized Davidson method with restart size b,
with k ¼ b extra vectors retained from the previous step, and with maximum space size 3b [37].)
2
ew of the physical systems considered in this comparison: QD1 and QD2 are quantum dots, QW is a quantum wire

V pot Atoms Cutoff (Ryd.) N (K) ev; ecðeVÞ
EPM (nl) 534 Cd, 527Se 6.88 141 �4.8, �3.8
EPM (l) 34,624 In, 11,115 As, 20,885 P 5.0 2266 �5.4, �5.1
CP (nl) 675 Cd, 652 Se 35 2717 �0.4, 0.6

omic potential V pot is either computed using the empirical pseudopotential method (EPM) [46] or charge patching (CP) [44]. Both
m dot calculations use a nonlocal (nl) potential. For the quantum wire, only a local (l) potential is used. The quantum dots consist
ium (Cd) and selenium (Se) atoms and are embedded inside a larger box of vacuum. The quantum wire consists of indium arsenide

that is embedded in bulk indium phosphide (InP). The energy cutoff denotes the limit of Fourier space components considered,
to a discrete Hamiltonian of the stated dimension N. Note that the charge patching potential requires a significantly larger energy

despite the relatively small number of atoms. The last column of the table specifies the reference energies, in eV, used for the folded
m approach, ev denotes the shift for the valence band and ec the one for the conduction band.



Table 3
Number of vectors (wave-functions) of dimension N for approximation of m eigenpairs in each algorithm

Algorithm Minimum required Maximum used

PCG mþ 1 mþ 1
LOBPCG 3m 3m

IRL mþ 1 2m–5m

GD + k (Olsen) mþ 2 �2m–3m

JDQMR mþ 1 �2m–3m

The minimum and maximum number of vectors used refer to the typical subspace size immediately after and before a restart. Note that
PCG and LOBPCG reuse the same fixed memory throughout the computation. IRL, GD + k (Olsen), and JDQMR restart with the
minimum number of vectors once the maximum is reached. Note that for methods with variable subspace size, we assume that at least five
eigenpairs are to be computed, guaranteeing a minimum subspace size of at least 10.
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PCG was used with 200 inner iterations for each state, then followed by outer subspace diagonalizations.
The (block) iterations for LOBPCG have been limited to maximally 20,000. JDQMR from PRIMME imple-
ments an automatic accuracy control of the inner linear solver [17,21,37] so that the user need not intervene
here. The maximum number of matrix vector (MV) products for PRIMME was set to 100,000 for QD1 and
QW, and to 300,000 for QD2.

4.2. Choice of the preconditioner

All methods from Section 3.2, with the notable exception of Lanczos, rely on preconditioning, albeit in
slightly different ways.

As the Hamiltonian H is not explicitly available in our setting, we cannot use preconditioners from matrix
factorizations such as incomplete LU (ILU) [34]. We do not use multigrid because it is less suitable for plane
wave calculations than for mesh eigenvalue problems [12,1]. Instead, we use a standard diagonal precondition-
er from the approximation of the diagonal of the Hamiltonian.

For the folded spectrum, we use a diagonal preconditioner constructed from the (folded) sum of the Lapla-
cian and an averaging potential [45]. With the original, unfolded Hamiltonian H, we employ a diagonal
rational preconditioner that approximates the dominant diagonal of H, as suggested in [25]. All methods
use the same preconditioner, folded and unfolded respectively, except for P_ARPACK which cannot use a
preconditioner.

4.3. Convergence criteria, residual control

An eigenpair ðq;wÞ of H is declared converged when krðH ;wÞk2 6 s, for a given tolerance s.
There is a potential issue regarding the stopping criterion when using the folded spectrum approach: in

practice, one cares about the residual norm being small with respect to the original Hamiltonian H, and
not with respect to the folded operator ðH � eref IÞ2 that was merely used to facilitate the computation.

The problem is easily addressed as long as one can adapt the folded spectrum eigensolver to use the
‘unfolded’ stopping criterion. However, in ‘black box’ software that only provides a reverse-communication
handle to the operator used in the computation, more work is needed for the folded case.

A first possibility is to embed the folded spectrum computation into an outer loop in which the folded spec-
trum accuracy is gradually increased until the required accuracy with respect to H is reached.

An alternative is the control of the unfolded residual through a stopping criterion based on the folded
operator.

For an eigenvalue approximation k̂, define the folded residual
rf :¼ rððH � eref IÞ2;wÞ ¼ ðH � eref IÞ2w� ðk̂� erefÞ2w ð10Þ

and the corresponding unfolded one
ru :¼ rðH ;wÞ ¼ ðH � eref IÞw� ðk̂� erefÞw: ð11Þ
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It follows that rf ¼ ðH þ ðk̂� 2erefÞIÞru and thus
3 We
kruk2 6 kðH þ ðk̂� 2erefÞIÞ�1k2krf k2: ð12Þ

Consider the folded spectrum computation of the CBM kc using the reference shift eref ¼ ec, and further as-
sume that the unfolded residual norm should be reduced to the accuracy level s. In this case, for ec < k̂,3
kðH þ ðk̂� 2ecÞIÞ�1k ¼ 1

kc � ec þ k̂� ec

6
1

kc � ec

; ð13Þ
and hence krf k2 6 s � ðkc � ecÞ guarantees that kruk2 6 s by (12).
For the folded spectrum computation of the VBM kc with reference shift ev, one obtains the analogous

stopping criterion krfk2 6 s � ðev � kvÞ provided that k̂ < ev.

5. Evaluation results

Table 4 shows the computed eigenvalues for valence and conduction bands. The valence band eigenpairs
are in general more difficult to compute due to stronger clustering. Since the quantum dot QD1 is relatively
small in size, we could afford to compute more eigenpairs than for the other two systems. In general, the eigen-
value clustering is stronger in the valence band. For this reason, we expect these computations to be more dif-
ficult than the corresponding conduction band calculations.

5.1. Robustness

As the degeneracy of eigenpairs corresponds to physical symmetries in the system, it is important to cor-
rectly determine the multiplicity of eigenvalues. Whenever a Hermitian matrix can be factored, the number
of eigenvalues in a given interval can be found by using Sylvester’s theorem [24]. However, when the Hamil-
tonian is not explicitly available as in this current study, no iterative method is theoretically guaranteed to
reliably determine multiplicities in all cases. However, PCG commonly does not miss states in practice.

In order to compute the correct eigenvalues, practitioners employ a number of heuristics including various
deflation variants, locking, and blocking, see for example [11,16]. ARPACK and PRIMME provide their own
deflation routines, our implementations of PCG and LOBPCG lock converged vectors and continue iterating
with the unconverged ones.

The general benefits of blocking are well recognized but blocking by itself does not guarantee reliability, see
the model problem in [1] for an example. Furthermore, even with an available blocked matrix–vector product,
the actual performance might still depend on the particular problem, the implementation, and the computer
[11].

Since not all algorithms in our comparison are available in blocked form (ARPACK does not provide a
blocked version), results shown in this paper are computed without blocked matrix–vector product. This
means that the timing results of block methods shown in Section 5.2 might be very different for another imple-
mentation. For this reason, we report the number of matrix vector (MV) products for each method which is
independent of the block size. Furthermore, we note the finding of [37] that at least for Davidson-type meth-
ods, ‘when seeking many eigenvalues, we [the authors] have never found the use of a block size b > 1
beneficial’.

We here focus on investigating the benefits of increasing the subspace dimension versus enforcing higher
accuracy.

Table 5 summarizes our findings on the reliability of the algorithms. The GD + k (Olsen) method from
PRIMME turned out to be reliable for both folded and unfolded computations. PCG and LOBPCG were
both reliable for finding the states closest to the band gap in all cases. In one case, the QD2 CBM, both algo-
rithms failed to make approximate eigenpairs five and six converge to the desired accuracy. ARPACK’s IRL
turned out to converge very slowly for most folded spectrum computations. In unfolded computations with
assume that the VBM of H is sufficiently far away from ec.



Table 4
Computed eigenvalues in the valence and conduction bands of the test systems

Index QD1 QW QD2

Valence Conduction Valence Conduction Valence Conduction

ðeref Þ �4.8 �3.8 �5.4 �5.1 �0.4 0.6

1 �5.39076 �3.10118 �5.73241 �4.89017 �0.72398 1.35724
2 �5.39076 �2.83770 �5.73241 �4.71187 �0.72398 1.64617
3 �5.40313 �2.81099 �5.73423 �4.68034 �0.72398 1.64617
4 �5.44361 �2.81099 �5.74245 �4.68034 �0.72946 1.64617
5 �5.44361 �2.56043 �5.74360 �4.55008 �0.72946 1.92364
6 �5.48316 �2.52280 �0.72946 1.92364
7 �5.49335 �2.52280
8 �5.51804 �2.51159
9 �5.51804 �2.51159

10 �5.52054 �2.37371
Next �5.52054 �2.28992 �5.75502 �4.55008 �0.77562 1.92364

Results have been computed with residual norm accuracy 10�6 with respect to the operator H. The energies are sorted by increasing
distance from their respective folded spectrum reference shift, given in the leading row, with their index numbering correspondingly. This
means that the valence band is ordered from largest to smallest, and the conduction band from smallest to largest. The computed band gap
can be found as the difference of the two numbers in the first row. The trailing row shows the next eigenvalue (which is not computed in the
tests), to give a feeling for the difficulty of each calculation.

Table 5
Reliability of each algorithm to compute the eigenvalues with their correct multiplicities as shown in Table 4 up to the specified tolerance
10�6

Algorithm QD1 QW QD2

VBM CBM VBM CBM VBM CBM

PCG (F)
p p p p p z�

LOBPCG (F)
p p p p z z�

IRL (F) z y z z z z
GD + k (F)

p p p p p p

JDQMR (F)
p p p p p z�

IRL (U) y p z p y y
GD + k (U)

p p p p z z
JDQMR (U)

p p p p z z
(F) stands for folded spectrum computation, (U) stands for unfolded, that is the natural Hamiltonian.

p
denotes success, y denotes

convergence but some missed eigenvalues, and z denotes failure to converge in specified maximum number of iterations. Note that some of
these failures can be corrected. The asterisk indicates that the convergence problems of PCG, LOBPCG, and JDQMR with the QD2 CBM
can be avoided by including an additional, extremely close by state in the computation.
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the original operator, IRL sometimes showed mis-convergence (that is, convergence to the wrong eigenvalues,
resulting in relevant eigenpairs being missed).

A remedy for some convergence failures, for example feasible for PCG and LOBPCG in the QD2 CBM
calculation, is to increase the number of eigenvalues to be computed. While incurring a slightly higher cost,
the orthogonalization procedure can help reduce errors in the eigenpairs of interest stemming from irrelevant
yet close-by neighboring eigenpairs. For ARPACK, we found that an increase of the maximum Krylov sub-
space dimension was sometimes helpful. As an example, the unfolded QW VBM calculation was successful
when increasing the size to 50, that is ten times the number of wanted eigenpairs.

What is the right remedy for correcting the mis-convergence problem? In our experiments, increasing the
subspace dimensions from Table 3 by a moderate number of additional vectors for methods with a variable
subspace size was not successful. However, increasing the tolerance to force eigenpairs to converge further
before deflating or locking them can be helpful.
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5.2. Matrix–vector products and wall clock time

Table 6 states the run time results when computing ten eigenpairs of the quantum dot QD1. For both VBM
and CBM, the folded GD + k (Olsen) is the fastest method. Compared to the default PCG method in ESCAN,
it is five times as fast for the VBM and three times as fast for the CBM. The unfolded P_ARPACK comes
close for the CBM but misses some eigenvalues for the VBM. GD + k (Olsen) is also by far the best with
respect to matrix vector multiplications. The orthonormalization cost is highest for the large basis used in
our implementation of LOBPCG. Even though it takes significantly fewer matrix vector multiplications than
PCG, its runtime is longer. This could potentially be improved by a more efficient implementation but will not
change the number of matrix vector multiplications which is about three times higher than for the fastest
method, GD + k (Olsen).

The larger amount of matrix–vector (MV) products of the PCG and LOBPCG methods compared to
GD + k (Olsen) indicates that, with the given preconditioner, the local subspace-iteration-like of the conjugate
gradient algorithms is here less effective than the Generalized Davidson approach. This is not uncommon: in
[36], similar findings on some examples from test matrix collections are reported.

Table 7 lists the run time results when computing five eigenpairs of the quantum wire. For the VBM, the
folded GD + k (Olsen) is the fastest method, again being about five times faster than standard PCG. The
unfolded P_ARPACK is fastest for the CBM. Folded GD + k (Olsen) is about 25% slower than unfolded
P_ARPACK but still 2.5 times faster than PCG. For the VBM, neither folded nor unfolded P_ARPACK con-
verges in the specified maximum number of iterations and basis size.

Table 8 lists the run time results when computing six eigenpairs of the quantum dot QD2. Computationally,
the nonlocal matrix vector product is significantly more expensive than for the QW. PCG and LOBPCG show
Table 6
QD1, nonlocal EPM potential, 1061 atoms, n = 141 K. IBM SP5, p = 32, 10 eigenpairs

Algorithm (QD1) VBM CBM

MV products Runtime (s) MV products Runtime (s)

PCG (F) 23,810 228 7066 63
LOBPCG (F) 16,862 255 6880 92
IRL (F) z z y y
GD + k (F) 4762 46 2176 21
JDQMR (F) 11,259 109 6212 52
IRL (U) y y 2434 24
GD + k (U) 15,449 173 12813 144
JDQMR (U) 11,259 99 6383 59

(F) stands for folded spectrum computation, (U) stands for unfolded, that is natural Hamiltonian. y denotes convergence but some missed
eigenvalues, and z denotes failure to converge in specified maximum number of iterations.

Table 7
QW, local EPM potential, 66,624 atoms, n = 2.27M. IBM SP5, p = 64, 5 eigenpairs

Algorithm (QW) VBM CBM

MV products Runtime (s) MV products Runtime (s)

PCG (F) 149,726 7278 21,931 1072
LOBPCG (F) 56,207 3690 20,337 1377
IRL (F) z z z z
GD + k (F) 26,326 1424 8504 418
JDQMR (F) 81,364 3877 28076 1392
IRL (U) z z 8232 344
GD + k (U) 39,828 2452 20,669 1269
JDQMR (U) 56,441 2746 20,392 1036

(F) stands for folded spectrum computation, (U) stands for unfolded, that is natural Hamiltonian. z denotes a failure to converge in
specified maximum number of iterations.



Table 8
QD2, nonlocal CP potential, 1327 atoms, n = 2.7 M. IBM SP5, p = 64, 6 eigenpairs

Algorithm (QD2) VBM CBM

MV products Runtime [s] MV products Runtime [s]

PCG (F) 101,904 15,671 z z
LOBPCG (F) z z z z
IRL (F) z z z z
GD + k (F) 54,362 8758 62,334 10,211
JDQMR (F) 254,810 39,111 z z
(F) stands for folded spectrum computation, (U) stands for unfolded, that is natural Hamiltonian. z denotes a failure to converge in
specified maximum number of iterations. To get a feeling for the performance of GD + k in the CBM calculation, we note that it was more
than two times faster than the unconverged PCG reaching the maximum number of iterations. The unfolded calculations are not reported
since none of them succeeded.
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convergence problems in the CBM since, as a more difficult test, only CBM states number five and six, but not
seven with nearly identical energy, are computed, see also the rightmost column of Table 4. GD + k (Olsen) is
both fast and reliable for both VBM and CBM. Even though the time of PCG for the CBM is not shown in
Table 6 because it did not converge, we mention that GD + k was more than two times faster than the uncon-
verged PCG reaching the maximum number of iterations.

Overall, on the considered test systems, the CG-based methods are slower than the Davidson methods, and
than Lanczos when it converges. Leaving aside the difference in the computation of the next iterate, one pos-
sible reason is that the CG methods simultaneously approximate all eigenpairs from one subspace of fixed size.
In contrast, IRL, GD + k, and JDQMR do not decrease the size of the subspace when an eigenpair has con-
verged. In that respect, these methods are more flexible in the generation and use of their subspace to approx-
imate later-converging eigenpairs.

6. Summary, conclusions and future work

This paper described a study of modern iterative eigensolvers for the computation of interior eigenstates
close to the band gap of large semiconductor nano-structures. Degeneracies and eigenvalue clustering make
this problem a hard one to solve, and additional difficulties arise from the matrix-free plane wave formulation.

We performed a robustness and timing evaluation for valence and conduction band calculations. The
GD + k (Olsen) method from the PRIMME package turned out to be very reliable and at the same time
up to five times faster than the commonly used PCG method. PCG still has its place in calculations needing
extraordinary amounts of memory. LOBPCG, with the preconditioner used here, and without blocked MV
product, was not competitive. Furthermore, the higher subspace diagonalization cost, associated with a larger
basis size, had a negative impact on the overall performance. The unfolded IRL from P_ARPACK was very
fast for some calculations but in general unreliable when used with memory comparable to the other methods.
Improved filtering methods might help to correct this problem [47].

We also discussed strategies to address convergence failures and missed eigenvalues. ARPACK’s IRL
method, in our opinion, would benefit from providing a block version. This might reduce the probability
of missed eigenvalues. In addition, this would be useful for starting a calculation with pre-converged states,
for example from a previous computation or with good initial guesses for several wave-functions at the same
time. All other algorithms studied here can work with multiple start vectors.

We showed that spectral transformations may complicate the matter of converging to a required accuracy
with respect to the original Hamiltonian H. For this reason, we suggest that algorithm developers allow for
more flexible stopping criteria even though those might incur costs of additional MV products. In the case
of the folded operator, it is enough to control the folded residual norm as we demonstrated. Nevertheless,
for more general spectral transformations, it might still become useful to determine convergence based on
the residual norm defined with respect to the original problem.

One aspect of future work is the exploration of alternative spectral transformations for the interior eigen-
problem such as harmonic Ritz values [2,23]. A second possible direction of future research concerns better
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preconditioners. We recently developed a bulk-based preconditioner to improve the convergence of PCG for
band edge calculations [43]. It will be interesting to explore the combination of this new preconditioner with
the best algorithm in this study, GD + k (Olsen). This new method promises to be a faster work horse for elec-
tronic nano-structure calculations of the type and setting studied in this paper.
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