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Abstract

The performance of the MPI's collective communications
is critical in most MPI-based applications. A general algo-
rithm for a given collective communication operation may
not give good performance on all systems due to the dif-
ferences in architectures, network parameters and the
storage capacity of the underlying MPI implementation.
Hence, collective communications have to be tuned for
the system on which they will be executed. In order to
determine the optimum parameters of collective commu-
nications on a given system in a time-efficient manner, the
collective communications need to be modeled efficiently.
In this paper, we discuss various techniques for modeling
collective communications.
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1 Introduction

In our previous work (Fagg et al., 2000; Sathish, 2000), we
built efficient algorithms for different collective commu-
nications and selected the best collective algorithm and seg-
ment size for a given {collective communication, number of
processors, message size} tuple by performing actual exper-
iments with the different algorithms and for different val-
ues of message sizes. The approach follows the strategy
that is used in efforts like ATLAS (Whaley and Dongarra,
1998) for matrik operations and FFTW (Frigo, 1998). The
tuned collective communication operations were com-
pared with various native vendor MPI (Snir et al., 1998)
implementations. The use of the tuned collective commu-
nications resulted in the range of 30-650% improvement in
performance over the native MPI implementations. The
tuning system uses the native MPI point to point sends and
receives and does not take advantage of any lower-level
communications such as hardware-level broadcast, etc.

Although efficient, conducting the actual set of experi-
ments to determine the optimum parameters of collective
communications for a given system, was found to be
time-consuming because of the exhaustive nature of the
testing. As a first step, the best buffer size for a given
algorithm for a given number of processors was deter-
mined by evaluating the performance of the algorithm for
different buffer sizes. In the second phase, the best algo-
rithm for a given message size was chosen by repeating
the first phase with a known set of algorithms and choos-
ing the algorithm that gave the best result. In the third
phase, the first and second phase were repeated for dif-
ferent number of processors. The large number of buffer
sizes and the large number of processors significantly
increased the time for conducting the above experiments.

In order to reduce the time for running the actual set of
experiments, the collective communications have to be
modeled effectively. In this paper, we discuss various
techniques for modeling the collective communications.
The reduction of time for conducting actual experiments
is achieved at three levels. In the first level, limited number
of {collective communications, number of processors,
message size} tuple combinations is explored. In the sec-
ond level, the number of {algorithm, segment size} com-
binations for a given {collective communication, number
of processors, message size} tuple is reduced. In the third
level, the time needed for running an experiment for a sin-
gle {collective communications, number of processors,
message size, algorithm, segment size} tuple is reduced
by modeling the actual experiment.

In Section 2, we give a brief overview of our previous
work regarding the automatic tuning of the collective
communications. We illustrate the automatic tuning with
the broadcast communication. The results in Section 2
reiterate the usefulness of the automatic tuning approach.
These results were obtained by conducting the actual
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experiments with all possible input parameters. In Sec-
tion 3, we describe three techniques needed for reducing
the large number of actual experiments. In Section 4, we
present some conclusions. Finally in Section 5, we out-
line the future direction of our research.

2 Automatically Tuned Collective
Communications

A crucial step in our effort was to develop a set of com-
petent algorithms. Table. 1 lists the various algorithms
used for different collective communications.

While there are other more competent algorithms for
collective communications, the algorithms shown in
Table. 1 are some of the most commonly used algo-
rithms. For algorithms that involve more than one collec-
tive communication (e.g. reduce followed by broadcast
in allreduce), the optimized versions of the collective
communications were used. The segmentation of mes-
sages was implemented for sequential, chain, binary and
binomial algorithms for all the collective communication
operations.

2.1 RESULTS FOR BROADCAST

The experiments consist of many phases.

Phase I: Determining the best segment size for a given
{collective operation, number of processors, message
size, algorithm} tuple. The segment sizes are powers of
two, multiples of the basic data type and less than the
message size.

Phase 2: Determining the best algorithm for a given
{collective operation, number of processors} tuple for
each message size. Message sizes from the size of the
basic data type to 1 MB were evaluated.

Phase 3: Repeating phase 1 and phase 2 for different
{number of processors, collective operation} combina-
tions. The number of processors will be powers of two
and less than the available number of processors.

Our current effort is in reducing the search space
involved in each of the above phases and still being able
to get valid conclusions.

The experiments were conducted on four different
classes of systems, including Sparc clusters and Pentium
workstations and two different types of PowerPC based
IBM SP2 nodes.

Figure. 1 shows the results for a tuned MPI broadcast
on an IBM SP2 using “thin” nodes that are intercon-
nected by a high performance switch with a peak band-
width of 150 MB/s verses the IBM optimized vendor
MPI implementation. Similar encouraging results were
obtained for other systems (Fagg and Dongarra, 2000;
Fagg et al., 2000).

Table 1
Collective communication algorithms

Collective communications Algorithms

Broadcast Sequential, Chain, Binary

and Binomial

Scatter Sequential, Chain, Binary

and Binomial

Gather Sequential, Chain, Binary

and Binomial

Reduce Gather followed by opera-
tion, Chain, Binary, Binomial

and Rabenseifner

Allreduce Reduce followed by broad-
cast, Allgather followed by
operation, Chain, Binary,

Binomial and Rabenseifner*

Allgather Gather followed by broad-

cast

Alltoall Gather followed by scatter,
Circular

Barrier Extended ring, Distributed

binomial and tournament’

* Rabenseifner, (1997);
1 Hensgen et al., (1998)

3 Reducing the Number of Experiments

In the experimental method mentioned in the previous
section, about 13,000 individual experiments have to be
conducted. Even though this only needs to occur once,
the time taken for all these experiments was considerable
and was approximately equal to 50 h of computer time.
The experiments conducted consist of two stages, the
primary set of steps is dependent on message size,
number of processors and MPI collective operation, i.e.
the tuple {message size, processors, operation}. For
example 64 KB of data, eight process broadcast. The sec-
ondary set of tests is an optimization at these parameters
for the correct method (topology-algorithm pair) and seg-
mentation size, i.e. the tuple {method, segment size}.
Reducing the time needed for running the actual
experiments can be achieved at three different levels:

1 reducing the primary tests;

2. reducing the secondary tests;

3 reducing the time for a single experiment, i.e. for
a single {message size, processors, operation,
method, segment size} instance.
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Fig. 1 Broadcast Results (IBM thin nodes).

3.1 REDUCING THE PRIMARY TESTS

Currently the primary tests are conducted on a fixed set
of parameters, in effect making a discrete three-dimen-
sional (3D) grid of points. For example, varying the mes-
sage size in powers of two from 8 bytes to 1 MB,
processors from 2 to 32 and the MPI operations from
Broadcast to AlI2All, etc.

This produces an extensive set of results from which
accurate decisions will be made at run-time. This how-
ever makes the initial experiments time-consuming and
also leads to large lookup tables that have to be refer-
enced at run-time, although simple caching techniques
can alleviate this particular problem.

Currently we are examining three techniques to reduce
this primary set of experimental points.

1. Reduced number of grid points with interpolation.
For example, reducing the message size tests from
{8 Bytes, 16 Bytes, 32 Bytes, 64 Bytes... MB} to
{8 Bytes, 1024 Bytes, 8192 Bytes...1 MB}.

2. Using instrumented application runs to build a
table of only those collective operations that are
required, i.e. not tuning operations that will never
be called, or are called infrequently.

3. Using combinatorial optimizers with a reduced set
of experiments, so that complex non-linear rela-
tionships between points can be correctly pre-
dicted.

3.2 REDUCING THE SECONDARY TESTS

The secondary set of tests for each {message size, proc-
essors, operation} tuple are where we have to optimize

Fig. 2 Segment size versus time for various commu-
nication methods.

the time taken, by changing the method used (algorithm/
topology) and the segmentation size (used to increase the
bi-sectional bandwidth utilization of links), i.e. {method,
segment size}. Figure. 2 shows the performance of four
different methods for solving an eight-processor MPI
Scatter of 128 KB of data on a Sparc cluster. Several
important points can be observed. First, all the methods
have the same basic shape that follows the form of an
exponential slope followed by a plateau. Secondly, the
results have multiple local optima, and that the final
result (segment size equal to message size) is not usually
the optimal but is close in magnitude to the optimal.

The time taken per iteration for each method is not
constant, thus many of the commonly used optimization
techniques cannot be used without modification. For
example in Figure. 2, a test near the largest segment size
is of the order of hundreds of microseconds whereas a
single test near the smallest segment size can be of the
order of 100 s, or two to three orders of magnitude larger.

For this reason we have developed two methods that
reduce the search space to tests close to the optimal val-
ues, and a third that runs a full set of segment-size tests
on only a partial set of nodes.

The first two methods use a number of different hill
descent algorithms that reduce the search space to only
the tests close to the optimal values. The first is a modi-
fied gradient descent (MGD), and the second is a scan-
ning modified gradient descent (SMGD).

The MGD method is a hill descent (negative gradient
hill climber) that searches for the minimum value starting
from the largest segment sizes and working in only one
direction. This algorithm had to be modified to look
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Table 2
Performance of optimizing algorithms.

Method Linear time (s) Linear MGD time (s) MGD SMGD SMGD iteration Speedup
iteration iteration time (s) (s)

8 proc, 1k bcast 11.4 320 1.3 160 1.3 160 8.8

8 proc, 128K bcast 1324.7 600 21.4 280 10.2 160 130

8 proc, 1k scatter 82.2 320 3.2 160 1.3 100 63

8 proc, 128K scatter 12613.0 600 159.9 220 39.6 90 318
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Fig. 3. Gradient descent methods for reducing search
space.

beyond the first minimum found so as to avoid multiple
local optima.

The SMGD method is a combination of linear search
and MGD, where the order of the MGD search is control-
led by a sorting of current optimal values and rates of
change of gradients. The rates of change are used so that
we can predict values and thus prune more intelligently.
This was required as in many cases the absolute values
were insufficient to catch results that interchanged rap-
idly. This method also includes a simple threshold mech-
anism that is used to prune the search in cases where a
few methods were considerably better than others and
thus they can be immediately rejected.

Figure. 3 shows the extent of the MGD and SMGD
superimposed on the initial scatter results. The MGD
extent is marked by thicker lines and the SMGD by indi-
vidual points.

Table. 2 lists the relative performance of the algo-
rithms in terms of both experimental time required to find
an optimal solution as well as number of iterations. Lin-
ear is used to indicate an exhaustive linear search, and
speedup is linear compared to the SMGD algorithm. As
can be seen from the table, reduction in total time spent

COMPLETE TREE PARTIAL TREE AS A PIPELINE

Fig. 4 The pipeline model.

finding the optimal can be reduced by a factor of 10 to
over 300. Smaller test sets yield less speed up as unnec-
essary results are less expensive than in larger tests with
larger messages.

The number of segment sizes to explore can also be
reduced by considering certain characteristics of the
architecture. For example, in some architectures, the size
of the packets used in communications is known before-
hand. Hence, the optimum segment size in these architec-
tures will be within a certain range near the packet size
used for communications.

The third method used to reduce tests is based on the
relationship between some performance metrics of a col-
lective that utilizes a tree topology and those of a pipeline
that is based only on the longest edge of the tree as
shown in Figure. 4. In particular, we found that the pipe-
line can be used to find the optimal segmentation size at
greatly reduced time as only a few nodes need to be
tested as opposed to the whole tree structure. For the 128
KB 8 process scatter discussed above, an optimal seg-
ment size was found in around 1.6 s per class of commu-
nication method (such as tree, sequential or ring). i.e. 6.4
s verses 39 s for the gradient descent methods on the
complete topologies or 12,613 s for the complete exhaus-
tive search.

3.3 REDUCING THE SINGLE-
EXPERIMENT TIME

Running the actual experiments to determine the opti-
mized parameters for collective communications is time-
consuming due to the overheads associated with the star-
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Fig. 5 lllustration of broadcast schedule.

tup of different processes, setting up of the actual data
buffers, communication of messages between different
processes, etc. We are building experimental models that
simulate the collective algorithms but incur less time to
execute than the actual experiments. Since the collective
communication algorithms are based on the MPI point-
to-point sends and receives and do not use any lower
level communications, the models for collective commu-
nications do not take into account the raw hardware char-
acteristics such as the link bandwidth, latency, topology,
etc. Instead they take into account times for MPI point-
to-point communications such as the send overhead,
receive overhead, etc. As part of this approach, we dis-
cuss the modeling experiments for broadcast in the fol-
lowing subsections.

General Overview All the broadcast algorithms are
based on a common methodology. The root in the broad-
cast tree continuously does non-blocking sends of MPI,
MPI_Isends, to send individual message buffers to its
children. The other nodes post all their non-blocking
receives of MPI, MPI_Irecvs, initially. The nodes between
the root node and the leaf nodes in the broadcast tree,
send a segment to their children as soon as the segment is
received.

After determining the times for individual Isends and
the times for message receptions, a broadcast schedule as
illustrated by Figure. 5 can be used to predict the total
completion time for the broadcast.

A broadcast schedule such as that shown in Figure. 5
can be used to accurately model the overlap in communi-
cations, a feature that was lacking in the parametrized
LogP model (Kielmann et al., 2000).

Measurement of Point-to-Point Communications
As observed in the previous section, accurate measure-

ments of the time for Isends and the time for the recep-
tion of the messages are necessary for efficient modeling
of broadcast operations. Previous communications mod-
els (Culler et al., 1993; Kielmann et al., 2000, Huse, 1999)
do not efficiently take into account the different types of
Isends. Also, these models overlook the fact that the per-
formance of an Isend can vary depending on the number
of Isends posted previously. Thus the parameters, the
send overhead, os(m), the receive overhead, or(m), the gap
value, g(m), for a given message size m, which were dis-
cussed in the parametrized LogP model, can vary from a
particular point in execution to another depending on the
number of pending Isends and the type of the Isend.

MPI implementations employ different types of Isends
depending on the size of the message transmitted. The
popular modes of Isends are blocking, immediate and
rendezvous and are illustrated by Figure. 6

The parameters associated with the different modes of
Isends can vary depending on the number of Isends
posted earlier. Hence, for example, in the case of imme-
diate mode, the Isends can lead to overflow of buffer
space in the receive end, which will eventually result in
larger g(m) and os(m).

Model Based on Communication Schedules In this
section, we describe a simple model that we have built to
calculate the performance of collective communications.
The model is based on point-to-point communication
times and uses communication schedules for collective
operations similar to the broadcast schedule shown in
Figure. 5.

The model uses the data for sender overhead, os(m),
receiver overhead, or(m) and gap value, g(m) for the dif-
ferent types of Isends shown in Figure. 6. The send over-
head, os(m) is determined for different message sizes by
observing the time taken for the corresponding Isends.
The time for Isends, os(m), increases as the message size
is increased up to a certain message size beyond which
os(m) falls to a small value. At this message size, the
Isend switches from the blocking to immediate mode.
or(m) for blocking mode is determined by allowing the
receiver to post a blocking receive after making sure the
message has been transmitted over the network to the
receiver end and determining the time taken for the
blocking receive. In the immediate mode, the sender has
to wait for g(m) before transmitting the next message.
This time is determined by posting an Isend and deter-
mining the time taken for the subsequent Wait. In the
immediate mode, or(m) is calculated by calculating
or(m)+g(m). or(m)+g(m) is calculated by determining
the time for a ping-pong transmission between a sender
and a receiver and subtracting 2*os(m) from the ping-
pong time. For each of the above experiments, 10 differ-
ent runs were made and averages were calculated. The
experiments were repeated at different points in time on
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Fig. 7 Flat tree broadcast.

shared machines and the standard deviation was found to
be as low as 40.

The following results illustrate the prediction accuracy
of the models. While the experiments were conducted
only on a Sparc cluster, similar experiments will be con-
ducted on other systems to validate the predication accu-
racy on other systems.

Figure. 7 compares the actual and predicted broadcast
times for a flat tree broadcast sending a 128 K byte mes-
sage using eight processors on a Sparc cluster.

We can observe that the predicted times are close to
the actual broadcast times. According to the predicted
results, the optimum segment size for the flat tree broad-

Fig. 8 Binary tree broadcast.

cast for 128 KB message size is 4 KB, whereas, accord-
ing to the actual times, the optimum segment size is 16
KB. But the ratio between the actual time at 4 KB and the
actual time at 16 KB is found to be just 1.12.

Figure. 8 compares the actual and predicted broadcast
times for a binary tree broadcast and Figure. 9 compares
the actual and predicted broadcast times for a binomial
tree broadcast. In these cases, the ratios between the
actual times for predicted and actual optimum segment
sizes were found to be 1.09 and 1.01, respectively.

Figure. 10 shows the actual and predicted values of the
various broadcast algorithms for 128 K byte message
size. Comparison of the relative performance of the
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broadcast algorithms using actual and predicted results
leads to the same conclusions for broadcast, i.e. flat tree
gives the worst performance and binary tree gives opti-
mum performance. Thus, we find that the model is able
to predict both optimum segment sizes within a single
algorithm and optimum algorithms when comparing dif-
ferent algorithms.

While models for other important collective communi-
cations such as scatter and gather are not implemented,
modeling the other collective communications is similar
to modeling broadcast with few additional issues.

A scatter operation is similar to broadcast operation
except that the sender has to make strides in the send
buffer to send the next element to its next child. For small
buffer sizes, the entire buffer is brought inside the cache
and our broadcast model should be applicable to scatter
as well. For large buffer sizes, additional complexity is
introduced due to frequent cache misses. In that case our
model needs to take into account the time needed for
bringing data from memory to cache and compare this
time with the gap time for the previous Isend.

Modeling gather is more challenging than modeling
broadcast or scatter since three different scenarios have
to be considered. For small buffer sizes, the time for
receive of a segment by the root assuming the children
have already posted their sends have to be modeled and
techniques used in modeling broadcast and scatter can be
used. For large buffer sizes, issues regarding movement
of data from memory to cache also apply to gather and
the corresponding techniques used for scatter can be
used. For large number of segments, the children of the
root will be posting large number of Isends to the same

Fig. 10 Comparison of algorithms: measured versus
predicted times.

destination, i.e. the root. In this case, the storage of pend-
ing communications will get exhausted, and the perform-
ance of Isends will deteriorate. Some benchmark tests
can be performed beforehand to determine the point
when the performance of Isends degrades and can be
plugged into the model.

Models for other collective communications, such as
allreduce, allgather, etc., can be built based on the experi-
ence of modeling broadcast, scatter and gather.

Although the models are primarily used to reduce the
single-experiment time, they can also be used to reduce
the number of segment sizes to explore. For example, in
architectures where fixed size packets are used for com-
munications, the send and receive overheads for large
message sizes will be approximately multiples of the
overhead times associated with the message of size equal
to the packet size. Hence simulation experiments can
only be conducted for those segment sizes close to the
packet size.

4 Conclusion

Modeling the collective communications to determine
the optimum parameters of the collective communica-
tions is a challenging task, involving complex scenarios.
A single simplified model will not be able to take into
account the complexities associated with the communi-
cations. A multi-dimensional approach towards modeling
is necessary, where various tools for modeling are pro-
vided to the user to accurately model the collective com-
munications on his system. Our techniques regarding the
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reduction of number of experiments are steps towards
constructing the tools for modeling. These techniques
have given promising results and have helped identify
the inherent complexities associated with the collective
communications.

5 Future Work

While our initial results are promising and provide us
with some valuable insights regarding collective commu-
nications, much work still has to be done to provide com-
prehensive set of techniques for modeling collective
communications. Selecting the right set of techniques for
modeling based on the system dynamics is an interesting
task and will be explored further.
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