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3THE MCELL VIRTUAL INSTRUMENT
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Abstract

Ensembles of widely distributed, heterogeneous resources,
or Grids, have emerged as popular platforms for large-
scale scientific applications. In this paper we present the
Virtual Instrument project, which provides an integrated
application execution environment that enables end-users
to run and interact with running scientific simulations on
Grids. This work is performed in the specific context of
MCell, a computational biology application. While MCell
provides the basis for running simulations, its capabilities
are currently limited in terms of scale, ease-of-use, and
interactivity. These limitations preclude usage scenarios
that are critical for scientific advances. Our goal is to cre-
ate a scientific “Virtual Instrument” from MCell by allowing
its users to transparently access Grid resources while
being able to steer running simulations. In this paper, we
motivate the Virtual Instrument project and discuss a
number of relevant issues and accomplishments in the
area of Grid software development and application sched-
uling. We then describe our software design and report on
the current implementation. We verify and evaluate our
design via experiments with MCell on a real-world Grid
testbed.

Key words: grid computing, computational neuroscience

1 Introduction

Grids (Foster and Kesselman, 1998; Foster et al., 2001)
are large collections of resources (computational devices,
networks, on-line instruments, storage archives, etc.) dis-
tributed over the wide-area; these have enormous aggre-
gate potential and have become popular platforms for
running large-scale, resource-intensive applications.
Many challenges are to be addressed in order to provide
the necessary mechanisms for discovering, accessing,
monitoring, and aggregating Grid resources. Conse-
quently, a large effort has been made and is still under-
way to provide middleware technology as a base Grid
software infrastructure (Foster and Kesselman, 1999;
Foster et al., 2001, 2002). However, although middle-
ware provides fundamental building blocks it is not
designed to be used directly by Grid users. Instead, Grid
application-level tools must be provided with the goal of
both building new and higher-level functionality on top
of base Grid services, as well as hiding the complexity of
the Grid from the end-user. One approach is to provide
programming models that implement high-level abstrac-
tions for building Grid applications (Benyon et al., 2001;
van Nieuwpoort et al., 2001; Nakada et al., 2002;
Karonis et al., 2003), or even general purpose Grid appli-
cation development environments (Berman et al., 2001).
Another approach is to implement execution environ-
ments in which a user can “drop” his/her application for
Grid execution while maintaining the convenience and
the illusion of a desktop execution. Such environments
include Grid portals, which have been implemented suc-
cessfully for many scientific applications and provide
users with a familiar Web browser interface to launch and
monitors application runs on Grid resources: for instant the
GAMESS portal, https://gridport.npaci.edu/GAMESS/,
and the Telescience portal, https://gridport.npaci.edu/Tel-
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4 COMPUTING APPLICATIONS

escience/ (Allen et al., 2001). As a result, several efforts
have provided toolkits to help in the development of Grid
portals; see Thomas et al. (2001), Novotny (2002), Suzu-
mura et al. (2002) and the Grid Portal Collaboration (http://
www.ipg.nasa.gov). Another solution is to build integrated
software environments targeted to specific applications or
classes of applications. The work described in this paper
belongs in this last category; our ultimate goal is to build
software that makes an application behave as a scientific
Virtual Instrument (VI) that the user can easily configure,
observe, and dynamically control. We note that our work
could be integrated as part of a Grid portal with minimal
effort.

This work is performed in the specific context of the
MCell application; see the MCell webpages at the Pitts-
burgh Supercomputer Center, http://www.mcell.psc.edu,
and at the Salk Institute, http://www.mcell.cnl.salk.edu
(Stiles et al., 1996, 1998). MCell is a computational biol-
ogy simulation framework that is used by neuroscientists
to study diffusion and chemical reactions of molecules in
living organisms. A single execution instance of MCell
consists of multiple simulations, each producing output
that is then analyzed by neuroscientists en masse.
Although MCell provides the core functionality for run-
ning simulations, its capabilities are currently limited in
terms of scale, ease of use, and interactivity. For exam-
ple, scientists often observe interesting phenomena that
emerge in the middle of an MCell run. If MCell could be
redirected to concentrate on these phenomena while exe-
cuting, a great deal of time could be saved. This and
other limitations preclude usage scenarios that are critical
for scientific advances. The goal of the VI project is to
alleviate most of the limitations of MCell usage and to
provide an integrated Grid application execution environ-
ment for MCell users. This environment should provide
transparency for access to the Grid as well as computa-
tional steering capabilities.

In this paper we describe our accomplishments in
terms of software design and development for the Grid.
This development primarily entails the realization of the
VI software, a complete run-time system that supports
steerable MCell executions. We present experimental
results obtained when running the application on a Grid
testbed and draw conclusions about the effectiveness of
the VI implementation and design.

This paper is organized as follows. In Section 2 we
introduce MCell and highlight specific limitations of its
current usage scenarios. In Section 3 we motivate the VI
project, highlight issues of application scheduling and
Grid software development, and describe the VI software
design and implementation, which we verify experimen-
tally and discuss in Section 4. Section 5 discusses related
work and Section 6 concludes the paper with future
directions.

2 Molecular Biology Simulations with 
MCell

2.1 MCELL OVERVIEW

MCell (see the MCell webpages at the Pittsburgh Super-
computer Center, http://www.mcell.psc.edu, and at the
Salk Institute, http://www.mcell.cnl.salk.edu; Stiles et al.,
1996, 1998) uses Monte Carlo algorithms to simulate
simultaneous diffusion and chemical reactions of mole-
cules in complex three-dimensional (3D) spaces. Highly
realistic reconstructions of cellular or subcellular bounda-
ries can be used to define 3D diffusion spaces, which can
then be populated with different molecules (Stiles et al.,
2001). Such molecules might react with others that are
released periodically from different locations within the
structure, to simulate the production of biological signals.
The diffusing molecules move according to a 3D random
walk based on a Brownian motion model. Possible reaction
events, such as binding and unbinding, are tested on a mol-
ecule-by-molecule basis using random numbers and Monte
Carlo probability values. The advantages and significance
of this approach are detailed in Stiles and Bartol (2001).

In essence, computational modeling with MCell encom-
passes four steps, each of which can require considerable
computing resources.

(i) Surface design or reconstruction. In simple
cases, a set of planes might be used to define dif-
fusion boundaries. In complex cases, cell mem-
branes can be reconstructed as tessellated meshes
from electron microscope data, and may contain
on the order of 106 triangles.

(ii) Model visualization and design. Different types
of molecules must be added to the surfaces and
spaces according to realistic biological distribu-
tions and densities. The total number of molecules
is highly variable but can easily reach or exceed
106 even for a surface area or reaction volume
much smaller than a single cell.

(iii) Simulation. This step involves repeatedly run-
ning MCell with varied input parameters and
Monte Carlo random number streams. The total
number of such runs can range from 102 to 105

and beyond. We detail relevant usage scenarios
for this step in the next section.

(iv) Visualization and analysis of results. In the sim-
plest case this might require two-dimensional (2D)
plotting of one output parameter as a function of
time. In the more typical case, some combination
of 2D plotting and 3D imaging and/or animation is
required to visualize the simulation’s output.

At present, all simulation objects and run-time conditions
are specified using a high-level model description lan-

 at UNIV OF TENNESSEE KNOXVILLE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


5THE MCELL VIRTUAL INSTRUMENT

guage (MDL) designed for readability by scientists.
When a simulation is run, one or more MDL input files
are parsed to create the simulation objects, and then exe-
cution begins for a specified number of time-step itera-
tions. MCell is highly optimized for speed and for
memory usage. This makes it possible to run individual
simulations of complex structures on single processors
rather than using parallel architectures.

So far, MCell simulations have been used to study syn-
apses, structures used by nerve cells to communicate
with themselves and other cells. MCell (and its predeces-
sors) originally focused on the popular vertebrate neu-
romuscular junction, the synapse between a nerve cell
and a muscle cell (Salpeter, 1987; Stiles et al., 2001).
MCell’s Monte Carlo simulations have been successfully
employed to obtain a variety of new results (Bartol et al.,
1991; Anglister et al., 1994; Stiles et al., 1996, 1998,
1999, 2001). In addition, MCell has been in limited
release (see the MCell webpages at the Pittsburgh Super-
computer Center, http://www.mcell.psc.edu, and at the
Salk Institute, http://www.mcell.cnl.salk.edu) to a world-
wide group (~25) of Neuroscience and other research
laboratories since 1997 (Egelman and Montague, 1998;
Egelman et al., 1998; Rao-Mirotznik et al., 1998; Gieger
et al., 1999). MCell is currently the object of many devel-
opment efforts and current simulations are allowing sci-
entists to explore new areas of cellular physiology.

2.2 MCELL USAGE SCENARIOS

Since MCell models are now approaching the level of
structural and biochemical complexity present in living
cells, the models typically contain numerous input
parameters that can be varied independently. Conse-
quently, simulations can span an enormous range of com-
putational and data requirements. We detail here three
relevant usage scenarios. We give orders of magnitude
for the aggregate simulation CPU time assuming a single
2.0 GHz Pentium processor.

(A) “Look & See”. A small number of MCell runs are
used to determine the predicted behavior of the
modeled system under limited input conditions;
between one hour and several days of CPU time
are required.

(B) Parameter Fitting. Tens to thousands of runs
may be required to identify input parameter val-
ues which produce model output that matches
given criteria such as experimental measure-
ments; several weeks of CPU time.

(C) Parameter Sweep. The scale of individual simu-
lations is similar to that for the parameter fitting
scenario, but many thousands of runs are required
to map a region of the input parameter space; any-

where from one month of CPU time to several
years or decades.

Even though (A) has been the most common scenario in
the early stages of the MCell project, it is increasingly
being replaced/complemented by scenarios (B) and (C).
These last two scenarios require a tremendous amount of
compute and storage resources. For (B), the user gener-
ally navigates toward a “best fit” by iterative parameter
adjustments made according to some potentially ad hoc
heuristics. Thus, a high degree of interactivity between
the user and the computing resources is desirable to max-
imize productivity. Scenario (C) does not require interac-
tivity as the user has already identified an “interesting”
region of the parameter space to explore, perhaps via sce-
nario (B). In Casanova et al. (2001), we gave an example
of a small-scale simulation for (C), which required
approximately three months of aggregate CPU time and
and generated 94 GB of raw output, which were then
reduced to 600 KB of synthesized output. Note that in all
scenarios the CPU time of individual simulations can
vary by several orders of magnitude solely depending on
input parameter values.

2.3 CURRENT LIMITATIONS

Currently, MCell imposes severe limitations on the usage
scenarios described in the previous section. Ideally, users
would have access to integrated software which guides
them through the four steps identified in Section 2.1 and
which enables all three usage scenarios on large-scale
distributed computing environments.

In its current incarnation, MCell consists of a single
executable which takes MDL files as input. The user is
responsible for creating these files and for managing
each MCell “project” in an ad hoc fashion. The user is
entirely responsible for running the individual simula-
tions and collecting the output. This involves labor-inten-
sive activities such as resource selection, remote process
creation/monitoring, fault-detection and restart, or appli-
cation data movements. These tasks are generally per-
formed via a set of ad hoc scripts. In scenarios (B) and
(C), this proves to be infeasible for most users given the
desired scale of the simulations. In addition, there is no
support for interactive simulation as required in scenario
(B).

The MCell executable generally produces one or more
output files. Users are responsible for averaging, post-
processing, visualizing, and analyzing output files. In
scenarios (B) or (C), this amounts to manipulating and
mining large datasets, again in an ad hoc fashion. MCell
users typically employ the file system as a database for
application data, which does not scale and cannot support
scenarios (B) or (C) adequately. Generally, OpenDX
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6 COMPUTING APPLICATIONS

(http://www.opendx.org) is used for most rendering and
visualization tasks.

Our earlier work on the AppLeS Parameter Sweep
Template (APST; Casanova and Berman, 2003) provides
limited support for (C) in terms of running MCell simula-
tion on Grid resources. It is a clear improvement over the
traditional usage described above. However, since APST is
general purpose, it fails to address most of the MCell-spe-
cific limitations listed above. As scenarios (B) and (C) are
the future of MCell simulations for new scientific discov-
eries, it is critical to provide corresponding comprehensive
software support. This is the overall goal of the VI project.

3 The Virtual Instrument

In this section we describe the VI project in terms of spe-
cific goals, relevant research issues, and software.

3.1 GOALS

The main motivation behind the VI software develop-
ment effort is to address the limitations highlighted in
Section 2.3. More specifically, this is accomplished by
providing the following capabilities.

Framework for MCell project development The VI must
provide a framework in which MCell users can easily
specify individual “projects” in terms of input parameters,
initial ranges for those parameters, number of repeats for
Monte Carlo averaging, nature of output files, and nature
of output post-processing steps (see Section 3.2 for a
detailed description of MCell projects). The only compo-
nent of an MCell simulation that cannot be automatically
created is the core MDL code as it embodies the user’s
conceptual model. The VI must provide a framework for
users to plug in their core MDL code and be freed of all
other responsibilities. This framework can easily be
embedded as part of a user interface. Finally, the VI should
handle all application data management issues. This can be
done, for instance, with a relational database.

User interface At the moment, MCell does not provide
any user interface to facilitate MCell project instantiation
and management. The VI should provide a graphical
interface for users to create MCell projects within the
framework described above. In addition, that interface
should be able to invoke data visualization and rendering
capabilities provided by tools like OpenDX (http://
www.opendx.org). A full-fledged user interface for
MCell is an intensive development project and is not our
focus here. Instead, we aim at providing a simple inter-
face that will allow us to explore computer science
research issues involved when running large-scale dis-
tributed MCell simulations in scenarios (B) and (C).

Transparent deployment The VI should handle the logis-
tics of application deployment on behalf of the user. This
includes resource discovery, authentication/authorization,
remote job creation/control, application data movements,
fault-detection and recovery. This can be achieved by
building on the base Grid software infrastructure.

Interactive simulation In order for scenario (B) to be
effective, the VI must provide a way for users to interact
with running simulations in order to guide, or steer, the
computation. Users must be able to direct the search
away from certain regions of the parameter space to be
explored, and to concentrate on other regions, based on
real-time intermediate application results. This requires
that the VI allow the creation and cancellation of applica-
tion tasks on the fly.

High performance Given the scale of MCell simula-
tions in scenarios (B) and (C), it is critical that the VI
exploit available resource effectively. This is to be
achieved by the use of scheduling strategies, and can
build on our previous work (Casanova et al., 2000a).
However, in this work, there is the added complexity of
computational steering; how does one schedule (and
reschedule) an application whose computational goals
are constantly being changed and/or refined by the user?
Our goal is to develop resource allocation strategies that
reduce application execution time (e.g. search time) in
the presence of user steering.

3.2 MCELL PROJECTS IN THE VI 
FRAMEWORK

Before describing our work on scheduling and on Grid
software design and development, we introduce the
notion of an MCell project, which can be created and
executed by the VI user. The structure of a project is
depicted in Figure 1 and consists of: (i) a set of parameter
specifications (number of parameters, data types, initial
value ranges); (ii) a set of MDL scripts written by the
user – the MDL core; (iii) potential additional input files
such as large geometry files that have been produced by
3D reconstruction of electron microscope data. The
MCell simulation consists of a (generally large) number
of parameter space point evaluations, or meta-tasks (n
meta-tasks are shown in the figure). Each evaluation con-
sists of an instantiation of the parameter values and of a
number of identical MCell tasks, each using different
streams of random numbers for Monte Carlo simulation.
Each task produces raw output files that are then aver-
aged and synthesized into final output. This final output
is typically orders of magnitude smaller (in terms of
bytes) than raw and averaged output. These final data
must be analyzed by the user to understand the behaviors
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7THE MCELL VIRTUAL INSTRUMENT

of the simulated biological system. This must be done
on-the-fly to steer the computation in scenario (B). Note
that raw and average output data are still of interest to the
MCell user and may need to be retrieved in order to per-
form in-depth analyses. Note also that the amount of
computation required for each meta-task depends on the
parameter instantiations. In other words, some meta-
tasks require more computation than some others (typi-
cally by up to three orders of magnitudes).

A run of an MCell project consists in executing large
numbers of independent meta-tasks and generating both
intermediate and final output.

3.3 GRID COMPUTING ISSUES

The two main issues that we have explored in the VI
project are that of Grid application development and appli-
cation scheduling. We briefly discuss these issues below.

3.3.1 Resource Access and Data Management on the
Grid. The VI project faces most of the issues inherent
in Grid computing as it seeks to make the use of the
Grid as transparent as possible so that the user can focus
on the MCell simulation rather than on the logistics of
application deployment. To that end, we reuse most of
the available Grid infrastructure to achieve automatic
resource discovery (Czajkowski et al., 2001), resource
access (Casanova and Dongarra, 1997; Czajkowski et
al., 1998; Basney and Livny, 1999), security (Foster et
al., 1998), distributed data management (Chervenak et
al., 2000), and resource monitoring (Wolski, 1997). Our
work on the VI builds on our experience when develop-
ing the APST project (Casanova and Berman, 2003).
APST provides a simple, generic way to run parameter
sweep applications and is currently used by MCell users
for scenario (C).

One of the lessons we learned with APST is that target-
ing several underlying technologies for deploying user
application makes it possible to (i) gain early acceptance
from the users and (ii) increase the number of resources
available to applications. This is the case because Grid
computing is still an emerging technology and is not yet
ubiquitous. Although the Open Grid Software Architec-
ture (OGSA) standard (Foster et al., 2002) is rapidly
gaining momentum, our goal is to enable MCell users to
run simulations on their resources today.

Consequently, the VI targets a number of Grid serv-
ices, which can be used simultaneously to expand the
range of resources available to a single MCell simulation.
In addition, the VI provides default mechanisms that use
SSH to start remote jobs and move application data. SSH
does not provide the levels of job control and the scala-
bility offered by, say, Globus (Foster and Kesselman,
1999). However, our experience with APST is that users
generally start using SSH mechanisms and progressively
move towards Grid middleware technology as their sim-
ulation needs grow in scale. The main notion here is that
current Grid application execution environments should
be able to use whatever Grid middleware is available, but
also degrade to default ubiquitous mechanisms if neces-
sary. We expect this design to evolve to pure OGSA
when the standard becomes more ubiquitous.

Given the life-span of MCell simulations, it is critical
that the core VI software be resilient to software and
hardware crashes. In addition, the VI should automati-
cally handle all application data management on behalf
of the user. Consequently, we use a relational database in
order to maintain persistent state about running MCell
projects, data generated by those projects, and available
resources. This database has two roles. First, it allows the
VI software to be resilient to faults; all state is periodi-
cally saved into the database and can be used for restart.
Secondly, it provides a structure for storing, retrieving,

Fig. 1 The structure of an MCell project in the VI Frame-
work. A project consists of n meta-tasks, and each meta-
task consists of a number of identical MCell tasks whose
outputs are averaged and synthesized into final output
data.
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8 COMPUTING APPLICATIONS

and mining application data, which is fundamental for
achieving the first goal in Section 3.1. Our approach is to
store only final application output data in the database
(see Figure 1). Raw and intermediate output, which can
be enormous, is left in place on remote Grid storage
resources and can be downloaded on demand by the user.

3.3.2 Application Scheduling. A research direction
explored in the VI project is that of application schedul-
ing in a computational steering context. Scheduling sets
of non-identical, independent tasks onto sets of distrib-
uted, heterogeneous resources has long been identified as
an NP-hard problem (Ullman, 1975). Therefore, much
research work has been dedicated to the development of
appropriate scheduling heuristics; see Braun et al. (1999)
for a survey. Grid computing adds several challenges to
the traditional scheduling problem; resources are not only
heterogeneous, they exhibit dynamic performance behav-
iors due to sharing among users. Also, they are located on
diverse network topologies interconnected over the wide-
area. To address these issues, adaptive scheduling has
been employed with success (Berman et al., 1996; Ber-
man, 1998). As a result, we developed adaptive scheduling
strategies for MCell in our earlier work (Casanova et al.,
2000a), focusing on scheduling data movement, data stag-
ing, and data duplication, with respect to storage and com-
pute resource locations and characteristics. 

In this work, we have to cope with the complexity
added by computational steering, that is the problem of
scheduling an application whose computational goals
change over time according to potentially arbitrary user
behaviors. Computational steering is a difficult problem
that has been addressed by several researchers (Jab-
lonowski et al., 1993; Vetter and Schwan, 1995, 1997;
Geist et al., 1997; Parker et al., 1998). These efforts
mostly addressed the problems of consistency of state
among components of tightly coupled applications. In the
limited context of MCell, consistency is not a key issue
as the application consists of large sets of tasks which
can be stopped and restarted independently, with little
need for synchronization. Therefore, we focus on a
resource allocation strategy that takes steering into
account solely to achieve high performance.

The VI user typically employs the following general
search strategy. The user’s goal is to locate some particu-
lar point in the parameter space that satisfies some sub-
jective criteria. An initial set of parameter space points
(uniformly) distributed over the parameter space are
selected for computation. As results come back from the
VI, they are displayed to the user who can then assign
levels of importance to regions of the parameter space.
Regions with higher levels of importance are more prom-
ising and should therefore be completed sooner. This can
be achieved by assigning appropriate fractions of the avail-

able compute resources to the exploration of each region.
For instance, if the user has identified three regions that
should be explored and assigned levels of importance 2, 2,
and 1, then each of the first two regions should get 40% of
the resources, and the last region should get 20%. The key
idea is that rather than ordering regions by their level of
importance and exploring the most promising regions first,
it is more efficient to explore all regions concurrently but
at different rates, to avoid being trapped in local optima in
regions that were initially the most promising. Our contri-
bution is that we reason at the resource allocation level
rather than at the algorithmic level, which makes our
approach applicable to a wide variety of steering behaviors
and search algorithms (including both interactive user
steering and search algorithms).

Our approach is to assign a priority to each point of the
parameter space, corresponding to the level of impor-
tance of the region to which the point belongs. If each of
the current n points being computed has a priority pi, then

point i should get pi /Σj = 1
n pj percent of the available

resources. In Faerman et al. (2002) we have proposed
and evaluated a number of strategies for computing pri-
orities and for scheduling computational tasks according
to these priorities. We refer the reader to that paper for all
details. Our main result was that the use of priorities for
allowing concurrent region explorations leads to signifi-
cant performance improvements and we have quantified
how priorities should be computed, given levels of
importance that users assigned to regions.

3.4 VIRTUAL INSTRUMENT SOFTWARE

The VI software follows a strict object-oriented design
and is constructed of three principal components: a soft-
ware daemon to manage resources and remotely run jobs;
a user interface to allow users to initiate, run, monitor,
and stop MCell projects; and a database to store final
application results and user-entered data. These compo-
nents can run on separate machines.

Figure 2 depicts the interactions of the three main com-
ponents of the VI architecture: the Daemon, the Interface,
and the Database. The Daemon interacts with resources
via Grid services. These services allow the Daemon to
discover resources, start and control remote jobs, move
data between distributed storage locations, and monitor
resources as well as the running application. The Daemon
uses the Database to store information such as the availa-
ble resources, the user-defined specifications of running
MCell projects, and the status of these running projects,
including their pending tasks. To the greatest extent, the
Daemon uses an out-of-core approach, so that if it fails, the
relevant information about running MCell projects is in the
Database. The only application data stored in the Database
are MCell final output that can be visualized and analyzed
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9THE MCELL VIRTUAL INSTRUMENT

by the user and used to steer further simulations. As
depicted in Figure 2, the Database also keeps track of the
location of all raw and intermediate data, which are left in
place in Grid storage until explicitly retrieved by the user
(see Section 3.3).

The Interface allows the user to steer the computation
and to perform visualization. The Interface communicates
control information to the Daemon, including commands
to create, start, steer, and stop MCell projects or trigger the
retrieval of a particular output file our final output data.
Visualization of the data can be performed by OpenDX at
the user’s direction, as invoked from the Interface.

The main responsibility of the Daemon is to schedule
and actuate file transfers and computations using availa-
ble computational and network resources. These func-
tions are performed by three classes within the Daemon:
the Project class, the Scheduler class, and the Actuator
class. The Project keeps track of all of the parameter
space points and task inter-dependences. For example, in
Figure 1, it is the Project that is aware of the requirement
to complete several runs of MCell with their parameter
instantiations before running a post-processing task to
average the output. The Scheduler retrieves information
on tasks from the Project, sets their relative priorities (see

Section 3.3), and assigns tasks to resources accordingly.
The Scheduler is designed as a base class so that alternate
scheduling strategies can be easily integrated as they are
developed. After tasks have been assigned to resources by
the Scheduler, the Actuator launches them on Grid
resources. As with the Scheduler, the Actuator is designed
as a base class, permitting specialization for various
remote job execution and data transfer methods from var-
ious Grid middleware services.

The use of a relational database has several advantages.
It makes the design of the Daemon more simple in terms
of data structures, and makes it possible to recover from
failures. In addition, the Interface does not need to imple-
ment an ad hoc protocol with the Daemon, but can just pull
data out of the Database in a standard fashion. In particu-
lar, it is possible to make complex SQL queries to mine
application data. Furthermore, the use of a separate data-
base allows users to start an MCell project, disconnect, and
check the status of the simulation from any location.

3.5 STATUS OF THE IMPLEMENTATION

At the moment, the VI software consists of approxi-
mately 20,000 lines of C++, using the Standard Template

Fig. 2 The VI architecture. The three main components are the Daemon, the Database, and the Interface.
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Library and pthreads. We opted for MySQL to imple-
ment the Database as it is well accepted by the Linux
community and provides a standard API. In the current
release, the actuators within the Daemon target SSH,
Globus’s GRAM (Czajkowski et al., 1998), NetSolve
(Casanova and Dongarra, 1997), and batch schedulers
(the portable batch system, http://www.openpbs.com;
IBM Corporation, 1993) for starting/monitoring remote
jobs, scp and GridFTP for moving application data on the
Grid. The VI interface is still underway and at the
moment we provide several interfaces. First, we have
implemented a text-only interface for evaluation pur-
poses. This interface allows us to gather information
about user behaviors and requirements for converging
towards a graphical interface. This interface is also writ-
ten in C++ on top of VI components. We have also
implemented a Web-based portal to the VI so that users
can check on progress and perform simple data-mining
tasks on the final application output. In addition, we have
implemented a stand-alone Java-based GUI which is
being used as the base for the final VI GUI. At the
moment it implements the same functionality as the por-
tal. Finally, we have implemented a simulator in order to
evaluate our scheduling/steering strategies (see Section
3.3). The simulator is written with SIMGRID (Casanova,
2001; Legrand et al., 2003), a toolkit specially designed
for the study of application scheduling in distributed
computing systems, and has been integrated with the VI
software. This allows us to simulate a variety of user
behaviors and to test and validate the VI implementation
throughout development.

An alpha version of the VI software was released to a
limited number of MCell users/developers in February
2002 for evaluation. The software was subsequently
enhanced and hardened and demonstrated at the SC’02
conference. The demonstration involved a simulation
consisting of 11,360 MCell tasks and was executed on a
testbed aggregating diverse computing resources in Japan
and California (including batch-scheduled MPPs, batch-
scheduled clusters, interactive clusters, and individual
workstations). The simulation was launched and moni-
tored by a user on the conference floor in Baltimore,
Maryland. A beta version of the software was released to
MCell users in February 2003.

The software, information about installation, and further
details about the implementation can be found on the
project’s Webpage at http://grail.sdsc.edu/projects/vi\_itr.

4 Experiments

We have performed a large run of an MCell project on a
Grid platform over the course of several days. Note that
these experiments did not include any user steering as
our goal here is solely to verify and evaluate the VI soft-

ware design. The software supports steering and we refer
the reader to Faerman et al. (2002) for a discussion of
steering and scheduling.

4.1 THE MCELL SIMULATION

In this section we give background for and describe the
MCell simulation that we ran in our experiments. This
simulation is called r_disk and targets a synapse. A
synapse is a highly organized cellular structure that
forms at the narrow junction between two neurons (or
between a neuron and a muscle cell) in the nervous sys-
tem. Chemical communication occurs across this synap-
tic cleft through a process called synaptic transmission.
In synaptic transmission neurotransmitter molecules are
released through the membrane of an excited pre-synap-
tic neuron and activate specific neurotransmitter recep-
tor molecules on the membrane surface of a post-
synaptic cell. Receptor activation results in a transient
signaling event which might lead to excitation of the
post-synaptic cell.

The r_disk MCell simulation attempts to map the
parameter space of synaptic transmission for a canonical,
simple model of synaptic geometry and assumes acetyl-
choline (ACh) and acetycholine receptor (AChR) as the
neurotransmitter/receptor system. The synaptic geometry
includes infinite planes for the pre- and post-synaptic
membranes separated by a synaptic cleft distance fixed at
20 nm. There is a disk-shaped patch of receptors on the
post-synaptic membrane. A fixed number of 10,000 ACh
molecules are released from a point centered over the
receptor patch. In this model we explore a seven-dimen-
sional parameter space which includes the radius of the
receptor patch, the diffusion constant of ACh, and five
additional chemical kinetics parameters describing the var-
ious on rates, off rates, and conformation-change rates for
the reaction mechanism between ACh and AChR. The
overall computation time for this simulation amounts to
approximately 329 days of computation on a 1.5 GHz Pen-
tium III.

4.2 THE TESTBED

The testbed for our experiments consists of resources at
three sites: the Tokyo Institute of Technology (TITECH)
in Japan, the San Diego Supercomputer Center (SDSC)
and the Department of Computer Science and Engineering
(CSE), both at the University of California, San Diego
(UCSD). All resources run some version of the Linux
operating system. Table 1 summarizes overall characteris-
tics of the resources and how they are accessed. Two of the
sites, TITECH and CSE, provide interactive resources.
Resources at TITECH can be reserved via an e-mail reser-
vation system, and thus were not time-shared with other
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applications for our run. The resources at CSE were not
reserved and were thus time-shared with local user jobs.
The resources at SDSC are accessed via the Portable
Batch System (http://www.openpbs.com) batch queuing
system. In these runs, the VI software used four simulta-
neous submissions to the PBS queue, with requests for
4, 8, 16, and 32 processors. The Daemon and Database,
as well as the user, are located on one of the CSE
machines. At the end of the execution all synthesized
application output is available in the Database and all
intermediate application output is accessible in remote
storage.

4.3 RESULTS

Figure 3 depicts the cumulative amount of computation
performed with respect to time. We show a curve for the
total platform (Total) as well as a breakdown per site
(SDSC, TITECH, and CSE). Note that we do not plot the
cumulative number of tasks completed. Indeed, this
number is misleading as MCell tasks vary widely in com-
putational costs. For this simulation, the amount of com-
putation required varied by as much as a factor of 200
between MCell tasks. Instead, we ran an off-line bench-
mark of the MCell tasks involved in this simulation on
reference CPUs (identical nodes of the Presto-III cluster).
This allowed us to associate each task in the simulation
with a “relative computational cost” (i.e. the amount of
time the task requires on the reference CPU). This pro-
vides the basis for the cumulative computational cost
plotted on the y-axis of Figure 3. An alternate approach
would have been to use a performance model, but no
accurate performance model for MCell tasks was availa-
ble at the time of these experiments. In addition, the com-
putational cost estimates obtained via the benchmark
were used to estimate wallclock time requests passed to
the PBS batch system on the Meteor cluster.

We make three main observations on the data pre-
sented in Figure 3.

(i) All sites contribute to the computation. As
expected, the site contributing the most to the com-
putation is SDSC. Overall, SDSC contributed to
83% of the overall computation, TITECH to 13%,
and CSE to 4%. The entire simulation (which
amounts to approximately 329 days of computa-

tion on a 1.5 GHz Pentium III) was completed in a
little over 150 h.

(ii) All curves level off before the end of the execu-
tion, due to the typical “waiting for the last task”
syndrome. When scheduling a set of independent
tasks, it is generally a good idea to schedule long
tasks first (Hummel et al., 1996; Hagerup, 1997).
However, as discussed earlier, we do not have a
performance model for MCell tasks. In other
words, there is no way for the VI scheduler to
determine automatically which tasks will be long
(or short). As a result, it is likely that a number of
long tasks will be scheduled at the end of the exe-
cution, leading to the leveling of the curves in Fig-
ure 3. A possible approach would be to run the
aforementioned off-line benchmark and have the
scheduler use the benchmark timings to make
scheduling decisions. However, this is time- and
resource-consuming, and it would need to be done
for each new MCell project. More importantly,
note that in a real usage scenario the user would
continually steer the simulation and add new
tasks. Therefore, reducing the execution time of a

Table 1
Testbed for the experiments presented in Section 4.

Site CPUs Access

TITECH Presto-III cluster 20 dual-cpu Athlon, 1.59 GHz Ssh

SDSC Metor cluster 93 dual-cpu PIII, 730 MHz to 996 MHz PBS

CSE GRAIL workstations 12 Athlon and PIII, 200 MHz to 1.5 GHz 4 via Ssh, 8 via Globus

Fig. 3 Cumulative amount of computation performed
during the experimental run on all sites and per site.
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fixed number of tasks is not the focus of this work
(unlike that of our previous work (Casanova et al.,
2000a, 2000b). In this work we focus on overall
throughput and thus do not consider the “waiting
for the last task” problem to be significant.

(iii) The curve for SDSC exhibits more of a step pat-
tern than the curve for TITECH or CSE. This is
due to the use of the PBS batch system at SDSC;
MCell tasks are submitted in batches, each batch
spends time waiting in the queue, and thus tasks in
batches tend to return results in bursts. By contrast,
the TITECH resources are available in interactive
mode and thus complete tasks at a relatively steady
rate. This raises an interesting question regarding
the use of batch-scheduled resources for running
applications that consist of many independent,
small tasks, as well as for running interactive appli-
cations. How many simultaneous requests and
which request sizes should be sent to a batch-
scheduled resource? In the current VI software
these values can be fixed arbitrarily (as seen in Sec-
tion 4.2). We leave the investigation of how these
values should be chosen to maximize throughput as
future work.

Figure 4 plots the cumulative number of failures that
occurred during the entire execution for the SDSC and
CSE resources. We do not show a curve for the TITECH
site as no failure was experienced during this experiment
on TITECH resources. 60 failures occurred during the
run, meaning that on average the VI experienced approx-
imately 0.6 failures per hour. These failures were caused
by several factors, including actual resource downtimes,
network time-outs, and software failures (e.g. SSH dis-
connections). The VI software detects failures, attempts a
number of retries, and then marks resources as “failed”
for a fixed amount of time before attempting other
retries. Therefore, some of the failures plotted in Figure 4
correspond to several occurrences of a failure for a single
resource.

4.4 DISCUSSION

The experimental results obtained with the first VI
implementation provide convincing evidence the follow-
ing.

(i) The VI software is functional and makes it possi-
ble to support large MCell runs on large-scale Grid
testbeds. Furthermore, the software shields the
user from the logistics of application deployment
and provides the illusion of a desktop execution. 

(ii) The VI software design is effective. The use of an
out-of-core relational database for storing all

information pertaining to the resources and the
application proved to be scalable. In these experi-
ments and others that are not reported in this paper,
the use of the database was never a bottleneck and
scales with the size of the application and the plat-
form. In fact, the main bottleneck for application
deployment is the overhead for launching remote
computations on distant Grid resources.

(iii) The VI implementation is resilient to resource faults
and failures. Our experiments show that failures
occur in Grid environments at a non-negligible rate
and due to several causes. The VI software appro-
priately detects failures and attempts a number of
retries. This is critical for long-running applica-
tions such as MCell.

While a number of features and capabilities can be added
to the VI software, in particular to the user interface, it
provides sufficient functionality and robustness to enable
the new generation of MCell simulations. Furthermore,
all logistics of application deployment are hidden to the
user and application data are automatically managed on
behalf of the user. We conclude that the current version
of the software meets the goals outlined in Section 3.1.

5 Related Work

Our work is related to a number of large efforts that seek to
provide Grid application execution environments for sci-
entific simulations: GriPhyN (http://www.griphyn.org);
National Virtual Collaboratory for Earthquake Engineer-
ing Research (http://www.neesgrid.org); [47] Particle

Fig. 4 Cumulative number of failures during the
experimental run for SDSC and CSE.
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Physics Data Grid (http://www.ppdg.net). Related works
also include portal activities (Thomas et al., 2001;
Novotny, 2002) and the VI software could ultimately be
integrated as a user portal.

Computational steering has been an active field of
research and several projects have provided models, meth-
odologies, and software for steering scientific applications:
SCIRUN (Parker et al., 1998), VASE (Jablonowski et al.,
1993), Progress (Vetter and Schwan, 1995), Magellan
(Vetter and Schwan, 1997), CUMULVS (Geist et al.,
1997). One of the main challenges addressed in these
works is the notion of state consistency. Several techniques
from the area of distributed systems and fault-tolerance
have been used successfully to build high performance
consistent computational steering environments. Our work
is related to those efforts in that we provide computational
steering capabilities. However, given the structure of
MCell simulations, i.e. parallel searches with loose task
and data synchronization requirements, state consistency
is not a crucial issue. Therefore, our work focuses mostly
on performance issues and proposes a scheduling/steering
strategy based on task priorities for appropriate resource
sharing.

This work builds on our earlier work on the APST
(Casanova and Berman, 2003), which is related to
projects such as Nimrod (Abramson et al., 2000) or
ILAB (Yarrow et al., 2000). APST provides a generic
Grid application execution environment for Parameter
Sweep Applications. These applications consist of large
numbers of computational tasks that exhibit few or no
inter-dependences. This category of applications encom-
passes many methodologies such as Monte Carlo simu-
lations, parametric studies, and parameter searches,
and arises in many fields of science and engineering.
This work uses APST as a learning experience to pro-
vide a full-fledged execution environment customized
for MCell. APST addresses a few of the limitations
listed in Section 2.3 and is currently used for medium-
scale MCell parameter sweep runs. Neither APST,
Nimrod, nor ILAB provide capabilities for computa-
tional steering. 

6 Future Work and Conclusions

In this paper we have presented the VI project, which tar-
gets the deployment of large-scale, interactive MCell
simulations. MCell is a molecular biology simulator,
which has gained great popularity in the computational
neuroscience community. Although the current MCell
software provides basic capabilities to run simulations, it
does not enable interactive simulation, and leaves many
responsibilities to the user in terms of deployment,
scheduling, and data management. These limitations pre-
clude the use of MCell for large-scale executions, espe-

cially on the Grid platform. The goal of the VI project is
to provide an integrated Grid execution environment for
MCell that offers interactive computational steering
capabilities. We have described contributions of our Grid
software development effort and have given a brief
account of our work in the area of application scheduling.
We have then described the VI software in detail and pre-
sented validation experiments conducted for a real-world
MCell application on a multi-site Grid testbed. These
results are conclusive as they show that the VI software
is functional and the design scalable.

Many future directions are currently being explored in
this project. A beta version of the VI software was
recently released to MCell users. Our ultimate goal is to
deploy the software in a production environment: (i) to
further validate our implementation; (ii) to log informa-
tion about usage and learn about user behaviors; (iii) to
enable new disciplinary results. Ultimately, the Virtual
Instrument will have a large and quantifiable impact on
the MCell community. It will lead to new scientific
advances that would not be possible without the Grid
platform and without our fully integrated software envi-
ronment.
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