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The parallelization of iterative algorithms is an important issue for efficient
solution of large numerical problems. Several theoretical results concerning
sufficient conditions for, and speed of, convergence of parallel iterative algo-
rithms are available. However, those results usually do not take into account
the processor workloads and network communications at the application
level. The approach in this paper develops a Markov chain based on random
variables which describe aspects of the multiuser, distributed-memory
environment and the phases of the algorithm. The performance characteriza-
tion addresses stochastic characteristics of the algorithmic execution time
such as mean values and standard deviations. We present simulation results
as well as experimental results over different time periods. The results provide
information about the impact of distributed environment and implementation
style on long-run, expected execution time characteristics.  © 1999 Academic Press
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1. INTRODUCTION

Iterative algorithms are widely used in different areas of science and engineering,
e.g., medical imaging [22] and network flow in electrical networks, communication
networks, and financial models [5]. A broad class of iterative algorithms aims at
finding a fixed point of a given operator. Many well-known numerical methods use
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such an algorithm with linear or nonlinear operators. For problems with large
dimension and/or extensive numerical computation for each component of the
solution vector at each iteration (e.g., gradient approximations or Hessian compu-
tations for nonlinear operators), it is natural to consider parallel implementations
of iterative algorithms.

Analyzing the behavior and, thus, the performance of a parallelized iterative
algorithm in a distributed environment is not an easy task. The amount of com-
putation performed by a processor to update a component of the solution vector
often is not known a priori and in nonlinear cases may depend on the operator. For
instance, in popular algorithms to compute approximations of the gradient of
the operator at each iteration (e.g., gradient descent algorithms), the amount of
computation required to approximate the value of a component of the gradient (say
the ith component) depends on the shape (or geometry) of the operator along direc-
tion i at the current solution vector. Furthermore, if distributed iteration is
implemented on a nondedicated system with other users, the computation and
communication of those users impact the availability of processor and network
resources to the iterative algorithm.

In this research, we focus on nondedicated, distributed-memory environments
such as clusters of processors on a network. There are existing convergence results
that indirectly support a quantitative assessement of the parallel algorithm con-
vergence rate, but almost all these results are purely theoretical and do not take
into account the nature of the multiuser, distributed environment itself. Commonly
available results are lower bounds on the algorithm theoretical rate of convergence.

Due to nondeterminism (randomness) both in network communications and in
computational workloads at processors, stochastic methods appear to be a natural
way to move towards more comprehensive models. These models should capture
the fluctuations of the distributed environment and the algorithm and their impact
on the user’s implementation, at least in terms of average or “expected” charac-
teristics of execution time conditioned on the assumptions made to obtain tractable
models. In the following sections, we give definitions and assumptions concerning
parallel iterative algorithms in multiuser, distributed-memory environments, intro-
duce application-level models of the distributed environment and the algoritm
which lead to a finite-state, time-homogeneous Markov chain; discuss performance
characterizations related to convergence, and describe results of simulations and
experiments.

2. PARALLEL ITERATIVE ALGORITHMS

We use two, well-established paradigms for parallel implementation of iterative
algorithms: synchronous and asynchronous. In [27], it is shown that asynchronous
implementations have “good” communication complexity as compared to synchronous
ones, but it is difficult to use these results to obtain quantitative estimates of actual
performance in a given distributed environment. A performance comparison
between the two paradigms is provided in [8, Section 6.3.5], but the model is non-
random and does not describe nondeterministic systems.
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A unique reference that proposes a stochastic approach is [30] which gives an
analysis of asynchronous iteration with expected values based on [ 18]. This work
is of interest for shared-memory homogeneous environments and age scheduling
strategy for which processors-execution times are described by a specific family of
probability distributions (increasing failure rate (IFR) functions) with simulation
used to approximate some parameters. In contrast, this paper focuses on distri-
buted-memory systems that may be nonhomogeneous and assumes static scheduling
(which simulations in [ 30] show to be superior) to develop a Markov chain model.

We consider iterative algorithms in which an operator is applied repetitively to
a vector of real-valued data until some convergence criteria are met. Let R denote
the reals and N the nonnegative integers {0, 1,2, ..}. The computation of the
algorithm is a sequence of vectors {x(7)} in R”, and the iteration can be written as

x(0) e R™

x(t+1)=0p(x(t)) e R™ forall zeN. 1)

If the algorithm converges, the sequence {x(7)} converges to a fixed point of
operator Op. Much work has been devoted to finding useful operators for specific
problems and finding operators that provide the highest convergence rates (cf. [ 24]).

In this research, we consider the general iterative equation Eq. (1) without looking
at details of the numerical method(s) implemented to compute Op. The iteration to
update the components of the solution vector x(¢) is distributed among a collection
of processors. As previously stated, we consider only static scheduling, meaning that
each processor updates one piece of x(t) which is a preassigned, fixed subset of the
components of vector x(z).

2.1. Synchronism vs. Asynchronism

Synchronous implementations of iterative algorithms are straightforward paralleliza-
tions of sequential implementations. This makes them attractive as their convergence
properties are thus well known. It is often easy to convert a sequential implementation
of a given algorithm into a synchronous parallel implementation. Assume that the
distributed environment used to execute the algorithm consists of p processors.
Each processor can access its local memory and communicate with any other
processor via a network. Each processor starts each iteration with the entire current
solution vector in its memory and updates its subset of x(¢) by applying part of the
operator Op to the entire vector. The processors then perform an all-to-all com-
munication, exchange their up-to-date subsets of the solution vector, and proceed
to the next iteration. More formally, if the components of the solution vector x(¢)
are denoted by x;(¢), i=1, .., m and if the components of Op(x(¢)) are denoted by
Op;(x,(?), ..., x,,(1)), the synchronous iteration can be written as:

x;(t+1)=0p,;(x,(2), ..., x,,(1)) for 1<i<m; all teN. (2)
The most obvious performance bottleneck in synchronous implementations is the

all-to-all communication phase. First, for slow networks, having to exchange
(p —1)® messages at each iteration can be prohibitive [22]. Improved network
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technologies make this less a concern in many applications today, e.g., for
implementations that transmit reasonably small messages on a fast local area
network, but it remains a factor. Second, and more importantly for this paper, the
possible lack of synchronization among the processors [ 25, 19, 10, 15] can lead to
serious performance losses because relatively fast processors may be idle for large
percentages of real-time while awaiting slower processors. This lack of synchroniza-
tion tends to become particularly prominent when the iterative algorithm is run on
a nondedicated cluster of workstations with multiple users. This phenomenon is a
clear motivation for studying asynchronous implementations.

The study of asynchronous implementations started as early as 1969 [12] and
has been the object of many extensions and generalizations. As for the synchronous
case, we assume that there are p processors in the distributed environment and that
the solution vector is segmented in pieces (subsets of components of x(7)) assigned
to each processor, i.e. static scheduling. By contrast with the synchronous implementa-
tion, there is no all-to-all communication phase to synchronize the processors. Instead,
a processor may perform more than one update between communications, possible
using out-of-data for the subsets from the other processors. Each processor must at
times communicate its most up-to-date values for its subset to other processors.

A formal description of the asynchronous iteration is given in [3] and is inspired
by the definition of chaotic relaxations in [ 12]. The definition we give here is very
similar: for 1<i<m and t=1, 2, ...,

Xi(t):{xi(tl), if i¢J, (3)

OPi(xl(t))’ (] xm(sm(t)))s lf ie‘]ta

where J, is a subset of {1, ..., m}, and s,(¢) is in N. We adopt three additional condi-
tions for asynchronous iteration proposed in [3].

ConNDITION 2.1. For 1 <i<m:

(i) s;(t)<t foralt=1,2,..
(i) lim,_, o (s;(7)) = 005

(i1) 7 occurs infinitely often in the sets J,, t=1,2, ...

Condition (i) states that when a processor updates a component of the solution
vector, it can only use previously computed computed components. Condition (ii)
states that the same value for a component cannot be used indefinitely when com-
puting updates. Condition (iii) requires that a processor not abandon a component
forever. In the formal definition of asynchronous iterations that we have given so
far, there is no limit on the amount by which a component used in an update can
be out-of-date. If there is no upper bound on this amount, the implementation is
referred to as totally asynchronous [ 8]; otherwise, the implementation is said to be
partially asynchronous. Actual implementations are often partially asynchronous
since it is often practical to fix some kind of bound on the asynchronism for
implementation purposes.
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2.2. Convergence

The definition of the asynchronous iteration shows clearly that the algorithm can
be as “asynchronous as needed” to take advantage of the very phenomena that are
performance bottlenecks for a synchronous implementation. However, convergence
of the algorithm is no longer implied by the same conditions as for a sequential
implementation and its convergence rate must also be reexamined.

Work in analyzing the convergence of asynchronous parallel iterative algorithms
includes [8, 7,12, 21, 20, 3, 6, 4, 26, 14, 28, 29]. Some of the earliest work focused
on specific iterative algorithms or on specific implementations. A sufficient condi-
tion for convergence for linear operators is available in [12], only for partially
asynchronous implementations. In [21, 20], this sufficient condition is generalized
to the case of certain nonlinear operators, still in a partially asynchronous setting.
A recent and general theorem in [ 8] gives a sufficient condition for convergence of
asynchronous iterative algorithms based on a sequence of subsets of R” (a “box
condition”). The applications given in [ 8] are contractions or pseudo-contractions
with respect to a weighted maximum norm (traditional “Lipschitz-like” properties
detailed in [8]), and it may be dificult to fully exploit the generality of the theorem
in practical situations. A lower bound on rate of convergence is obtained under
additional assumptions.

A fundamental reference on which to develop a stochastic approach is Baudet’s
work [ 3]. That work contains a theorem establishing the convergence of asynchronous
iterations for contracting operators defined by the following “Lipschitz-like” condition.

DerFINITION 2.1.  An operator Op from R™ to R™ is said to be contracting on a
subset D of R™ if there exists a nonnegative m x m matrix A such that

Vx,yeD, |Op(x)—Op(y)|<A|x—y|,  component-wise

and p(A) <1, where p(A4) denotes the spectral radius of 4 (i.e., the magnitude of
A’s largest magnitude eigenvalue).

Furthermore, [3] provides a lower bound on the convergence rate of the
algorithm defined traditionally as

# £ liminf [(~log |x(1) — {])/e], 4)

where ||-|| denotes a norm of R” and ( is the fixed point of the operator. This
definition of the rate of convergence has an immediate interpretation: if the
logarithm is in base 10, then 1/# measures the asymptotic number of iterations
required to divide the initial error by a factor of 10, where an iteration is the
computation described by Eq. (3) for all . Whithout any additional assumptions, it
is shown that

%> —[liminf (k,/t)] log p(A), (5)
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where {k,} is a sequence of integers defined in [3]. With reference to [3] for
details, we note here that this sequence {k,} is increasing and the more asynchronous
the implementation, the less rapid the increase.

The insight into performance provided by Eq. (5) is in the form of a lower bound
on the theoretical rate of convergence. Experiments in [3] indicate that the bound
is very conservative, and the possibility for stochastic approaches is mentioned. Our
goal is to introduce tractable stochastic models and obtain convergence results
relevant to the user for a practical purpose, deciding which implementations is the
best for a given multiuser, distributed-memory environment in terms of long-run,
average performance.

3. APPLICATION-LEVEL MODELS

We introduce two models to describe the distributed environment and the algo-
rithm at an application-level. Some of the low-level elements of the computer
system are ignored or approximated to develop and analyze the models.

3.1. Modeling the Distributed Environment

We assume that the distributed environment is a computer network of p nodes
connected by a communication facility. A node is composed of a processor,
memory, and a network interface. Each node has its own memory accessed only by
its processor. In this distributed-memory setting, nodes can exchange data via the
communication facility, thanks to their network interfaces. We do not require that
all the nodes be identical, i.e., the environment may be heterogeneous, but do make
several strong assumptions below. The communication facility is seen as an abstract
device that allows reliable point-to-point communication between any two nodes of
the network and we do not make any assumptions about the network topology.
Our model is therefore applicable in diverse environments, from a massively
parallel processor (MPP) system to an Internet-wide collection of machines.

The performance of the network in terms of transmission speed is modeled by a
random variable (RV) for each point-to-point data path (for a total of
p(p—1) RVs). Similarly, the performance of each node in terms of local computa-
tion is modeled by a RV that describes the time that node spends to perform one
update of its subset of the solution vector (for a total of p RVs). The distributions
of all these RVs describe the behavior of the algorithm execution in the distributed
environment. In order to introduce tractable stochastic models, these RVs are
assumed independent and stationary during the run of the iterative algorithm;
however, any finitlely specified, discrete probability distributions can be used—
empirically estimated, analytically specified, or arbitrarily chosen.

3.2. Modeling the Algorithm

The algorithm is partitioned into phases. Figure 1 depicts one phase for three
processors i, i + 1, i + 2. Note that real-time intervals for the same phase of the algo-
rithm do not generally coincide at different processors. Each phase is composed of
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FIG. 1. Decomposition of the Algoritm into Phases.

two subphases, o and ff. During the a subphase, a processor performs successive
updates on its subset of the solution vector. All updates performed by a processor
during its « subphase, beyond the first update, use out-of-data until the next
messages are received from the other processors. At the end of the a subphase,
a processor broadcasts its subset of the current solution vector to all the other
processors. Just after this broadcast, its f subphase starts and the processor expects
p— 1 messages from the other processors. During its  subphase, a processor may
perform additional updates (up to a preset number) on its subset of the solution
vector. If any updates are performed during this subphase, they will also use out-of-
date data. A processor finishes its f subphase when it has received all the p —1
messages; it then moves onto the next algorithm phase.

For each processor, the user must choose the number of updates to be performed
during the a subphase and the maximum number of updates allowed during the
subphase. The larger those numbers, the more asynchronous the algorithm. A more
asynchronous implementation usually implies a lower convergence rate but better
use of computational resources (less processor idle-time). A method to evaluate this
trade-off in terms of the expected execution time is an objective of this research.

Note that the model includes synchronism as the special case that, for each
processor, there is a single update during its a subphase and no update during its
J subphase. In the next section, we give several definitions and assumptions, then
define a Markov chain (cf. [16]) of interests.

3.3. Underlying Markov Chain

Let us define two nonnegative, integer-valued constants and three nonnegative,
real-valued RVs.
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DerIniTION 3.1. (i) User-specified, integer constant A, >0 denotes the number
of updates performed by processor i during its a subphase of each algorithm phase.

(i1) User-specified, integer constant B, >0 denotes the maximum number of
updates that processor i is allowed to perform during its § subphase of each algo-
rithm phase.

(iii) RV ai(k)eR is the duration in seconds of the a subphase of the kth
algorithm phase on processor i.

(iv) RV n,_ (k)eR is the duration in seconds of the message transfer from
processor i to processor j during the kth algorithm phase. By convention, processor
i sends a message to itself at each phase and n,_, ;(k) =0 for all i and k.

(v) RV T'(k)eR denotes the time of the beginning of the kth algorithm
phase on processor i.

We assume independence of the RVs but do not require identical distributions for
all processors i. We first assume that, given 7, the RVs {a’(k)} are independent and
identically distributed (ii.d.) for all k. Independence of RVs means that the
computational time «(k) for processor i to perform one update does not exhibit a
dependence on update-times {a’(k), j#1i} at other processors. (This assumption is
violated, e.g., when workloads of two or more processors are correlated, due for
instance to other parallel applications sharing the resources. Relaxing this inde-
pendence assumption is a topic for future development.) Similarly for given i and
J» the RVs {n,_ ;(k)} are iid. for each k; but it is not required that the distribution
of n;_, ;(k) be the same as that of n,_,,(k) for i#h or j#1

Although these are strong assumptions, independence and identical distribution
of RVs are widely used in computational models (cf. [30, 1]). The experimental
results presented in Section 6 illuminate some aspects of validity and limitations
and Section 7 introduces new research directions to loosen the assumptions. We
also assume that network times are bounded, that messages are sent at exactly the
same time during a broadcast, and that message-sends are free in terms of CPU
cycles on the sending processor. The last two simplifying assumptions could be
removed by the use of additional RVs at the cost of more complicated modeling.

Recall that T7(k) e R denotes the time of the beginning of the kth phase of the
algorithm on processor i. Taking arbitrary processor 1 as reference, we define the
wavefront X(k) as

X(k) = (X\(k), X5(k), ... X,(k))
=(0, T*(k)—T"(k), .., T?(k)—T"(k)) e R. (6)
X (k) describes the shape of the line joining the starting times of each processor in

the kth phase. X(k) is represented on Fig. 1 as a thick line, and it is shown in
Appendix A that for each processor i,

Xi(k+1)= ?llax } [X;(k)+o/(k)+n;_ (k)]

— max } [X,(k)+o (k) +n;_ (k)] (7)

) J
je{l,..p
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The wavefront is the key to the stochastic model because, based on the assumption
of 1i.d. RVs, Eq. (7) defines a Markov process; specifically, the wavefront X (k) is
a time-homogeneous Markov chain. It is shown in Appendix B that, with a few
technical assumptions, the Markov chain is finite-state. Eq. (7) can be used to com-
pute the transition probability matrix P of the Markov chain by using the discrete
distributions of the different RVs. Examples of the transition matrix P can be found
in [11].

Since the finite-state chain is recurrent, it has a stationary distribution which
describes the behavior of the chain in the long-run (cf. [16, 2, 9]). We refer to the
probabilities in this distribution as the n-values; 7, ( > 0) for state s is the long-run,
relative-frequency of occurrence of state s in realizations of the chain.

4. PERFORMANCE CHARACTERIZATION

The wavefront Markov chain is exploited to obtain performance results for the
parallel iterative algorithm. The goal is to obtain information on the average execu-
tion time. The execution time can be computed as the ratio of the number of itera-
tions to perform over the number of iterations performed per time unit. The
number of iterations required can be approximated using the asymptotic convergence
rate of the algorithm. This is the topic of the next section.

4.1. Asymptotic Rate of Convergence

The challenge here is to refine the lower bound on the asymptotic rate of con-
vergence in [3] by modified estimates that take into account randomness at the
application-level. One can compute three estimates (see Apendix D) respectively
called worst-, average-, and best-cases and denoted respectively as Z, #, and Z.
The usefulness of the average- and best-case estimates is yet to be demonstrated;
however, the worst-case estimate is a straightforward improvement over the lower
bound in [3] as (i) it is higher than Baudet’s and (ii) it is still a lower bound on
the asymptotic convergence rate.

Let #£* denote one of the three estimates for this rate. Then user who wants the
initial error on the solution vector to be divided by a factor of 10 may approximate
the number of iterations needed as w/#* assuming that w is reasonably large. The
value of w chosen by the user is the convergence criterion: the larger w, the smaller
the final error. Of course, the choice of #* is crucial, and we expect that the three
estimates will provide information about this choice.

4.2. Execution Speed

We can use Z* to estimate the speed of the execution in terms of number of
iterations performed per time unit. Let @(k) denote the duration in seconds of
the kth algorithm phase on processor 1. Let N(k) denote the number of iterations
performed during that phase. Both @(k) and N(k) are RVs and their long-run
probability distributions can be approximated by making use of the wavefront
n-values. Indeed, the probability distributions of RVs of interest in the model are



STOCHASTIC PERFORMANCE PREDICTION 77

all conditioned on the wavefront state. The =m-values are used to replace those
conditional probabilities by unconditional probabilities, and a simple convolution
is used to obtain the long-run estimate.

The speed of the execution is entirely described by sums of the random vector
() for successive values of k. This vector can be used in different ways, as

described in the next section.

4.3. Performance Characterization Levels

Level 1. This level provides an estimate of the execution time mean value.
Using the Strong law of large numbers [16], it is possible to compute the
asymptotic algorithm speed as the ratio of the limiting expected values of N(k) and
@(k). Denoting this ratio as %, one obtains @,, an asymptotic estimate for the
execution time expected value:

. (00]
CISR*

0,

Level 2. This level provides an estimate of the execution time standard devia-
tion. The derivation of the estimate is detailed in Appendix C.

5. SIMULATION

Simulation results are summarized here for a gradient algorithm for a multipoly-
nomial cost function with 30 variables (see also [ 11, Section 5.1]). The distributed
environment consist of three processors with the different update-time distributions
depicted in Fig. 2, obtained by sampling the distributions of actual workstations.
The three processors are interconnected by a network that delivers constant, non-
random performance, i.e., given i and j, n,_, ;(k) is constant for all & and, by conven-
tion in Definition 3.1(iv), is 0 for i=j. Three implementations are simulated:
synchronous with 4, =1 and B;=0 for all processors i; asynchronous (Async. 1)
with 4,= B;=1 for all processors i; and more asynchronous (Async.2) with 4;=1
and B;=2 for all processors i. The asumptions set forth above are non violated in
these simulations.

The simulations provide information about accuracy and sensitivity of the two
levels for the environment described. First, we observe that the new estimates of
asymptotic convergence rate are improvements on estimates in [3]. Table 1 shows
the relative errors between the different estimates and the observed convergence
rate for different implementations in the simulated environment. The gaps between
the four estimates increase with asynchronicity. It is to be noted that no estimate
exactly predicts the observed convergence rate. A primary reason is that the
estimates depend only on the spectral radius of the matrix associated to the con-
tracting operator, but not on the actual shape of that operator. Therefore, the same
estimates will be computed for different operators that happen to have the same
contracting matrix.
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FIG. 2. Update time distributions for the three processors.

The simulations also show that level 2 characterization is rather sensitive. Indeed,
as it is based on a binomial Gaussian approximation, its accuracy as an aproxima-
tion generally increases with a larger number of samples. It is shown in [11] that
the error between level 2 characterization and the observed standard deviation
decreases for increasing valules of w (recall that larger w implies more iterations
performed).

Figure 3 shows the simulation versus the characterization for an asynchronous
implementation in the simulated heterogeneous distributed environment. On each
graph, the empirical distribution of the execution time is shown as a bar diagram
labeled “simulation.” The empirical mean is shown as a vertical solid line and the
empirical standard deviation is represented as a horizontal line segment inside bold
vertical lines on each side of the empirical mean. Level 1 characterization is shown
as a dashed vertical line. Level 2 characterization is shown as two horizontal
dashed line segments in bold vertical lines on each side of level 1. We show four
characterizations—Baudet [3], %, #, Z—each corresponding to a different

TABLE 1

Simulation: Convergence Rate Errors

Imp] Zj % R %Baudet
Sync. 7.69 % 7.69 % 7.69 % 7.69 %
Async. 1 31.96% 17.53% 36.08 % 54.64%
Async. 2 9.55% 17.86 % 57.14% 69.05%
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asymptotic convergence rate estimate. Note that the average-case estimate is a
dramatic improvement over the estimate in [ 3] for the execution time distribution
(22% wvs 214% error).

6. EXPERIMENT

This section presents experimental results [ 11] with a gradient algorithm for a
real multipolynomial cost function with 30 variables. The algorithm runs in parallel
on three Sun Sparc Ultra 1 workstations interconnected by a standard 10 Mbps
Ethernet. Those workstations are being used by students for course-work, as well
as for personal research. Measurements were obtained throughout one week (Nov.
17-24, 1997).

6.1. Preliminary Remarks

Figure 4 shows the execution times observed throughout the whole week for the
synchronous implementation and for the first asynchronous implementation (mildly
asynchronous: at most one update performed in S subphase for each processor).
This corresponds to 862 observations for each implementation. The measurements
for the second asynchronous implementation ( fairly asynchronous: at most two
update performed in § subphase for each processor) are not shown on Fig. 4 because
they would be difficult to distinguish from the ones of the first asynchronous implemen-
tation on that time scale. The three different implementations were run in a round-
robin fashion, each run using the three workstations and taking about 2 min.

The first observation is that the asynchronous implementations are generally
more efficient than the synchronous one. The first asynchronous implementation is
up to 150s faster than the synchronous implementation, and 30s faster on average.
On average the second implementaion is faster than the first one by about 1.9s. But
in only 15% of the observations is the absolute difference between the two
implementations more than 10s.

It seems that, in this environment, a good choice is an asynchronous implementa-
tions as opposed to a synchronous one. However, a mild asynchronicity is sufficient
to obtain improvement over a synchronous implementation. This can be explained
both by the nature of the distributed environment and by the nature of the iterative
algorithm. Several other references also include examples for which asynchronous
implementations outperform synchronous ones [3, 5, 22].

A fundamental observation on Fig. 4 is that the execution time is bursty. In fact,
the distributed environment, and therefore the algorithm, behaves very differently at
different times in the time period for the system is in use for a variety purposes
during the experimental runs. In order to illustrate these different behaviors,
Fig. 5a, b, and ¢ show three close-ups of the execution times for each implementa-
tion during three short subperiods about two hours long. The distributed environ-
ment apears to exhibit distinct modes during the week, which violates our ii.d.
assumption.
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FIG. 5. Different experimental behaviors throughout one week.

Figure 7 shows the execution times for the parallel iterative algorithm throughout
a 24-h time period at the end of the week. The distributed environment exhibited
a fairly stable behavior, leading to relatively smoother observations. We expect the
stochastic models to yield better results for the 24-h time period than for the entire
week as burstiness indicates violation of the stationarity assumption. We do not
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0.9 —
0.8\ . .
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o
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FIG. 6. Experimental update time distributions for the three processors.
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FIG. 7. Measurements during 24 h for the three implementations.

claim that any 24-h time period would lead to better result (as the execution time
may be bursty on many time scales). We merely chose to highlight a subset of the
time line that exhibited close-to-stationary behavior to evaluate how the model
would perform in a more stable environment. In the following sections, we present
and comment on some of the results for both time periods.
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FIG. 8. Experiment vs characterization for the synchronous implementation.
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6.2. Applying the Model

6.2.1. The One Week Time Period

The workload distributions of the three processors were sampled throughout the
week (roughly every 20 s) and are shown in Fig. 6. Figure 8 shows the results for
the synchronous implementation. The empirical distribution is clearly multi-modal
as already seen in Section 6.1. The level 1 characterization makes an error of about
17% in predicting the mean of the execution time. The level 2 characterization
underestimates the observed standard deviation by a factor of 50. In fact, level 2 is
very sensitive to the violation of the stationary assumption as a Gaussian approxi-
mation is involved.

Figure 9 shows the results for the mildly asynchronous implementation. Four
characterizations are shown, one of each estimate of the asymptotic convergence
rate. If one uses the average-case estimate (see Section 4.1), then the error on the
mean prediction is only 4% (as opposed to 116 % with the estimate in [3]). The
observations made on Fig. 8 about level 2 are still valid. The results for the second
asynchronous implementation are not shown here as they are fairly similar to the
results for the first asynchronous implementation. The next section reduces the time
period to 24h and should lead to improvements, especially for the level 2 charac-
terization as the stationary assumption should be less violated.
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FIG. 10. Experiment vs characterization for the synchronous implementation.
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6.2.2. The 24 Hour Time Period

Figure 10, for a synchronous implementation, demonstrates that the level 2
characterization becomes much more accurate for this shorter, more nearly station-
ary time period. Its error is here about 27 %, whereas it was a factor of 50 for the
whole week. Similar improvements were observed for all implementations. Further-
more, the level 1 characterization is more informative than for the one week time
period. Even though the level 1 characterizations do not exactly agree with the
observed mean, they are sufficient for purposes of comparisons. In this experiment,
the level 1 characterizations computed in [ 11] imply that an asynchronous implemen-
tation will out perform a synchronous one on average by 40 s (which agrees with
the experimental results on Fig. 7).

7. CONCLUSION AND FUTURE WORK

Parallelizing iterative algorithms for the solution of complex problems is a crucial
issue. The amount of computation required to solve such problems may be prohibitive
for a sequential implementation, especially in nonlinear cases. We use synchronous
and asynchronous paradigms for parallel iteration and develop stochastic models
that take characteristics of multiuser, distributed-memory environments into
account. The models are used to obtain performance characterizations that are
directly meaningful to the end-user. In practice, a user must provide the probability
distributions for network and CPU loads (as finitely specified, discrete distributions
obtained through sampling or from tools such as the NWS [31], for instance) and
employ the model for comparisons among degrees of asynchronism in implementa-
tions in terms of the estimates on algorithmic convergence rates, in particular, for
the worst-case.

An additional level of performance characterization based on large deviation
theory is developed in [11] and will be reported in the future. Further research
may also incorporate Markov-modulated random processes to model bursty
behaviors in more detail [23, 13, 17] and may investigate more complex models by
introducing dependences among RVs.

APPENDIX A: WAVEFRONT EQUATION

Let f'(k) e R be the duration in seconds of the 8 subphase of the kth algorithm
phase on processor i. (k) is a RV and it can be computed as follows. The f8 sub-
phase of the kth algorithm phase on processor i clearly starts at time fZ,, (k)=
T'(k)+ o' (k). It ends when the last expected message has been received by pro-
cessor i. The message expected from processor j is received by processor i at time

Lare (k) +n;_, ;(k). Therefore,

start

ﬁl(k): J ?1ax [ﬁstart j—>l ] ﬂstart(k)

= max , [ﬂgtart(k)+ni—>j(k)_ﬁétart(k)]'

je{l,..p
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Since n;

i—i

(k) =0, one obtains

Bi(k) =max[O0, max (T/(k)+ o/ (k) —T' (k) —a'(k) +n,_, (k))].

je L ap) — {1}
By Definition 3.1(v) and Eq. (6),
Xi(k+1)=X'"(k)+a(k)+ pi(k) —a'(k) — B (k).
Replacing f(k) and B/(k) by their expression and using the fact that
Vx,yeR, max (0, x —y)+y=max (x, y),

one obtains Eq. (7). |

APPENDIX B: WAVEFRONT STATE-SPACE

Lemma Bl IM,Vk=1, | X (k)| <M.

Proof. Let us consider processor 1 and processor i # 1 during the kth algorithm
phase. The times at wich these two processors receive a message from a processor
h are apart by |n,_ ,(k)—n,_ (k)| seconds, since we assume that processor /
sends all messages at the exact same time. Therefore, the times at which processors
1 and i receive the last messages they were expecting are apart by at most
max, ey, ., (11, 1(k)—n,_ ;(k)|). The communication times are assumed to be
bounded above and below as

VS,d Elns—»d) ng a» vk: ns—»d<”s—>d(k)<ns—>d'

One can then write

Vh |n,_ (k) —n,_ (k)| <max(n, 27— My i — My 1)
<max(n, 7, ;)

< max (m, ).
Tjellop) /

This implies that the times at which processors 1 and i receive the last message that
they were expecting, they are apart by at most max, ;.qy, .., (7,-,). But those
times are also apart by X;(k), according to Definition 3.1(v) and Eq. (6). Since
[X(k+ )|l o =max;cqy, .,y |X;(k+1)|, the proof is complete. ||

The preceding establishes that the wavefront vector is in a closed ball of R?. If
one assumes that o'(k), n,, ;(k), and the components of X(0) are rational (in Q),
then for each k, X (k) is in a finite subset of R? that does not depend on k. Those
assumptions are really purely technical; the data being manipulated is in @ since it
is processed by computers with finite arithmetic. The size of the state-space of the
wavefront Markov chain depends on the finitely specified, discrete distributions of
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a’(k) and n,_, (k) [11]. The n-values for the chain are the unique values in the
solution of the linear system /7 = IIP, where P is the transition probability matrix,
Ssnsg=1, and n,> 0 for every state s [ 16, 2,9].

APPENDIX C: LEVEL 2 CHARACTERIZATION

One can make a binomial Gaussian approximation of the distribution of the

random vector (3 () (with covariance matrix C). The covariance matrix of the

sum of those vectors for each algorithm phase until convergence, C’, can then be
estimated as

' w
¢ T E{N(k)} #* .

where E{N(k)} denotes the expected value of N(k) (this expected value does not
depend on k). Using C’, it is then easy to obtain an estimate of the standard
deviation of the execution time. Indeed, if

Crz[ 0§ UXY}

2
Oxy Oy

then the standard deviation estimate is computed as [16]
e
c=0y |1 —|—— .
Ox0y,

APPENDIX D: ASYMPTOTIC CONVERGENCE RATE ESTIMATES

To compute estimates of the algorithm asymptotic rate of convergence, we must
extend Eq. (5). In [3], the sequence {7, } is defined as

ZOZO
tk=tk+ak+bk’
where {a,} and {b,} are defined as

(1) starting with the (¢, + a;)th iteration, no solution vector update makes
use of values of components corresponding to iterates with indices smaller than 7.

(i1) all solution vector components are updated at least once between the
(tx + a;)th and the (7, + a, + b;)th iterations.

The sequence {k,} of Eq.(5) is then defined as
k, & sup{keN|ag+bo+ -+ +ar_;+b_, <t}

for nonnegative integers N.
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In our setting,

ai= N(k)9
Ve=0,1,..
k 5 Ly eeey {bk _ O,
where N(k) denotes the number of iterations performed during the kth algorithm
phase. One can then compute

k—1

Y max }(A,-+N(1))<t},

-0 ie{l,..p

k,=sup {k

The long-term probability distribution of the RV N(k) can be approximated using
the n-values for the wavefront Markov chain, leading to the probablity distribution
of k, or each . It is then possible to compute three estimates or the asymptotic rate
of convergence by replacing k, in Eq. (5) by its minimal observable value, its expec-
tation, or its maximal observable value. A formal proof of the convergence of the
limit in Eq. (5) for each estimate is left for future work. A finite limit has been
obtained in all simulations and experiments.
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