
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/18/1/3
The online version of this article can be found at:

 
DOI: 10.1177/1094342004041290

 2004 18: 3International Journal of High Performance Computing Applications
Michelle Miller, Mark Ellisman, Marcio Faerman, Graziano Obertelli, Rich Wolski, Stuart Pomerantz and Joel Stiles

Henri Casanova, Francine Berman, Thomas Bartol, Erhan Gokcay, Terry Sejnowski, Adam Birnbaum, Jack Dongarra,
The Virtual Instrument: Support for Grid-Enabled Mcell Simulations

 
 

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for 
 
 
 
 

 
 http://hpc.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://hpc.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://hpc.sagepub.com/content/18/1/3.refs.htmlCitations: 
 

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/18/1/3
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/18/1/3.refs.html
http://hpc.sagepub.com/


3THE MCELL VIRTUAL INSTRUMENT

THE VIRTUAL INSTRUMENT: 
SUPPORT FOR GRID-ENABLED MCELL 
SIMULATIONS

Henri Casanova1

Francine Berman1

Thomas Bartol2

Erhan Gokcay2

Terry Sejnowski2

Adam Birnbaum3

Jack Dongarra4

Michelle Miller4

Mark Ellisman5

Marcio Faerman6

Graziano Obertelli7

Rich Wolski7

Stuart Pomerantz8

Joel Stiles8

Abstract

Ensembles of widely distributed, heterogeneous resources,
or Grids, have emerged as popular platforms for large-
scale scientific applications. In this paper we present the
Virtual Instrument project, which provides an integrated
application execution environment that enables end-users
to run and interact with running scientific simulations on
Grids. This work is performed in the specific context of
MCell, a computational biology application. While MCell
provides the basis for running simulations, its capabilities
are currently limited in terms of scale, ease-of-use, and
interactivity. These limitations preclude usage scenarios
that are critical for scientific advances. Our goal is to cre-
ate a scientific “Virtual Instrument” from MCell by allowing
its users to transparently access Grid resources while
being able to steer running simulations. In this paper, we
motivate the Virtual Instrument project and discuss a
number of relevant issues and accomplishments in the
area of Grid software development and application sched-
uling. We then describe our software design and report on
the current implementation. We verify and evaluate our
design via experiments with MCell on a real-world Grid
testbed.

Key words: grid computing, computational neuroscience

1 Introduction

Grids (Foster and Kesselman, 1998; Foster et al., 2001)
are large collections of resources (computational devices,
networks, on-line instruments, storage archives, etc.) dis-
tributed over the wide-area; these have enormous aggre-
gate potential and have become popular platforms for
running large-scale, resource-intensive applications.
Many challenges are to be addressed in order to provide
the necessary mechanisms for discovering, accessing,
monitoring, and aggregating Grid resources. Conse-
quently, a large effort has been made and is still under-
way to provide middleware technology as a base Grid
software infrastructure (Foster and Kesselman, 1999;
Foster et al., 2001, 2002). However, although middle-
ware provides fundamental building blocks it is not
designed to be used directly by Grid users. Instead, Grid
application-level tools must be provided with the goal of
both building new and higher-level functionality on top
of base Grid services, as well as hiding the complexity of
the Grid from the end-user. One approach is to provide
programming models that implement high-level abstrac-
tions for building Grid applications (Benyon et al., 2001;
van Nieuwpoort et al., 2001; Nakada et al., 2002;
Karonis et al., 2003), or even general purpose Grid appli-
cation development environments (Berman et al., 2001).
Another approach is to implement execution environ-
ments in which a user can “drop” his/her application for
Grid execution while maintaining the convenience and
the illusion of a desktop execution. Such environments
include Grid portals, which have been implemented suc-
cessfully for many scientific applications and provide
users with a familiar Web browser interface to launch and
monitors application runs on Grid resources: for instant the
GAMESS portal, https://gridport.npaci.edu/GAMESS/,
and the Telescience portal, https://gridport.npaci.edu/Tel-

1 SAN DIEGO SUPERCOMPUTER CENTER AND DEPT. OF 
COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF 
CALIFORNIA, SAN DIEGO
2 COMPUTATIONAL NEUROBIOLOGY LABORATORY, SALK 
INSTITUTE
3 SAN DIEGO SUPERCOMPUTER CENTER
4 DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF 
TENNESSEE, KNOXVILLE
5 NATIONAL CENTER FOR MICROSCOPY AND IMAGING 
RESEARCH, UNIVERSITY OF CALIFORNIA, SAN DIEGO
6 DEPT. OF COMPUTER SCIENCE AND ENGINEERING, 
UNIVERSITY OF CALIFORNIA, SAN DIEGO
7 DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF 
CALIFORNIA, SANTA BARBARA
8 PITTSBURGH SUPERCOMPUTER CENTER

The International Journal of High Performance Computing Applications,
Volume 18, No. 1, Spring 2004, pp. 3–17
DOI: 10.1177/1094342004041290
© 2004 Sage Publications

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

www.sagepublications.com
http://hpc.sagepub.com/


4 COMPUTING APPLICATIONS

escience/ (Allen et al., 2001). As a result, several efforts
have provided toolkits to help in the development of Grid
portals; see Thomas et al. (2001), Novotny (2002), Suzu-
mura et al. (2002) and the Grid Portal Collaboration (http://
www.ipg.nasa.gov). Another solution is to build integrated
software environments targeted to specific applications or
classes of applications. The work described in this paper
belongs in this last category; our ultimate goal is to build
software that makes an application behave as a scientific
Virtual Instrument (VI) that the user can easily configure,
observe, and dynamically control. We note that our work
could be integrated as part of a Grid portal with minimal
effort.

This work is performed in the specific context of the
MCell application; see the MCell webpages at the Pitts-
burgh Supercomputer Center, http://www.mcell.psc.edu,
and at the Salk Institute, http://www.mcell.cnl.salk.edu
(Stiles et al., 1996, 1998). MCell is a computational biol-
ogy simulation framework that is used by neuroscientists
to study diffusion and chemical reactions of molecules in
living organisms. A single execution instance of MCell
consists of multiple simulations, each producing output
that is then analyzed by neuroscientists en masse.
Although MCell provides the core functionality for run-
ning simulations, its capabilities are currently limited in
terms of scale, ease of use, and interactivity. For exam-
ple, scientists often observe interesting phenomena that
emerge in the middle of an MCell run. If MCell could be
redirected to concentrate on these phenomena while exe-
cuting, a great deal of time could be saved. This and
other limitations preclude usage scenarios that are critical
for scientific advances. The goal of the VI project is to
alleviate most of the limitations of MCell usage and to
provide an integrated Grid application execution environ-
ment for MCell users. This environment should provide
transparency for access to the Grid as well as computa-
tional steering capabilities.

In this paper we describe our accomplishments in
terms of software design and development for the Grid.
This development primarily entails the realization of the
VI software, a complete run-time system that supports
steerable MCell executions. We present experimental
results obtained when running the application on a Grid
testbed and draw conclusions about the effectiveness of
the VI implementation and design.

This paper is organized as follows. In Section 2 we
introduce MCell and highlight specific limitations of its
current usage scenarios. In Section 3 we motivate the VI
project, highlight issues of application scheduling and
Grid software development, and describe the VI software
design and implementation, which we verify experimen-
tally and discuss in Section 4. Section 5 discusses related
work and Section 6 concludes the paper with future
directions.

2 Molecular Biology Simulations with 
MCell

2.1 MCELL OVERVIEW

MCell (see the MCell webpages at the Pittsburgh Super-
computer Center, http://www.mcell.psc.edu, and at the
Salk Institute, http://www.mcell.cnl.salk.edu; Stiles et al.,
1996, 1998) uses Monte Carlo algorithms to simulate
simultaneous diffusion and chemical reactions of mole-
cules in complex three-dimensional (3D) spaces. Highly
realistic reconstructions of cellular or subcellular bounda-
ries can be used to define 3D diffusion spaces, which can
then be populated with different molecules (Stiles et al.,
2001). Such molecules might react with others that are
released periodically from different locations within the
structure, to simulate the production of biological signals.
The diffusing molecules move according to a 3D random
walk based on a Brownian motion model. Possible reaction
events, such as binding and unbinding, are tested on a mol-
ecule-by-molecule basis using random numbers and Monte
Carlo probability values. The advantages and significance
of this approach are detailed in Stiles and Bartol (2001).

In essence, computational modeling with MCell encom-
passes four steps, each of which can require considerable
computing resources.

(i) Surface design or reconstruction. In simple
cases, a set of planes might be used to define dif-
fusion boundaries. In complex cases, cell mem-
branes can be reconstructed as tessellated meshes
from electron microscope data, and may contain
on the order of 106 triangles.

(ii) Model visualization and design. Different types
of molecules must be added to the surfaces and
spaces according to realistic biological distribu-
tions and densities. The total number of molecules
is highly variable but can easily reach or exceed
106 even for a surface area or reaction volume
much smaller than a single cell.

(iii) Simulation. This step involves repeatedly run-
ning MCell with varied input parameters and
Monte Carlo random number streams. The total
number of such runs can range from 102 to 105

and beyond. We detail relevant usage scenarios
for this step in the next section.

(iv) Visualization and analysis of results. In the sim-
plest case this might require two-dimensional (2D)
plotting of one output parameter as a function of
time. In the more typical case, some combination
of 2D plotting and 3D imaging and/or animation is
required to visualize the simulation’s output.

At present, all simulation objects and run-time conditions
are specified using a high-level model description lan-

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


5THE MCELL VIRTUAL INSTRUMENT

guage (MDL) designed for readability by scientists.
When a simulation is run, one or more MDL input files
are parsed to create the simulation objects, and then exe-
cution begins for a specified number of time-step itera-
tions. MCell is highly optimized for speed and for
memory usage. This makes it possible to run individual
simulations of complex structures on single processors
rather than using parallel architectures.

So far, MCell simulations have been used to study syn-
apses, structures used by nerve cells to communicate
with themselves and other cells. MCell (and its predeces-
sors) originally focused on the popular vertebrate neu-
romuscular junction, the synapse between a nerve cell
and a muscle cell (Salpeter, 1987; Stiles et al., 2001).
MCell’s Monte Carlo simulations have been successfully
employed to obtain a variety of new results (Bartol et al.,
1991; Anglister et al., 1994; Stiles et al., 1996, 1998,
1999, 2001). In addition, MCell has been in limited
release (see the MCell webpages at the Pittsburgh Super-
computer Center, http://www.mcell.psc.edu, and at the
Salk Institute, http://www.mcell.cnl.salk.edu) to a world-
wide group (~25) of Neuroscience and other research
laboratories since 1997 (Egelman and Montague, 1998;
Egelman et al., 1998; Rao-Mirotznik et al., 1998; Gieger
et al., 1999). MCell is currently the object of many devel-
opment efforts and current simulations are allowing sci-
entists to explore new areas of cellular physiology.

2.2 MCELL USAGE SCENARIOS

Since MCell models are now approaching the level of
structural and biochemical complexity present in living
cells, the models typically contain numerous input
parameters that can be varied independently. Conse-
quently, simulations can span an enormous range of com-
putational and data requirements. We detail here three
relevant usage scenarios. We give orders of magnitude
for the aggregate simulation CPU time assuming a single
2.0 GHz Pentium processor.

(A) “Look & See”. A small number of MCell runs are
used to determine the predicted behavior of the
modeled system under limited input conditions;
between one hour and several days of CPU time
are required.

(B) Parameter Fitting. Tens to thousands of runs
may be required to identify input parameter val-
ues which produce model output that matches
given criteria such as experimental measure-
ments; several weeks of CPU time.

(C) Parameter Sweep. The scale of individual simu-
lations is similar to that for the parameter fitting
scenario, but many thousands of runs are required
to map a region of the input parameter space; any-

where from one month of CPU time to several
years or decades.

Even though (A) has been the most common scenario in
the early stages of the MCell project, it is increasingly
being replaced/complemented by scenarios (B) and (C).
These last two scenarios require a tremendous amount of
compute and storage resources. For (B), the user gener-
ally navigates toward a “best fit” by iterative parameter
adjustments made according to some potentially ad hoc
heuristics. Thus, a high degree of interactivity between
the user and the computing resources is desirable to max-
imize productivity. Scenario (C) does not require interac-
tivity as the user has already identified an “interesting”
region of the parameter space to explore, perhaps via sce-
nario (B). In Casanova et al. (2001), we gave an example
of a small-scale simulation for (C), which required
approximately three months of aggregate CPU time and
and generated 94 GB of raw output, which were then
reduced to 600 KB of synthesized output. Note that in all
scenarios the CPU time of individual simulations can
vary by several orders of magnitude solely depending on
input parameter values.

2.3 CURRENT LIMITATIONS

Currently, MCell imposes severe limitations on the usage
scenarios described in the previous section. Ideally, users
would have access to integrated software which guides
them through the four steps identified in Section 2.1 and
which enables all three usage scenarios on large-scale
distributed computing environments.

In its current incarnation, MCell consists of a single
executable which takes MDL files as input. The user is
responsible for creating these files and for managing
each MCell “project” in an ad hoc fashion. The user is
entirely responsible for running the individual simula-
tions and collecting the output. This involves labor-inten-
sive activities such as resource selection, remote process
creation/monitoring, fault-detection and restart, or appli-
cation data movements. These tasks are generally per-
formed via a set of ad hoc scripts. In scenarios (B) and
(C), this proves to be infeasible for most users given the
desired scale of the simulations. In addition, there is no
support for interactive simulation as required in scenario
(B).

The MCell executable generally produces one or more
output files. Users are responsible for averaging, post-
processing, visualizing, and analyzing output files. In
scenarios (B) or (C), this amounts to manipulating and
mining large datasets, again in an ad hoc fashion. MCell
users typically employ the file system as a database for
application data, which does not scale and cannot support
scenarios (B) or (C) adequately. Generally, OpenDX

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


6 COMPUTING APPLICATIONS

(http://www.opendx.org) is used for most rendering and
visualization tasks.

Our earlier work on the AppLeS Parameter Sweep
Template (APST; Casanova and Berman, 2003) provides
limited support for (C) in terms of running MCell simula-
tion on Grid resources. It is a clear improvement over the
traditional usage described above. However, since APST is
general purpose, it fails to address most of the MCell-spe-
cific limitations listed above. As scenarios (B) and (C) are
the future of MCell simulations for new scientific discov-
eries, it is critical to provide corresponding comprehensive
software support. This is the overall goal of the VI project.

3 The Virtual Instrument

In this section we describe the VI project in terms of spe-
cific goals, relevant research issues, and software.

3.1 GOALS

The main motivation behind the VI software develop-
ment effort is to address the limitations highlighted in
Section 2.3. More specifically, this is accomplished by
providing the following capabilities.

Framework for MCell project development The VI must
provide a framework in which MCell users can easily
specify individual “projects” in terms of input parameters,
initial ranges for those parameters, number of repeats for
Monte Carlo averaging, nature of output files, and nature
of output post-processing steps (see Section 3.2 for a
detailed description of MCell projects). The only compo-
nent of an MCell simulation that cannot be automatically
created is the core MDL code as it embodies the user’s
conceptual model. The VI must provide a framework for
users to plug in their core MDL code and be freed of all
other responsibilities. This framework can easily be
embedded as part of a user interface. Finally, the VI should
handle all application data management issues. This can be
done, for instance, with a relational database.

User interface At the moment, MCell does not provide
any user interface to facilitate MCell project instantiation
and management. The VI should provide a graphical
interface for users to create MCell projects within the
framework described above. In addition, that interface
should be able to invoke data visualization and rendering
capabilities provided by tools like OpenDX (http://
www.opendx.org). A full-fledged user interface for
MCell is an intensive development project and is not our
focus here. Instead, we aim at providing a simple inter-
face that will allow us to explore computer science
research issues involved when running large-scale dis-
tributed MCell simulations in scenarios (B) and (C).

Transparent deployment The VI should handle the logis-
tics of application deployment on behalf of the user. This
includes resource discovery, authentication/authorization,
remote job creation/control, application data movements,
fault-detection and recovery. This can be achieved by
building on the base Grid software infrastructure.

Interactive simulation In order for scenario (B) to be
effective, the VI must provide a way for users to interact
with running simulations in order to guide, or steer, the
computation. Users must be able to direct the search
away from certain regions of the parameter space to be
explored, and to concentrate on other regions, based on
real-time intermediate application results. This requires
that the VI allow the creation and cancellation of applica-
tion tasks on the fly.

High performance Given the scale of MCell simula-
tions in scenarios (B) and (C), it is critical that the VI
exploit available resource effectively. This is to be
achieved by the use of scheduling strategies, and can
build on our previous work (Casanova et al., 2000a).
However, in this work, there is the added complexity of
computational steering; how does one schedule (and
reschedule) an application whose computational goals
are constantly being changed and/or refined by the user?
Our goal is to develop resource allocation strategies that
reduce application execution time (e.g. search time) in
the presence of user steering.

3.2 MCELL PROJECTS IN THE VI 
FRAMEWORK

Before describing our work on scheduling and on Grid
software design and development, we introduce the
notion of an MCell project, which can be created and
executed by the VI user. The structure of a project is
depicted in Figure 1 and consists of: (i) a set of parameter
specifications (number of parameters, data types, initial
value ranges); (ii) a set of MDL scripts written by the
user – the MDL core; (iii) potential additional input files
such as large geometry files that have been produced by
3D reconstruction of electron microscope data. The
MCell simulation consists of a (generally large) number
of parameter space point evaluations, or meta-tasks (n
meta-tasks are shown in the figure). Each evaluation con-
sists of an instantiation of the parameter values and of a
number of identical MCell tasks, each using different
streams of random numbers for Monte Carlo simulation.
Each task produces raw output files that are then aver-
aged and synthesized into final output. This final output
is typically orders of magnitude smaller (in terms of
bytes) than raw and averaged output. These final data
must be analyzed by the user to understand the behaviors

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


7THE MCELL VIRTUAL INSTRUMENT

of the simulated biological system. This must be done
on-the-fly to steer the computation in scenario (B). Note
that raw and average output data are still of interest to the
MCell user and may need to be retrieved in order to per-
form in-depth analyses. Note also that the amount of
computation required for each meta-task depends on the
parameter instantiations. In other words, some meta-
tasks require more computation than some others (typi-
cally by up to three orders of magnitudes).

A run of an MCell project consists in executing large
numbers of independent meta-tasks and generating both
intermediate and final output.

3.3 GRID COMPUTING ISSUES

The two main issues that we have explored in the VI
project are that of Grid application development and appli-
cation scheduling. We briefly discuss these issues below.

3.3.1 Resource Access and Data Management on the
Grid. The VI project faces most of the issues inherent
in Grid computing as it seeks to make the use of the
Grid as transparent as possible so that the user can focus
on the MCell simulation rather than on the logistics of
application deployment. To that end, we reuse most of
the available Grid infrastructure to achieve automatic
resource discovery (Czajkowski et al., 2001), resource
access (Casanova and Dongarra, 1997; Czajkowski et
al., 1998; Basney and Livny, 1999), security (Foster et
al., 1998), distributed data management (Chervenak et
al., 2000), and resource monitoring (Wolski, 1997). Our
work on the VI builds on our experience when develop-
ing the APST project (Casanova and Berman, 2003).
APST provides a simple, generic way to run parameter
sweep applications and is currently used by MCell users
for scenario (C).

One of the lessons we learned with APST is that target-
ing several underlying technologies for deploying user
application makes it possible to (i) gain early acceptance
from the users and (ii) increase the number of resources
available to applications. This is the case because Grid
computing is still an emerging technology and is not yet
ubiquitous. Although the Open Grid Software Architec-
ture (OGSA) standard (Foster et al., 2002) is rapidly
gaining momentum, our goal is to enable MCell users to
run simulations on their resources today.

Consequently, the VI targets a number of Grid serv-
ices, which can be used simultaneously to expand the
range of resources available to a single MCell simulation.
In addition, the VI provides default mechanisms that use
SSH to start remote jobs and move application data. SSH
does not provide the levels of job control and the scala-
bility offered by, say, Globus (Foster and Kesselman,
1999). However, our experience with APST is that users
generally start using SSH mechanisms and progressively
move towards Grid middleware technology as their sim-
ulation needs grow in scale. The main notion here is that
current Grid application execution environments should
be able to use whatever Grid middleware is available, but
also degrade to default ubiquitous mechanisms if neces-
sary. We expect this design to evolve to pure OGSA
when the standard becomes more ubiquitous.

Given the life-span of MCell simulations, it is critical
that the core VI software be resilient to software and
hardware crashes. In addition, the VI should automati-
cally handle all application data management on behalf
of the user. Consequently, we use a relational database in
order to maintain persistent state about running MCell
projects, data generated by those projects, and available
resources. This database has two roles. First, it allows the
VI software to be resilient to faults; all state is periodi-
cally saved into the database and can be used for restart.
Secondly, it provides a structure for storing, retrieving,

Fig. 1 The structure of an MCell project in the VI Frame-
work. A project consists of n meta-tasks, and each meta-
task consists of a number of identical MCell tasks whose
outputs are averaged and synthesized into final output
data.

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


8 COMPUTING APPLICATIONS

and mining application data, which is fundamental for
achieving the first goal in Section 3.1. Our approach is to
store only final application output data in the database
(see Figure 1). Raw and intermediate output, which can
be enormous, is left in place on remote Grid storage
resources and can be downloaded on demand by the user.

3.3.2 Application Scheduling. A research direction
explored in the VI project is that of application schedul-
ing in a computational steering context. Scheduling sets
of non-identical, independent tasks onto sets of distrib-
uted, heterogeneous resources has long been identified as
an NP-hard problem (Ullman, 1975). Therefore, much
research work has been dedicated to the development of
appropriate scheduling heuristics; see Braun et al. (1999)
for a survey. Grid computing adds several challenges to
the traditional scheduling problem; resources are not only
heterogeneous, they exhibit dynamic performance behav-
iors due to sharing among users. Also, they are located on
diverse network topologies interconnected over the wide-
area. To address these issues, adaptive scheduling has
been employed with success (Berman et al., 1996; Ber-
man, 1998). As a result, we developed adaptive scheduling
strategies for MCell in our earlier work (Casanova et al.,
2000a), focusing on scheduling data movement, data stag-
ing, and data duplication, with respect to storage and com-
pute resource locations and characteristics. 

In this work, we have to cope with the complexity
added by computational steering, that is the problem of
scheduling an application whose computational goals
change over time according to potentially arbitrary user
behaviors. Computational steering is a difficult problem
that has been addressed by several researchers (Jab-
lonowski et al., 1993; Vetter and Schwan, 1995, 1997;
Geist et al., 1997; Parker et al., 1998). These efforts
mostly addressed the problems of consistency of state
among components of tightly coupled applications. In the
limited context of MCell, consistency is not a key issue
as the application consists of large sets of tasks which
can be stopped and restarted independently, with little
need for synchronization. Therefore, we focus on a
resource allocation strategy that takes steering into
account solely to achieve high performance.

The VI user typically employs the following general
search strategy. The user’s goal is to locate some particu-
lar point in the parameter space that satisfies some sub-
jective criteria. An initial set of parameter space points
(uniformly) distributed over the parameter space are
selected for computation. As results come back from the
VI, they are displayed to the user who can then assign
levels of importance to regions of the parameter space.
Regions with higher levels of importance are more prom-
ising and should therefore be completed sooner. This can
be achieved by assigning appropriate fractions of the avail-

able compute resources to the exploration of each region.
For instance, if the user has identified three regions that
should be explored and assigned levels of importance 2, 2,
and 1, then each of the first two regions should get 40% of
the resources, and the last region should get 20%. The key
idea is that rather than ordering regions by their level of
importance and exploring the most promising regions first,
it is more efficient to explore all regions concurrently but
at different rates, to avoid being trapped in local optima in
regions that were initially the most promising. Our contri-
bution is that we reason at the resource allocation level
rather than at the algorithmic level, which makes our
approach applicable to a wide variety of steering behaviors
and search algorithms (including both interactive user
steering and search algorithms).

Our approach is to assign a priority to each point of the
parameter space, corresponding to the level of impor-
tance of the region to which the point belongs. If each of
the current n points being computed has a priority pi, then

point i should get pi /Σj = 1
n pj percent of the available

resources. In Faerman et al. (2002) we have proposed
and evaluated a number of strategies for computing pri-
orities and for scheduling computational tasks according
to these priorities. We refer the reader to that paper for all
details. Our main result was that the use of priorities for
allowing concurrent region explorations leads to signifi-
cant performance improvements and we have quantified
how priorities should be computed, given levels of
importance that users assigned to regions.

3.4 VIRTUAL INSTRUMENT SOFTWARE

The VI software follows a strict object-oriented design
and is constructed of three principal components: a soft-
ware daemon to manage resources and remotely run jobs;
a user interface to allow users to initiate, run, monitor,
and stop MCell projects; and a database to store final
application results and user-entered data. These compo-
nents can run on separate machines.

Figure 2 depicts the interactions of the three main com-
ponents of the VI architecture: the Daemon, the Interface,
and the Database. The Daemon interacts with resources
via Grid services. These services allow the Daemon to
discover resources, start and control remote jobs, move
data between distributed storage locations, and monitor
resources as well as the running application. The Daemon
uses the Database to store information such as the availa-
ble resources, the user-defined specifications of running
MCell projects, and the status of these running projects,
including their pending tasks. To the greatest extent, the
Daemon uses an out-of-core approach, so that if it fails, the
relevant information about running MCell projects is in the
Database. The only application data stored in the Database
are MCell final output that can be visualized and analyzed

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


9THE MCELL VIRTUAL INSTRUMENT

by the user and used to steer further simulations. As
depicted in Figure 2, the Database also keeps track of the
location of all raw and intermediate data, which are left in
place in Grid storage until explicitly retrieved by the user
(see Section 3.3).

The Interface allows the user to steer the computation
and to perform visualization. The Interface communicates
control information to the Daemon, including commands
to create, start, steer, and stop MCell projects or trigger the
retrieval of a particular output file our final output data.
Visualization of the data can be performed by OpenDX at
the user’s direction, as invoked from the Interface.

The main responsibility of the Daemon is to schedule
and actuate file transfers and computations using availa-
ble computational and network resources. These func-
tions are performed by three classes within the Daemon:
the Project class, the Scheduler class, and the Actuator
class. The Project keeps track of all of the parameter
space points and task inter-dependences. For example, in
Figure 1, it is the Project that is aware of the requirement
to complete several runs of MCell with their parameter
instantiations before running a post-processing task to
average the output. The Scheduler retrieves information
on tasks from the Project, sets their relative priorities (see

Section 3.3), and assigns tasks to resources accordingly.
The Scheduler is designed as a base class so that alternate
scheduling strategies can be easily integrated as they are
developed. After tasks have been assigned to resources by
the Scheduler, the Actuator launches them on Grid
resources. As with the Scheduler, the Actuator is designed
as a base class, permitting specialization for various
remote job execution and data transfer methods from var-
ious Grid middleware services.

The use of a relational database has several advantages.
It makes the design of the Daemon more simple in terms
of data structures, and makes it possible to recover from
failures. In addition, the Interface does not need to imple-
ment an ad hoc protocol with the Daemon, but can just pull
data out of the Database in a standard fashion. In particu-
lar, it is possible to make complex SQL queries to mine
application data. Furthermore, the use of a separate data-
base allows users to start an MCell project, disconnect, and
check the status of the simulation from any location.

3.5 STATUS OF THE IMPLEMENTATION

At the moment, the VI software consists of approxi-
mately 20,000 lines of C++, using the Standard Template

Fig. 2 The VI architecture. The three main components are the Daemon, the Database, and the Interface.

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


10 COMPUTING APPLICATIONS

Library and pthreads. We opted for MySQL to imple-
ment the Database as it is well accepted by the Linux
community and provides a standard API. In the current
release, the actuators within the Daemon target SSH,
Globus’s GRAM (Czajkowski et al., 1998), NetSolve
(Casanova and Dongarra, 1997), and batch schedulers
(the portable batch system, http://www.openpbs.com;
IBM Corporation, 1993) for starting/monitoring remote
jobs, scp and GridFTP for moving application data on the
Grid. The VI interface is still underway and at the
moment we provide several interfaces. First, we have
implemented a text-only interface for evaluation pur-
poses. This interface allows us to gather information
about user behaviors and requirements for converging
towards a graphical interface. This interface is also writ-
ten in C++ on top of VI components. We have also
implemented a Web-based portal to the VI so that users
can check on progress and perform simple data-mining
tasks on the final application output. In addition, we have
implemented a stand-alone Java-based GUI which is
being used as the base for the final VI GUI. At the
moment it implements the same functionality as the por-
tal. Finally, we have implemented a simulator in order to
evaluate our scheduling/steering strategies (see Section
3.3). The simulator is written with SIMGRID (Casanova,
2001; Legrand et al., 2003), a toolkit specially designed
for the study of application scheduling in distributed
computing systems, and has been integrated with the VI
software. This allows us to simulate a variety of user
behaviors and to test and validate the VI implementation
throughout development.

An alpha version of the VI software was released to a
limited number of MCell users/developers in February
2002 for evaluation. The software was subsequently
enhanced and hardened and demonstrated at the SC’02
conference. The demonstration involved a simulation
consisting of 11,360 MCell tasks and was executed on a
testbed aggregating diverse computing resources in Japan
and California (including batch-scheduled MPPs, batch-
scheduled clusters, interactive clusters, and individual
workstations). The simulation was launched and moni-
tored by a user on the conference floor in Baltimore,
Maryland. A beta version of the software was released to
MCell users in February 2003.

The software, information about installation, and further
details about the implementation can be found on the
project’s Webpage at http://grail.sdsc.edu/projects/vi\_itr.

4 Experiments

We have performed a large run of an MCell project on a
Grid platform over the course of several days. Note that
these experiments did not include any user steering as
our goal here is solely to verify and evaluate the VI soft-

ware design. The software supports steering and we refer
the reader to Faerman et al. (2002) for a discussion of
steering and scheduling.

4.1 THE MCELL SIMULATION

In this section we give background for and describe the
MCell simulation that we ran in our experiments. This
simulation is called r_disk and targets a synapse. A
synapse is a highly organized cellular structure that
forms at the narrow junction between two neurons (or
between a neuron and a muscle cell) in the nervous sys-
tem. Chemical communication occurs across this synap-
tic cleft through a process called synaptic transmission.
In synaptic transmission neurotransmitter molecules are
released through the membrane of an excited pre-synap-
tic neuron and activate specific neurotransmitter recep-
tor molecules on the membrane surface of a post-
synaptic cell. Receptor activation results in a transient
signaling event which might lead to excitation of the
post-synaptic cell.

The r_disk MCell simulation attempts to map the
parameter space of synaptic transmission for a canonical,
simple model of synaptic geometry and assumes acetyl-
choline (ACh) and acetycholine receptor (AChR) as the
neurotransmitter/receptor system. The synaptic geometry
includes infinite planes for the pre- and post-synaptic
membranes separated by a synaptic cleft distance fixed at
20 nm. There is a disk-shaped patch of receptors on the
post-synaptic membrane. A fixed number of 10,000 ACh
molecules are released from a point centered over the
receptor patch. In this model we explore a seven-dimen-
sional parameter space which includes the radius of the
receptor patch, the diffusion constant of ACh, and five
additional chemical kinetics parameters describing the var-
ious on rates, off rates, and conformation-change rates for
the reaction mechanism between ACh and AChR. The
overall computation time for this simulation amounts to
approximately 329 days of computation on a 1.5 GHz Pen-
tium III.

4.2 THE TESTBED

The testbed for our experiments consists of resources at
three sites: the Tokyo Institute of Technology (TITECH)
in Japan, the San Diego Supercomputer Center (SDSC)
and the Department of Computer Science and Engineering
(CSE), both at the University of California, San Diego
(UCSD). All resources run some version of the Linux
operating system. Table 1 summarizes overall characteris-
tics of the resources and how they are accessed. Two of the
sites, TITECH and CSE, provide interactive resources.
Resources at TITECH can be reserved via an e-mail reser-
vation system, and thus were not time-shared with other

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


11THE MCELL VIRTUAL INSTRUMENT

applications for our run. The resources at CSE were not
reserved and were thus time-shared with local user jobs.
The resources at SDSC are accessed via the Portable
Batch System (http://www.openpbs.com) batch queuing
system. In these runs, the VI software used four simulta-
neous submissions to the PBS queue, with requests for
4, 8, 16, and 32 processors. The Daemon and Database,
as well as the user, are located on one of the CSE
machines. At the end of the execution all synthesized
application output is available in the Database and all
intermediate application output is accessible in remote
storage.

4.3 RESULTS

Figure 3 depicts the cumulative amount of computation
performed with respect to time. We show a curve for the
total platform (Total) as well as a breakdown per site
(SDSC, TITECH, and CSE). Note that we do not plot the
cumulative number of tasks completed. Indeed, this
number is misleading as MCell tasks vary widely in com-
putational costs. For this simulation, the amount of com-
putation required varied by as much as a factor of 200
between MCell tasks. Instead, we ran an off-line bench-
mark of the MCell tasks involved in this simulation on
reference CPUs (identical nodes of the Presto-III cluster).
This allowed us to associate each task in the simulation
with a “relative computational cost” (i.e. the amount of
time the task requires on the reference CPU). This pro-
vides the basis for the cumulative computational cost
plotted on the y-axis of Figure 3. An alternate approach
would have been to use a performance model, but no
accurate performance model for MCell tasks was availa-
ble at the time of these experiments. In addition, the com-
putational cost estimates obtained via the benchmark
were used to estimate wallclock time requests passed to
the PBS batch system on the Meteor cluster.

We make three main observations on the data pre-
sented in Figure 3.

(i) All sites contribute to the computation. As
expected, the site contributing the most to the com-
putation is SDSC. Overall, SDSC contributed to
83% of the overall computation, TITECH to 13%,
and CSE to 4%. The entire simulation (which
amounts to approximately 329 days of computa-

tion on a 1.5 GHz Pentium III) was completed in a
little over 150 h.

(ii) All curves level off before the end of the execu-
tion, due to the typical “waiting for the last task”
syndrome. When scheduling a set of independent
tasks, it is generally a good idea to schedule long
tasks first (Hummel et al., 1996; Hagerup, 1997).
However, as discussed earlier, we do not have a
performance model for MCell tasks. In other
words, there is no way for the VI scheduler to
determine automatically which tasks will be long
(or short). As a result, it is likely that a number of
long tasks will be scheduled at the end of the exe-
cution, leading to the leveling of the curves in Fig-
ure 3. A possible approach would be to run the
aforementioned off-line benchmark and have the
scheduler use the benchmark timings to make
scheduling decisions. However, this is time- and
resource-consuming, and it would need to be done
for each new MCell project. More importantly,
note that in a real usage scenario the user would
continually steer the simulation and add new
tasks. Therefore, reducing the execution time of a

Table 1
Testbed for the experiments presented in Section 4.

Site CPUs Access

TITECH Presto-III cluster 20 dual-cpu Athlon, 1.59 GHz Ssh

SDSC Metor cluster 93 dual-cpu PIII, 730 MHz to 996 MHz PBS

CSE GRAIL workstations 12 Athlon and PIII, 200 MHz to 1.5 GHz 4 via Ssh, 8 via Globus

Fig. 3 Cumulative amount of computation performed
during the experimental run on all sites and per site.

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


12 COMPUTING APPLICATIONS

fixed number of tasks is not the focus of this work
(unlike that of our previous work (Casanova et al.,
2000a, 2000b). In this work we focus on overall
throughput and thus do not consider the “waiting
for the last task” problem to be significant.

(iii) The curve for SDSC exhibits more of a step pat-
tern than the curve for TITECH or CSE. This is
due to the use of the PBS batch system at SDSC;
MCell tasks are submitted in batches, each batch
spends time waiting in the queue, and thus tasks in
batches tend to return results in bursts. By contrast,
the TITECH resources are available in interactive
mode and thus complete tasks at a relatively steady
rate. This raises an interesting question regarding
the use of batch-scheduled resources for running
applications that consist of many independent,
small tasks, as well as for running interactive appli-
cations. How many simultaneous requests and
which request sizes should be sent to a batch-
scheduled resource? In the current VI software
these values can be fixed arbitrarily (as seen in Sec-
tion 4.2). We leave the investigation of how these
values should be chosen to maximize throughput as
future work.

Figure 4 plots the cumulative number of failures that
occurred during the entire execution for the SDSC and
CSE resources. We do not show a curve for the TITECH
site as no failure was experienced during this experiment
on TITECH resources. 60 failures occurred during the
run, meaning that on average the VI experienced approx-
imately 0.6 failures per hour. These failures were caused
by several factors, including actual resource downtimes,
network time-outs, and software failures (e.g. SSH dis-
connections). The VI software detects failures, attempts a
number of retries, and then marks resources as “failed”
for a fixed amount of time before attempting other
retries. Therefore, some of the failures plotted in Figure 4
correspond to several occurrences of a failure for a single
resource.

4.4 DISCUSSION

The experimental results obtained with the first VI
implementation provide convincing evidence the follow-
ing.

(i) The VI software is functional and makes it possi-
ble to support large MCell runs on large-scale Grid
testbeds. Furthermore, the software shields the
user from the logistics of application deployment
and provides the illusion of a desktop execution. 

(ii) The VI software design is effective. The use of an
out-of-core relational database for storing all

information pertaining to the resources and the
application proved to be scalable. In these experi-
ments and others that are not reported in this paper,
the use of the database was never a bottleneck and
scales with the size of the application and the plat-
form. In fact, the main bottleneck for application
deployment is the overhead for launching remote
computations on distant Grid resources.

(iii) The VI implementation is resilient to resource faults
and failures. Our experiments show that failures
occur in Grid environments at a non-negligible rate
and due to several causes. The VI software appro-
priately detects failures and attempts a number of
retries. This is critical for long-running applica-
tions such as MCell.

While a number of features and capabilities can be added
to the VI software, in particular to the user interface, it
provides sufficient functionality and robustness to enable
the new generation of MCell simulations. Furthermore,
all logistics of application deployment are hidden to the
user and application data are automatically managed on
behalf of the user. We conclude that the current version
of the software meets the goals outlined in Section 3.1.

5 Related Work

Our work is related to a number of large efforts that seek to
provide Grid application execution environments for sci-
entific simulations: GriPhyN (http://www.griphyn.org);
National Virtual Collaboratory for Earthquake Engineer-
ing Research (http://www.neesgrid.org); [47] Particle

Fig. 4 Cumulative number of failures during the
experimental run for SDSC and CSE.

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


13THE MCELL VIRTUAL INSTRUMENT

Physics Data Grid (http://www.ppdg.net). Related works
also include portal activities (Thomas et al., 2001;
Novotny, 2002) and the VI software could ultimately be
integrated as a user portal.

Computational steering has been an active field of
research and several projects have provided models, meth-
odologies, and software for steering scientific applications:
SCIRUN (Parker et al., 1998), VASE (Jablonowski et al.,
1993), Progress (Vetter and Schwan, 1995), Magellan
(Vetter and Schwan, 1997), CUMULVS (Geist et al.,
1997). One of the main challenges addressed in these
works is the notion of state consistency. Several techniques
from the area of distributed systems and fault-tolerance
have been used successfully to build high performance
consistent computational steering environments. Our work
is related to those efforts in that we provide computational
steering capabilities. However, given the structure of
MCell simulations, i.e. parallel searches with loose task
and data synchronization requirements, state consistency
is not a crucial issue. Therefore, our work focuses mostly
on performance issues and proposes a scheduling/steering
strategy based on task priorities for appropriate resource
sharing.

This work builds on our earlier work on the APST
(Casanova and Berman, 2003), which is related to
projects such as Nimrod (Abramson et al., 2000) or
ILAB (Yarrow et al., 2000). APST provides a generic
Grid application execution environment for Parameter
Sweep Applications. These applications consist of large
numbers of computational tasks that exhibit few or no
inter-dependences. This category of applications encom-
passes many methodologies such as Monte Carlo simu-
lations, parametric studies, and parameter searches,
and arises in many fields of science and engineering.
This work uses APST as a learning experience to pro-
vide a full-fledged execution environment customized
for MCell. APST addresses a few of the limitations
listed in Section 2.3 and is currently used for medium-
scale MCell parameter sweep runs. Neither APST,
Nimrod, nor ILAB provide capabilities for computa-
tional steering. 

6 Future Work and Conclusions

In this paper we have presented the VI project, which tar-
gets the deployment of large-scale, interactive MCell
simulations. MCell is a molecular biology simulator,
which has gained great popularity in the computational
neuroscience community. Although the current MCell
software provides basic capabilities to run simulations, it
does not enable interactive simulation, and leaves many
responsibilities to the user in terms of deployment,
scheduling, and data management. These limitations pre-
clude the use of MCell for large-scale executions, espe-

cially on the Grid platform. The goal of the VI project is
to provide an integrated Grid execution environment for
MCell that offers interactive computational steering
capabilities. We have described contributions of our Grid
software development effort and have given a brief
account of our work in the area of application scheduling.
We have then described the VI software in detail and pre-
sented validation experiments conducted for a real-world
MCell application on a multi-site Grid testbed. These
results are conclusive as they show that the VI software
is functional and the design scalable.

Many future directions are currently being explored in
this project. A beta version of the VI software was
recently released to MCell users. Our ultimate goal is to
deploy the software in a production environment: (i) to
further validate our implementation; (ii) to log informa-
tion about usage and learn about user behaviors; (iii) to
enable new disciplinary results. Ultimately, the Virtual
Instrument will have a large and quantifiable impact on
the MCell community. It will lead to new scientific
advances that would not be possible without the Grid
platform and without our fully integrated software envi-
ronment.

ACKNOWLEDGMENTS

The authors wish to acknowledge the San Diego Super-
computer Center and the Matsuoka Laboratory at the
Tokyo Institute of Technology for providing computa-
tional resources that made this work possible. This work
was supported by the National Science Foundation under
Award ACI-0086092.

BIOGRAPHIES

Dr. Henri Casanova is an adjunct Professor of Com-
puter Science and Engineering at the University of Cali-
fornia, San Diego, a Research Scientist at the San Diego
Supercomputer Center, and the founder and director of
the Grid Research And Development Laboratory
(GRAIL) at UCSD. His research interests are in the area
of parallel, distributed, Grid, and Internet computing with
emphases on modeling, scheduling, and simulation. Dr.
Casanova obtained his B.S. from the Ecole Nationale
Supérieure d’Electronique, d’Electrotechnique, d’Infor-
matique et d’Hydraulique de Toulouse, France in 1993,
his M.S. from the Université Paul Sabatier, Toulouse,
France in 1994, and his Ph.D. from the University of
Tennessee, Knoxville in 1998.

Thomas M. Bartol, Jr. is a senior research associate in
the Computational Neurobiology Laboratory at the Salk
Institute for Biological Studies. He received his Ph.D. in
cellular and molecular neurobiology from Cornell Uni-

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


14 COMPUTING APPLICATIONS

versity in the laboratory of Dr. Miriam Salpeter using
electrophysiology and computational techniques to study
neuromuscular synaptic transmission. His thesis studies
laid the stepping stones that led to the creation of MCell,
a general Monte Carlo simulator of cellular microphysi-
ology, which he coauthored with Joel Stiles. He has pub-
lished research articles and book chapters and has
presented several tutorial workshops on MCell and its
use in the study of synaptic transmission and cellular
physiology. His current research centers on the further
development of large-scale, realistic computer simulation
methods to study pre- and post-synaptic components of
synaptic transmission and synaptic plasticity.

Dr. Francine Berman is Director of the San Diego
Supercomputer Center and the National Partnership for
Advanced Computational Infrastructure, ACM Fellow,
Professor of Computer Science and Engineering at the
University of California, San Diego, and founder of the
UCSD Grid Laboratory. Over the last two decades, her
research has focused on the development of software,
tools and models for Parallel and more recently Grid
Computing environments. Dr. Berman has served on
numerous program committees, advisory boards and
steering committees and currently serves as one of the
two Principal Investigators for NSF’s TeraGrid project
and as co-PI on the Extensible Terascale Facility (ETF)
project. Dr. Berman obtained her B.A. from the Univer-
sity of California, Los Angeles in 1973, her M.S from the
University of Washington, 1976, and her Ph.D. from the
University of Washington in 1979.

Adam Birnbaum is the Grid Applications Lead at San
Diego Supercomputer Center, University of California,
San Diego. He served as a research programmer at
GRAIL, UCSD during the research reported here. In pre-
vious work, Mr. Birnbaum has worked as a software
developer and manager in a variety of startup companies,
including Critical Concepts, Eight Cylinder Studios, and
On2.com. Mr. Birnbaum obtained an A.B. from Harvard
College in 1990, and an M.A. in Physics from SUNY
Stony Brook in 1992.

Jack Dongarra received a Bachelor of Science in
Mathematics from Chicago State University in 1972 and
a Master of Science in Computer Science from the Illi-
nois Institute of Technology in 1973. He received his
Ph.D. in Applied Mathematics from the University of
New Mexico in 1980. He worked at the Argonne
National Laboratory until 1989, becoming a senior scien-
tist. He now holds an appointment as University Distin-
guished Professor of Computer Science in the Computer
Science Department at the University of Tennessee and
is an Distinguished R&D Participant in the Computer

Science and Mathematics Division at Oak Ridge
National Laboratory (ORNL), and an Adjunct Professor
in the Computer Science Department at Rice University.
He specializes in numerical algorithms in linear algebra,
parallel computing, use of advanced-computer architec-
tures, programming methodology, and tools for parallel
computers. He is a Fellow of the AAAS, ACM, and the
IEEE and a member of the National Academy of Engi-
neering.

Mark H. Ellisman is a professor of Neuroscience and
Bioengineering and the Director of the Center for
Research in Biological Structure at UCSD. Prof. Ellisman
directs the National Center for Microscopy and Imaging
Research (NCMIR), an internationally acclaimed technol-
ogy development center and research resource estab-
lished by the National Institute of Health (NIH). He has
received numerous awards including a Jacob Javits
award from the NIH and the Creativity Award from the
National Science Foundation, and he is a Founding Fel-
low of the American Institute of Biomedical Engineer-
ing. His scientific contributions include work on basic
molecular and cellular mechanisms of the nervous sys-
tem and development of advanced technologies in micro-
scopy and computational biology. He is a pioneer in the
development of three-dimensional light and electron
microscopy and combined application of these image
acquisition tools and computational technologies to
achieve greater understanding of the structure and func-
tion of the nervous system. His group was the first to
introduce the idea of “Telemicroscopy” by demonstrat-
ing the network-enabled remote use and sharing of a
high-energy electron microscope in 1992 and then devel-
oped practical systems now in use by researchers in the
US and abroad.

Dr. Marcio Faerman is a researcher at the San Diego
Supercomputer Center and was recently a member of
GRAIL at UCSD. His research interests include dis-
tributed data intensive computing, grid computing,
application-level scheduling, computer networks, and
performance modeling and prediction. Dr. Faerman
obtained his B.S. in 1993, his M.S in 1995 in Electrical
Engineering from Universidade Federal do Rio de
Janeiro and his Ph.D. in Computer Science from UCSD
in 2003.

Erhan Gokcay received his B.S. and M.S. in Electrical
and Electronic Engineering from the Middle East Techni-
cal University in Ankara, Turkey, in 1986 and 1991
respectively, and his Ph.D. in Computer Science and
Engineering from the University of Florida, Gainesville
in 2000. He worked as an application programmer for
ASELSAN Military Electronics and Telecommunica-

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


15THE MCELL VIRTUAL INSTRUMENT

tions Company, in Ankara, Turkey, and as a system pro-
grammer in STFA Enercom Computer Center, in Ankara,
Turkey, from 1986 to 1990. He worked as a technical
manager at Tulip Computers in Ankara, Turkey, until
1991. He worked as a network administrator and hard-
ware supervisor in Bilkent University, in Ankara, Tur-
key, from 1991 to 1993. Currently, he is working as a
system manager at the UCSD Swartz Center and as a sci-
entific programmer at the Salk Institute, in San Diego,
California.

Michelle Miller received a B.S. in Anthropology in
1984 and an M.E. in Computer Science in 1998 from the
University of Utah. She worked in the Innovative Com-
puting Laboratory at the University of Tennessee from
1999 until 2003 as a research programmer. She currently
works at the National Optical Astronomy Observatory
designing and developing software to process and man-
age astronomical data. Her research interests include
high performance distributed computing, scientific com-
puting, operating systems, component-based software
system construction and software fault tolerance.

Graziano Obertelli received his Laurea degree from
the Dipartimento di Scienze dell’informazione at the
Università di Milano. He is currently a research program-
mer in the Department of Computer Science at Univer-
sity of California, Santa Barbara. his research interests
are in the area of Grid computing.

Stuart M. Pomerantz received a B.A. in English and
B.A. in Psychology from Penn State University in 1990
and a B.S. in Mathematics from the University of Pitts-
burgh in 1995. From 1995 to 2000 he worked as a Sys-
tems Analyst at the University of Pittsburgh Department
of Mathematics operating the departmental computing
facilities. In 2000 he received an M.S. in Information
Science from the University of Pittsburgh. He joined the
Pittsburgh Supercomputing Center in December 2000 as
a Research Programmer applying his expertise in graph-
ics programming and software design to the Visible
Human and MCell projects.

Terrence Sejnowski is an Investigator with the Howard
Hughes Medical Institute, a Professor at the Salk Institute
for Biological Studies, where he directs the Computa-
tional Neurobiology Laboratory, and a Professor of Biol-
ogy at UCSD, where he is Director of the Institute for
Neural Computation. He founded Neural Computation,
the leading journal in neural networks and computational
neuroscience, and is also the President of the Neural
Information Processing Systems Foundation, which
oversees the annual NIPS Conference.

Joel R. Stiles, M.D., Ph.D. (University of Kansas) is
Associate Professor in the Mellon College of Science and
Pittsburgh Supercomputing Center at Carnegie Mellon
University. He also holds adjunct faculty positions at the
University of Pittsburgh in the Department of Neuro-
science and Center for Computational Biology and Bio-
informatics. His research interests focus primarily on
quantitative modeling of synaptic transmission, with a
particular emphasis on neuromuscular transmission and
pathology. More generally, his interests include Monte
Carlo and hybrid simulation approaches to 3D reaction–
diffusion problems, multiscale modeling, surface and
volume meshing for subcellular and cellular reconstruc-
tions, and large-scale 2D and stereoscopic rendering
technology. He is one of the original co-authors of
MCell, a Monte Carlo simulator of cellular microphysiol-
ogy, and is also the principal author of DReAMM
(Design, Render, and Animate MCell Models).

Rich Wolski is an assistant professor of Computer Sci-
ence at the University of California, Santa Barbara. His
research interests include Grid computing, distributed
computing, scheduling, and resource allocation. In addi-
tion to AppLeS, he leads the Network Weather Service
project which focuses on on-line prediction of resource
performance. He has developed EveryWare, a set of tools
for portable Grid programming. He is also leading the G-
commerce project studying computational economies for
the Grid. He received his B.S. in Computer Science from
the California Polytechnic State University at San Luis
Obispo, and his M.S. and Ph.D. degrees from the Univer-
sity of California Davis, LLNL campus.

REFERENCES

Abramson, J., Giddy, D., and Kotler, L. May 2000. High per-
formance parametric modeling with Nimrod/G: Killer
application for the global Grid? In Proceedings of the
International Parallel and Distributed Processing Sympo-
sium (IPDPS), Cancun, Mexico, pp. 520–528.

Allen, G., Shalf, J., Benger, W., Dramlitsch, T., Goodale, T.,
Hege, H.-C., Lanfermann, G., Merzky, A., Radke, T., and
Seidel, E. 2001. Cactus tools for Grid applications. Clus-
ter Computing 4(3):179–188.

Anglister, L., Stiles, J. R., and Salpeter, M. M. 1994. Acetyl-
cholinesterase density and turnover number at frog neu-
romuscular junctions, with modeling of their role in
synaptic function. Neuron 12:783–794.

Bartol, T. M., Land, B. R., Salpeter, E. E., and Salpeter, M. M.
1991. Monte Carlo simulation of miniature endplate cur-
rent generation in the vertebrate neuromuscular junction.
Biophysical Journal 59(6):1290–1307.

Basney, J. and Livny, M. 1999. Deploying a high throughput
computing cluster. In High Performance Cluster Comput-
ing, Vol. 1, Chap. 5, Prentice Hall, Englewood Cliffs, NJ.

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


16 COMPUTING APPLICATIONS

Berman, F. 1998. The Grid, Blueprint for a New computing
Infrastructure, I. Foster and C. Kesselman, editors, Chap.
12. Morgan Kaufmann Publishers, San Mateo, CA.

Berman, F., Wolski, R., Figueira, S., Schopf, J., and Shao, G.
1996. Application-level scheduling on distributed hetero-
geneous networks. In Proceedings of SC’96, Pittsburgh,
PA.

Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I.,
Dennis Gannon, L. J., Kennedy, K., Kesselman, C., Reed,
D., Torczon, L., and Wolski, R. 2001. The GrADS
project: Software support for high-level grid application
development. International Journal of High Performance
Computing Applications 15(4):327–344.

Beynon, M., Kurc, T., Catalyurek, U., Chang, C., Sussman, A.,
and Saltz, J. 2001. Distributed processing of very large
datasets with datacutter. Parallel Computing 27(11):1457–
1478.

Braun, R., Siegel, H., Beck, N., Boloni, L., Maheswaran, M.,
Reuther, A., Robertson, J., Theys, M., Yao, B., Hensgen,
D., and Freund, R. April 1999. A comparison study of
static mapping heuristics for a class of meta-tasks on het-
erogeneous computing systems. In Proceedings of the 8th
Heterogeneous Computing Workshop (HCW’99), San
Juan, Porto Rico, pp. 15–29.

Casanova, H. May 2001. Simgrid: a toolkit for the simulation of
application scheduling. In Proceedings of the IEEE Inter-
national Symposium on Cluster Computing and the Grid
(CCGrid’01), Brisbane, Australia, pp. 430–437.

Casanova, H. and Berman, F. 2003. Parameter sweeps on the
Grid with APST. In Grid Computing: Making the Global
Infrastructure a Reality, Chap. 33, Wiley, New York.

Casanova, H. and Dongarra, J. 1997. NetSolve: a network
server for solving computational science problems. Inter-
national Journal of Supercomputer Applications and High
Performance Computing 11(3):212–223.

Casanova, H., Legrand, A., Zagorodnov, D., and Berman, F.
May 2000a. Heuristics for scheduling parameter sweep
applications in grid environments. In Proceedings of the
9th Heterogeneous Computing Workshop (HCW’00), Can-
cun, Mexico, pp. 349–363.

Casanova, H., Obertelli, G., Berman, H., and Wolski, R.
November 2000b. The AppLeS parameter sweep tem-
plate: user-level middleware for the Grid. In Proceedings
of SC’00, Dallas, TX.

Casanova, H., Bartol, T., Stiles, J., and Berman, F. 2001. Dis-
tributing MCell simulations on the Grid. International
Journal of High Performance Computing Applications
14(3):243–257.

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., and
Tuecke, S. 2000. The data Grid: towards an architecture
for the distributed management and analysis of large sci-
entific datasets. Journal of Network and Computer Appli-
cations 23(3):187–200.

Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin,
S., Smith, W., and Tuecke, S. 1998. A resource manage-
ment architecture for metacomputing systems. In Pro-
ceedings of IPPS/SPDP’98 Workshop on Job Scheduling
Strategies for Parallel Processing, Orlando, FL.

Czajkowski, C., Fitzgerald, S., Foster, I., and Kesselman, C.
August 2001. Grid information services for distributed

resource sharing. In Proceedings of the 10th IEEE Sympo-
sium on High-Performance Distributed Computing, San
Francisco, CA.

Egelman, D. and Montague, P. 1998. Computational properties
of peri-dendritic calcium fluctuations. Journal of Neuro-
science 18(21):8580–8589.

Egelman, D., King, R., and Montague, P. 1998. Interaction of
nitric oxide and external calcium fluctuations: a possible
mechanism for rapid information retrieval. Progress in
Brain Research 118:199–211.

Faerman, M., Birnbaum, A., Casanova, H., and Berman, F.
November 2002. Resource allocation for steerable parallel
parameter searches. In Proceedings of the Grid Comput-
ing Workshop, Baltimore, MD, pp. 157–169.

Foster, I. and Kesselman, C., editors. 1998. The Grid: Blueprint
for a New Computing Infrastructure, Morgan Kaufmann
Publishers, San Francisco, CA.

Foster, I. and Kesselman, C. 1999. Globus: A toolkit-based
Grid architecture. In The Grid: Blueprint for a New Com-
puting Infrastructure, Morgan Kaufmann Publishers, San
Francisco, CA, pp. 259–278.

Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. 1998. A
security architecture for computational grids. In Proceed-
ings of the 5th ACM Conference on Computer and Com-
munications Security, San Francisco, CA, pp. 83–92.

Foster, I., Kesselman, C., and Tuecke, S. 2001. The anatomy of
the Grid: enabling scalable virtual organizations. Interna-
tional Journal of High Performance Computing Applica-
tions 15(3):200–222.

Foster, I., Kesselman, J., Nick, J., and Tuecke, S. June 2002.
The physiology of the Grid: an open grid services archi-
tecture for distributed systems integration. Open Grid
Service Infrastructure WG, Global Grid Forum.

Geist, G., Kohl, J., and Papadopoulos, P. 1997. CUMULVS:
providing fault tolerance, visualization, and steering of
parallel applications. International Journal of Supercom-
puter Applications and High Performance Computing
11(3):224–235.

Gieger, J., Roth, A., Taskin, B., and Jonas, P. 1999. Glutamate-
mediated synaptic excitation of cortical interneruons. In
Handbook of Experimental Pharmacology, Retinoids, Iono-
tropic glutamate receptors in the CNS, Vol. 141, P. Jonas and
H. Moyner, editors, Springer-Verlag, Berlin, pp. 363–398.

Hagerup, T. 1997. Allocating independent tasks to parallel
processors: an experimental study. Journal of Parallel
and Distributed Computing 47:185–197.

Hummel, S. F., Schmidt, J., Uma, R. N., and Wein, J. June
1996. Load-sharing in heterogeneous systems via weighted
factoring. In Proceedings of the 8th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, Padua,
Italy, pp. 318–328.

IBM Corporation. 1993. IBM LoadLeveler User’s Guide.
Jablonowski, D., Bruner, J., Bliss, B., and Haber, R. 1993.

VASE: the visualization and application steering environ-
ment. In Proceedings of Supercomputing 1993, Portland,
OR, pp. 560–569.

Karonis, N., Toonen, B., and Foster, I. 2003. MPICH-G2: a
grid-enabled implementation of the message passing
interface. Journal of Parallel and Distributed Computing
63(5):551–563.

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


17THE MCELL VIRTUAL INSTRUMENT

Legrand, A., Marchal, L., and Casanova, H. May 2003.
Scheduling distributed applications: the SimGrid simula-
tion framework. In Proceedings of the 3rd IEEE Interna-
tional Symposium on Cluster Computing and the Grid
(CCGrid’03), Tokyo, Japan.

Nakada, H., Matsuoka, S., Seymour, K., Dongarra, J., Lee, C.,
and Casanova, H. November 2002. An overview of Grid-
RPC: a remote procedure call API for Grid computing. In
Proceedings of the Grid Computing Workshop, Baltimore,
MD, pp. 274–279.

Novotny, J. 2002. The Grid portal development kit. Concur-
rency and Computation: Practice and Experience 14(13–
15):1129–1144.

Parker, S., Miller, M., Hansen, C., and Johnson, C. January
1998. An integrated problem solving environment: the
SCIRun computational steering system. In Proceedings of
the 31st Hawaii International Conference on System Sci-
ences (HICSS-31), Kohala Coast, Hawaii, Vol. VII, pp.
147–156.

Rao-Mirotznik, R., Buchsbaum, G., and Sterling, P. 1998.
Transmitter concentration at a three-dimensional synapse.
Journal of Neurophysiology 80(6):3163–3172.

Salpeter, M. M., editor. 1987. The Vertebrate Neuromuscular
Junction, Alan R. Liss, New York, pages 1–54.

Stiles, J. R. and Bartol, T. M. 2001. Monte Carlo methods for
simulating realistic synaptic microphysiology using MCell.
In Computational Neuroscience: Realistic Modeling for
Experimentalists, E. DeSchutter, editor, CRC Press, Boca
Raton, FL.

Stiles, J. R., Van Helden, D., Bartol, T. M., Salpeter, E. E., and
Salpeter, M. M. 1996. Miniature endplate current rise
times < 100 µs from improved dual recordings can be
modeled with passive acetylcholine diffusion from a syn-
aptic vesicle. In Proceedings of the National Academy of
Sciences USA 93:5747–5752.

Stiles, J. R., Bartol, T. M., Salpeter, E. E., and Salpeter, M. M.
1998. Monte Carlo simulation of neurotransmitter release
using MCell, a general simulator of cellular physiological
processes. In Computational Neuroscience, J. M. Bower,
editor, Plenum Press, New York, pp. 279–284.

Stiles, J. R., Kovyazina, I. V., Salpeter, E. E., and Salpeter, M.
M. 1999. The temperature sensitivity of miniature end-

plate currents is mostly governed by channel gating: evi-
dence from optimized recordings and Monte Carlo
simulations. Biophysical Journal 77:1177–1187.

Stiles, J. R., Bartol, T. M., Salpeter, M. M., Salpeter, E. E., and
Sejnowski, T. J. 2001. Synaptic variability: new insights
from reconstructions and Monte Carlo simulations with
MCell. In Synapses, W. M. Cowan, T. C. Südhof, and C.
F. Stevens, editors, Johns Hopkins University Press, Balti-
more, MD, pp. 681–731.

Suzumura, T., Nakada, H., Saito, M., Matsuoka, S., Tanaka, Y.,
and Sekiguchi, S. November 2002. The Ninf portal: an
automatic generation tool for the grid portals. In Proceed-
ings of Java Grande, Seattle, WA, pp. 1–7.

Thomas, M., Mock, S., Boisseau, J., Dahan, M., Mueller, K.,
and Sutton, S. August 2001. The GridPort toolkit architec-
ture for building grid portals. In Proceedings of the 10th
IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-10), San Francisco, CA.

Ullman, J. 1975. NP-complete scheduling problems. Journal of
Computer and System Sciences 10:434–439.

van Nieuwpoort, R., Kielmann, T., and Bal, H. June 2001. Effi-
cient load balancing for wide-area divide-and-conquer
applications. In Proceedings of the 8th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’01), Snowbird, UT, pp. 34–43.

Vetter, J. and Schwan, K. 1995. PROGRESS: a toolkit for inter-
active program steering. In Proceedings of the 1995 Inter-
national Conference on Parallel Processing, Urbana-
Champaign, IL, pp. 139–149.

Vetter, J. and Schwan, K. 1997. High performance computa-
tional steering of physical simulations. In Proceedings of
IPPS’97, Geneva, Switzerland, pp. 128–132.

Wolski, R. August 1997. Dynamically forecasting network per-
formance using the network weather service. In 6th High
Performance Distributed Computing Conference, Port-
land, OR, pp. 316–325.

Yarrow, M., McCann, K., Biswas, R., and Van der Wijngaart,
R. December 2000. An advanced user interface approach
for complex parameter study process specification on the
information power Grid. In GRID 2000, Bangalore, India.

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/

