
CONCURRENCY: PRACTICE AND EXPERIENCE, VOL. 9(11), 1279–1291 (NOVEMBER 1997)

Java access to numerical libraries
HENRI CASANOVA1∗, JACK DONGARRA1,2 AND DAVID M. DOOLIN2

1Department of Computer Science, University of Tennessee, 104 Ayres Hall, Knoxville, TN 37996, USA
(e-mail: casanova@cs.utk.edu)

2 Mathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831,USA

SUMMARY
It is a common and somewhat erroneous belief that Java will always be ‘too slow’ for scientific
computing. Two projects under way at the University of Tennessee are addressing the question
of scientific computing via Java: NetSolve and f2j. The approaches taken by these two projects
are radically different. NetSolve allows users to access pre-installed computational resources,
such as hardware and software, distributed across the network. Using these resources, the
user can easily perform scientific computing tasks without having any computing resource
installed on his or her computer. NetSolve features a Graphical User Interface written in Java
as well as a Java Application Programming Interface. The f2j (Fortran to Java) project will
provide the numerical subroutines translated from their Fortran source into class files suitable
for use by Java programmers. This makes it possible for a Java application or applet to use
established legacy numerical code that was originally written in Fortran. This article describes
the research issues involved in these two projects and their current limitations. We also explain
how, although using two different paradigms and addressing somewhat different classes of
users and applications, NetSolve and f2j achieve a common goal: to provide efficient, reliable
and portable access to standard numerical libraries via Java. 1997 John Wiley & Sons, Ltd.

Concurrency: Pract. Exper., Vol. 9(11), 1279–1291 (1997)

No. of Figures: 2. No. of Tables: 0. No. of References: 26.

1. INTRODUCTION

The Java language has become very successful since its formal introduction in 1995.
The language itself is very attractive: it is object oriented and standard class libraries
provide very natural interfaces to features such as multi-threading, Internet communication
and protocols, graphical components, Graphical User Interface (GUI) design facilities,
customizable security restrictions, etc. More than the language itself, Java’s popularity
may be attributed in part to its ability to be executed as applets running within Web
browsers. Java source code is compiled into hardware independent bytecode, which is then
interpreted by a Java Virtual Machine (JVM). A JVM can be embedded in a Web Browser
and, with the appropriate security restrictions, execute bytecode programs called class files
that are accessible from the World Wide Web. JVMs are being provided by an increasing
number of software developers, sometimes as a standard feature of their operating systems.
It is possible to run Java applications on these architectures as executable programs. To
increase the performance of Java, just-in-time (JIT) and native code compilers have also
been developed. JIT compilers translate Java byte code to native code at runtime. Native
code compilers produce machine-specific executables from Java source code. The increase

∗Correspondence to: H. Casanova, Department of Computer Science, University of Tennessee, 104 Ayres
Hall, Knoxville, TN 37996, USA. (e-mail: casanova@cs.utk.edu)

CCC 1040–3108/97/111279–13$17.50 Received April 1997
1997 John Wiley & Sons, Ltd. Revised July 1997

1280 H. CASANOVA ET AL.

in execution speed is balanced in each case by a corresponding decrease in platform
independence.

Faced with the increasing acceptance of Java as a viable programming language and
the fact that it can be used for multi-threaded Internet-based distributed applications, it is
natural to consider using Java for scientific computing. Scientific computing applications are
generally written using pre-existing libraries that address different fields of computational
science (linear algebra, optimization, curve fitting, etc.). It would, of course, be possible to
hand-write directly, in Java, the numerical class libraries needed by Java programmers, but,
considering the number of numerical libraries available, the number of functions in each of
these libraries and the number of years that were invested in their development, rewriting
and testing all this software in Java would be a formidable task.

Several solutions can be found to avoid such a rewrite while still providing Java programs
with access to the numerical algorithms already implemented in Fortran. Two projects are
currently being developed at the University of Tennessee. One approach is to allow Java
applications or applets to access computational servers that can directly use pre-installed
Fortran libraries. Such a scheme is enabled by the NetSolve project, which is the subject of
Section 2. As detailed in that Section, NetSolve provides in fact much more than just this
computational server paradigm, and Java is only one of the ways to access the NetSolve
resources. The other approach is to translate the Fortran source code of the libraries of
interest into Java class files. The f2j project is a first attempt at such translation and is
described in Section 3.

2. ACCESS TO NUMERICAL SOFTWARE VIA NetSolve

2.1. Rationale

Scientific computing has been a major part of both research centers and industry for
many years. As such, it has been the subject of many investigations which have led to the
development of numerous software products. These products can be classified into different
categories. Some numerical tools, like MATLAB[1] or Mathematica[2], have enjoyed great
success. These tools generally provide an interactive interface as well as the possibility of
writing scripts to perform computation.

Another class of products falls under the category of numerical libraries. Numerical
libraries are less convenient than interactive tools, since the user generally is required to
write a C or Fortran program. Nevertheless, they offer the advantages of execution speed
and flexibility. A very large number of such libraries exists, and they cover diverse fields
of computational science. Moreover, unlike interactive tools, numerical libraries are often
freely available (e.g. LAPACK).

A third class of tools comprises runtime packages whose goal is to help the user per-
form some specific type of built-in, scientific computation. Like numerical libraries, such
packages are usually freely available. One example is NEOS[3], which is focused on linear
programming and optimization.

Users wanting to solve a numerical problem are thus confronted with a dilemma. They
can purchase a commercial product and take the risk that it might not be suitable for future
use on different kinds of problems, or they can try to locate and download free libraries
and write programs in terms of specific functions or subroutines. NetSolve addresses this
second situation, where the user is confronted with many difficulties.

Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997) 1997 John Wiley & Sons, Ltd.

JAVA ACCESS TO NUMERICAL LIBRARIES 1281

The first task the user must undertake is to look for the appropriate library or set of
libraries he or she needs for their own computational problem. Usually, such libraries can
be found in software repositories. One well-known repository, for example, is Netlib[4],
which is maintained through the collaborative effort of several institutions and universities.
Software repositories present some intrinsic difficulties for the inexperienced user: (i) they
are generally very large and (ii) contain very different types of libraries. Once located,
the appropriate library must be downloaded and installed. Depending on the nature of the
software, this step might be non-trivial, especially for a user having no experience with this
kind of task. However, the biggest step still remains – learning how to use the library itself,
i.e. how to write a program in terms of its library components. Such a task can be formidable
and time-consuming (even without regard for the debugging phase). Moreover, the user
may want to write the program or script in a language that is different from the language
the numerical library has been written in. Even inter-language interoperability is possible;
the user must learn the techniques that are often non-portable and require experience.

These considerations motivated the establishment of the NetSolve project. NetSolve is a
client–server application designed to solve computational science problems over a network.
A number of different interfaces have been developed for the NetSolve software so that
users of C, Fortran, MATLAB, Java or the Web can easily use the NetSolve system. The
underlying computational software can be any scientific package, thereby ensuring good
performance results. Moreover, NetSolve uses a load-balancing strategy to improve the use
of the computational resources available. The following Section gives an overview of the
NetSolve system.

2.2. Overview of the NetSolve project

2.2.1. Architecture

The structure of the NetSolve system organization is depicted in Figure 1. To solve the
challenges highlighted above, NetSolve provides the user with a pool of computational
resources. These resources are in fact computational servers that provide runtime access
to arbitrarily specified numerical libraries. The user can use one of the different NetSolve
client interfaces to send requests to these servers. The user requests, however, are not sent
directly to the computational resources, but are instead processed by another component of
the system: a NetSolve agent. The agent decides which computational server should handle
the user request and assigns the request to that server.

The different hosts that participate in the NetSolve protocol may be located anywhere on
the Internet. In fact, they may be administered by different institutions. NetSolve does not
assume any centralized control over the different hosts in the system. On the contrary, each
process (computational server or agent) is an independent entity: it can be stopped/restarted
safely at any time without putting the integrity of the system in jeopardy. Furthermore, a
NetSolve system can contain several instances of the NetSolve agent. Suppose, for example,
that the set of computational resources spans several local area networks and that users on
each of these networks want to use NetSolve to perform scientific computations. It is then
possible to start a NetSolve agent on each network, so that user requests always go to the
‘closest’ agent to be processed. Different instances of the NetSolve agent can then have
different views of the set of computational resources, reflecting the fact that certain clients
are closer to certain computational resources.

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997)

1282 H. CASANOVA ET AL.

NetSolve Client NetSolve Agent

Request

ChoiceReply

Resource
NetSolve

NetSolve Pool of Resources

Figure 1. The NetSolve system

The specification of the computational servers and how they interact with the underlying
numerical libraries is detailed in [5], where it is explained that computational servers are
created with the help of a Java applet. Currently, computational servers interfacing with
the following numerical libraries have been successfully created: FitPack[6], ItPack[7],
MinPack[8], FFTPACK[9], LAPACK[10], BLAS[11–13] and QMR[14].

2.2.2. Load balancing

The primary role of the agent in the NetSolve system is to perform load balancing among the
different computational resources. NetSolve is inherently a multi-request system. Several
users can share computational resources by contacting the same agent or different agents
managing the same pool of resources. In fact, even a single user can send multiple asyn-
chronous requests at once, as explained in the description of the user interfaces. For each
server, the agent uses information contained in the user request (e.g. type of computation,
size of the problem), static information about the server (speed of the host, numerical server
available, etc.), and predictions about the workload of the server’s host and the distance to
the server’s host over the network. These different pieces of information are then combined
to obtain an estimate of the time required to process the user request on each computational
server (including network time and CPU time). For each client incoming request, the Net-
Solve agent sorts the appropriate computational servers by the estimated times, and is then
able to process the request accordingly. More details on the way the agent performs this
load balancing can be found in [15].

Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997) 1997 John Wiley & Sons, Ltd.

JAVA ACCESS TO NUMERICAL LIBRARIES 1283

2.2.3. Fault tolerance

As previously mentioned, the hosts in the NetSolve system can be located anywhere on
the Internet and can therefore be administered by different institutions. For this reason,
NetSolve does not try to impose any control on the different resources. This distributed
computation approach is very flexible, but it requires that NetSolve implement fault toler-
ance mechanisms. Indeed, any resource can become unreachable at any moment, perhaps
because of a network failure, a host failure or simply because a system administrator reboots
a host.

The NetSolve system ensures that a user request will be completed unless every single
resource has failed. When a client sends a request to a NetSolve agent, it receives a sorted list
of computational servers to try. When one of these servers has been successfully contacted,
the numerical computation is started. If the contacted server fails during the computation,
then another server is contacted and the computation is restarted. This whole process is
transparent to the user. If all the servers have failed, then the user is notified that the
computation cannot be performed at that time. The server-list strategy represents a first step
towards fault tolerance and will be improved in future versions of the software.

2.2.4. Multiple user interfaces

An important goal of the NetSolve design is to provide several interfaces for a wide range
of target users. Presently, NetSolve provides C, Fortran, MATLAB and Java Application
Programming interfaces (APIs). We also deemed that NetSolve needed a graphical interface
and this interface has been written in Java as well. The two Java interfaces are described at
the end of this Section.

Another concern is to keep the interface as simple a possible. For example, the MATLAB
interface contains only two functions: netsolve() and netsolve nb(). The first function
allows the user to send blocking requests to NetSolve, whereas the second one sends non-
blocking requests. In fact, every interface provides non-blocking calls to NetSolve. When
several non-blocking requests are sent to a NetSolve agent, they are dispatched between the
available computational resources according to the load balancing schemes implemented
by the agent. With minimal effort, the NetSolve user can achieve a degree of parallelism.
Complete details regarding the various interfaces as well as examples can be found in [16].

2.3. Java interface to NetSolve

2.3.1. Graphical interface

For NetSolve to be accepted by many users, it must provide several distinct ways to access
computational resources – mainly different user interfaces. Before the development of
the Java graphical interface, the only interfaces that were available were MATLAB, C and
Fortran, leaving the MATLAB interface as the only high-level and interactive way of calling
NetSolve. However, MATLAB is not freely distributed and many users may not have it
installed on their workstations. We needed a freely available interactive interface so that
users not familiar with scientific computing could still use NetSolve for their first steps in
the field. Furthermore, Java allowed us to effortlessly design a graphical interface making
NetSolve even more straightforward for first-time users, even though an experienced user
is more likely to use the Fortran or MATLAB interface if available.

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997)

1284 H. CASANOVA ET AL.

NetSolve’s interactive Java interface is entirely graphical. A window displaying available
computational methods is presented to the user, who can point and click to solve the
numerical problem of interest. The user then supplies input by way of files, URLs or
interactively using the keyboard. Computation is handled as usual by a computational
server chosen by the NetSolve agent and the result is returned to the user. The results can
be viewed and saved if necessary.

NetSolve’s graphical interface is multi-threaded, using Java’s built-in thread facilities.
Each computation is assigned to a separate thread. Every request sent by the Java interface
to the NetSolve computational resource is represented by an independent window. By
opening several windows concurrently, the user can send multiple requests simultaneously.
Each request will be handled by different computational servers, thanks to the agent’s
load balancing strategy. This is very similar to the non-blocking calls to NetSolve from C,
Fortran, MATLAB or Java programs.

The pool of NetSolve resources can be a heterogeneous set of hosts, i.e. two hosts can
have different internal data representations. To support heterogeneous environments, the
agents, servers and C, Fortran and MATLAB interfaces use the XDR protocol[17]. As
part of NetSolve, we developed a simple Java XDR-encoder, enabling our interface to
communicate with any server on any platform. The Java interface may then contact servers
which expect XDR-encoded data.

One of the features of Java is that the Java virtual machine can enforce a strict security
scheme. Typically, the virtual machine embedded in a Web browser does not allow local file
access, or network connection except to the Web server that served the applet. Currently,
the Java interface to NetSolve cannot be used as an applet within a Web browser because
of these security restrictions. Indeed, our interface is supposed to contact many different
servers scattered on the Internet and therefore to perform multiple network connections. It
is possible to work around applet security restrictions by setting up an appropriate daemon
on the Web servers, but this would not be a viable solution in the long term, considering
the mass of data that would transit through the Web server. However, the interface is fully
functional as an application, running on a system which has a Java virtual machine, or
distributed with a Java Runtime Environment. Considering the increased interest in Java,
most systems already have an implementation of the Java Development Kit (JDK) that
includes the Java virtual machine and the javac compiler. Our interface should therefore be
usable on virtually any platform, and future versions of Web browsers allowing security
levels to be set by the user are likely to make the applet approach feasible.

2.3.2. NetSolve’s Java API

The first graphical interface to NetSolve was written in TK/TCL[18]. When Java became
available, we decided that it would be a much better choice to write a graphical interface
for the reasons described in the preceding Section. By the time the first version of the Java
GUI was completed, Java had evolved to be accepted as an important language by itself,
not just a tool for running programs (applets) within Web browsers. The need for a Java API
to NetSolve then seemed clear, since NetSolve already provided C, Fortran and MATLAB
interfaces. Fortunately, most of the internals of the GUI could be re-used to implement a Java
API. In fact, due to the unexpected success of Java during the development of NetSolve,
we were led to do some reverse engineering: extracting the internals of an existing software
for distribution as a stand-alone class library. The API is still under development and has

Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997) 1997 John Wiley & Sons, Ltd.

JAVA ACCESS TO NUMERICAL LIBRARIES 1285

motivated some code restructuring within the GUI. It will match the other APIs to NetSolve
as closely as possible.

There are, however, some difficulties that are inherent to Java. For instance, Java does
not support calling sequences to a same function with a variable number of arguments.
Also, as explained in Section 3, Java passes primitive types by value which does not allow
a calling sequence entirely compatible with the underlying Fortran numerical libraries in
the NetSolve computational servers. These difficulties are, however, surmountable, and an
attractive API will be presented for providing users with an ability to write portable scientific
computation applications and applets. The user-developed programs will be reliable because
the NetSolve computational servers use established and widely accepted numerical libraries.
They will also be efficient because of NetSolve’s agent-based design, allowing the user to
achieve parallelism with virtually no additional programming effort.

2.4. Future developments

NetSolve is still a relatively young, rapidly developing project which is bound to greatly
improve in the near future. The Java GUI and API to NetSolve will reflect these improve-
ments when appropriate, evolving to provide the user with attractive new features. The most
interesting improvements will most likely take place within the Java GUI since the API
should stay as simple as possible. The GUI, on the other hand, can integrate new modules
on demand. For instance, it would be very feasible to add data visualization modules to the
Java GUI so that the user can be presented with the results of his or her computations in an
attractive graphical display. Another possible extension would be to develop some kind of
MATLAB-like scripting language with which the user could describe a whole numerical
algorithm using the NetSolve services. In fact, better than a scripting language would be
a graphical interface describing a numerical algorithm as a task-graph and where each
node would be an invocation to a NetSolve service. We have already started developing a
prototype of such a graphical interface in Java that could be integrated in the NetSolve Java
GUI. This prototype could eventually fit in an even broader framework where the nodes of
the graph are not limited to a NetSolve service but perhaps describe a more general task,
like a user’s Java program. Following this thread of ideas and new developments in the
Java world, it appears that users might want to call numerical software directly from their
applications or applets, instead of using NetSolve. This might indeed be a good choice for
users concerned with security and who do not want their data to travel over the Internet,
or users whose applications do not require a large computational power, or for users who
have access to hardware computational resources and plan to use some kind of native Java
compiler, to ensure acceptable performance levels. The following Section describes a new
project, just started at the University of Tennessee, that will allow such users to include
calls to numerical libraries in their Java programs.

3. DIRECT Java ACCESS TO NUMERICAL SOFTWARE

3.1. Motivation

Real programmers program in Fortran, and can do so in any language.
Ian Graham, 1994[19].

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997)

1286 H. CASANOVA ET AL.

Following the development of NetSolve, the f2j project, recently started at the University
of Tennessee, will provide APIs for direct access to numerical libraries from Java programs.
f2j is a formal compiler that translates programs written using a subset of Fortran 77 into
a form that may be compiled or assembled into Java class files. The first priority for f2j is
to translate the BLAS[11–13] and LAPACK[10] numerical libraries from their Fortran 77
source code to Java class files. The subset of Fortran 77 translated by f2j matches the
Fortran source used by BLAS and LAPACK. These libraries are established, reliable and
widely accepted linear algebra packages, and are therefore a reasonable first testbed for
our translator. Many other libraries of interest are expected to use a very similar subset of
Fortran 77.

The primary motivation for this project is to provide the reliability and dependability of
the LAPACK numerical linear algebra subroutines as class files available for use in the Java
Virtual Machine (JVM). Targeting the JVM provides access to legacy code for distributed
computation via the World Wide Web. Similar previous efforts such as f2c[20] have proven
to be very popular and widely used. The BLAS and LAPACK class files will be provided
as a service of the Netlib repository. f2j also provides a base for a more ambitious effort
translating a larger subset of Fortran, and perhaps eventually any Fortran source into Java
class files.

Popular opinion seems to hold the somewhat erroneous view that Java is ‘too slow’
for numerical programming. However, there are currently many small to intermediate
scale problems where speed is not an issue. For instance, physical quantities such as
permeability, stress and strain are commonly represented by ellipsoids[21,22] – a graphical
representation of an underlying tensor. The tensor is mathematically represented by an
SPD matrix. Ellipsoid axes are computed from the root inverse of the tensor’s eigenvalues,
directed along the tensor’s eigenvectors. A LAPACK eigenproblem subroutine such as
SSYTRD, available as a Java class file, provides a portable solution with known reliability.
Since future execution speeds of Java will increase as just-in-time (JIT) and native code
compilers are developed, the scale of feasible numerical programming will increase as well.

3.2. Implementation

Several freely available Fortran compiler fronts ends, such as g77 and f2c, were examined to
base the f2j on. None of these fits the needs of the project sufficiently well, and the following
quotation helped provide motivation to start a clean implementation from scratch:

The program f2c is a horror, based on ancient code and hacked unmercifully.
Users are only supposed to look at its C output, not at its appalling inner
workings. Stuart Feldman[20].

Due to the context sensitive nature of the Fortran language, the lexer was hand-written
(in C), as recommended in [23,24]:

It should be noted that tokenizing Fortran is such an irregular task that it is
frequently easier to write an ad hoc lexical analyzer for Fortran in a conven-
tional programming language than it is to use an automatic lexical analyzer
generator. Alfred Aho, 1988[23].

This allowed expression of the Fortran grammar as LR(1), sufficient to use the parser
generator Bison, a yacc work-alike distributed by the Free Software Foundation. Bison

Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997) 1997 John Wiley & Sons, Ltd.

JAVA ACCESS TO NUMERICAL LIBRARIES 1287

generates an ANSI C parser, which is useful for platform independence. There is no type
checking if Java source code is chosen to be emitted. The Fortran source file is assumed
to be standard Fortran 77. Limited type checking is done during the type conversion pass
when assembler opcode is emitted. All code generation and type conversion procedures are
written in C, for portability and extensibility.

The Fortran source code is parsed into an abstract syntax tree (AST) consisting of tagged
union nodes implementing the equivalent Java structures. Using an abstract syntax tree
has several benefits, one of which is that code restructuring can be easily performed. For
instance, continuing loop iteration within a Fortran do loop requires agoto/continuepair;
in Java this is accomplished similar to C, with a continue statement. Similarly, breaking a
loop in Fortran 77 requires a goto/label pair, implemented as a break statement in Java.
The AST allows easy lookup and connection between non-adjacent nodes for such code
restructuring. Another benefit is that the AST may be passed by its root node to separate
type-checking, code optimizing and code generation procedures.

After parsing a Fortran source file, the AST is traversed recursively to emit either Java
source code for compilation or Java opcode suitable for assembly into class file format.
Targeting Java source and opcode is more convenient than producing bytecode directly
because: (i) internal documentation of BLAS and LAPACK subroutines exists in the form
of comment headers and can be preserved exactly in the translated form; and (ii) Java source
and opcode are stored in readable ASCII text files – much more convenient for testing and
debugging the translated routines. Targeting the Java source is fairly straightforward, but
due to many control structures in the BLAS and LAPACK reference source being written
with goto constructions, the amount of Java source code currently emitted is limited. Since
code restructuring has been shelved for later consideration, the remaining subroutines are
emitted as opcode suitable for assembly using a public domain assembler, jasmin (Java
Assembler Interface)[25]. JVM opcode has not yet been standardized by Sun, but jasmin
uses instructions identical to those specified by Sun in their JVM documentation[26]. The
same opcode is produced as output from Sun’s javap program invoked to disassemble a
Java class file. Figure 2 shows a diagram of the two translation schemes that are being
experimented with in the f2j project.

Fortran
source

Java
source

JVM
Opcode

.class
file

javac

Java
assembler

(jasmin)

f2java

f2jas

.class
file

Figure 2. Translation strategies in the f2j project

One of the more challenging aspects of the project is resolving differences between
the calling structures in Fortran and Java. Fortran passes all arguments by reference. Java
passes objects by reference, but primitives such as integers, floats and doubles are passed
by value. A Fortran subroutine that modifies an integer for use in the calling program has

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997)

1288 H. CASANOVA ET AL.

no direct counterpart in Java. One possibility would be to create a class containing all of
the arguments for a subroutine. While this technique would be more object-oriented than
changing lists of calling parameters, the complexity of writing a translator could be greatly
increased.

Java provides class wrappers for all primitive types, but the value of the primitive is
immutable within the object wrapper. Since the JVM requires that all methods return a
value or void, values cannot be left on the JVM stack (each method implements its own
stack). The solution being implemented is to simply wrap the necessary values (e.g. the
INFO variable used in many LAPACK routines for reporting error status) in a custom class
consisting of a single static class variable. This also provides less overhead than instantiating
built-in wrappers provided in the Java language specification. A simple experiment showed
that instantiating an object of type Double requires 280 bytes in Java (javac version 1.1.1),
but a simple wrapper such as

class DoubleWrapper {

double d;

}

only requires 56 bytes. Both classes, Double and DoubleWrapper, inherit from class
Object. The size difference reflects methods implemented in Double that are lacking in
DoubleWrapper. Another possibility under consideration is to pass primitives as single
element arrays.

Neither is it possible to pass references to subsections of arrays. Java will dereference
indexed arrays and pass the value instead. This necessitates changing the calling parameters
of the BLAS and LAPACK routines to pass indices separately with every array. Method
overloading would allow a default method invocation identical to a LAPACK call that
passed all arrays by their initial reference, but overloading for all possible cases would
increase the number of required methods by 2n, n being the number of arrays.

3.3. Future developments

As the initial design is very much a proof of concept, the compiler is limited to the
double precision BLAS and LAPACK routines. Future work on the project might include
providing better type checking, or providing BLAS and LAPACK in the form of a Java
language source. Providing a Java language source would require formal code restructuring
to translate Fortran goto statements to equivalent Java control structures, as discussed in
Section 3.2. Since the present compiler produces assembler code directly, to handle goto
statements, it could be modified to produce stack values suitable for complex arithmetic.

Currently, implementing complex numbers and complex arithmetic would raise perfor-
mance issues. Complex numbers are not specified as primitives in Java, and while they
could be easily implemented as objects, this would produce considerable overhead, as
demonstrated above. A better idea would be to define static methods to operate directly on
a stack containing the appropriate arguments for complex number arithmetic. This solution
still suffers a performance penalty with each static method invocation. The best solution
would, of course, be complex primitives specified by Sun as part of the Java language, with
associated JVM instructions to provide complex arithmetic capability.

Another extension of f2j could provide simple code optimization. Direct translation of

Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997) 1997 John Wiley & Sons, Ltd.

JAVA ACCESS TO NUMERICAL LIBRARIES 1289

the Fortran statement i = i + 1 to increment an index i results in the following JVM
stack sequence:

iload n ; Push n to stack.

iconst_1 ; Push integer constant 1 to stack.

iadd ; Integer add.

istore n ; Store value on stack in n.

where n is a variable local to the methods stack, and ; delimits comments. Optimizing this
operation using JVM instructions results in

iinc n 1 ; Increment the value stored in n by 1.

For large or highly iterative procedures, the savings in the size of bytecode and execution
speed should be significant.

As well as providing numerical routines for Java programming, the Fortran to Java
compiler f2j demonstrates the feasibility of compiling arbitrary languages to the JVM
using the class file format. Fortran to Java source translations may also be accomplished
when control structures in Fortran match those in Java, or can be restructured to match.
This effort certainly will not be the first such; indeed, a C++ to Java translator already
exists, and work is under way on a Pascal to class file translator (Mark de Boer, personal
communication).

4. CONCLUSION

As Java’s popularity grows, it becomes more and more crucial to provide reliable ways to
write Java programs that perform scientific computation. There are basically two reasons
why Java is often claimed to be inappropriate for scientific computing. The first reason is
that Java is generally interpreted and is therefore unable to run at machine speed. The second
reason is that no standard numerical libraries have been translated yet to Java bytecode (or
source for that matter). The first reason seems to be less and less of a concern as native
compilers are being provided by software developers, so that Java can be used as any other
language to develop code on those platforms. Even the speed of applets can be raised to
new levels with JIT techniques. However, compiled Java source on those platforms is, of
course, not portable any longer as it is not targeting the JVM any more.

Two projects under way at the University of Tennessee will provide efficient, portable and
reliable access to scientific computing facilities using Java: NetSolve and f2j. Both projects
achieve reliability by providing access to standard numerical libraries. NetSolve possesses
a framework that allows easy integration of arbitrary numerical libraries hosted on remote
computational servers. f2j is for now limited to libraries using a subset of Fortran 77. This
subset is used by the BLAS and LAPACK libraries and is likely also to be sufficient for other
standard numerical libraries or at least easily expendable. Portability is also achieved by
both NetSolve and f2j. NetSolve’s Java API leads naturally to portable code since it is at the
Java source level. f2j takes in input Fortran source and ultimately generates portable Java
class files. Two ways of generating this bytecode are under investigation: either compiling
Java source or assembling JVM opcode. Going through Java source would, of course, be
extremely interesting but, as explained in Section 3, it will require code restructuring. Going
through Java opcode is somewhat easier but is then bound to a JVM execution. Finally,

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997)

1290 H. CASANOVA ET AL.

these two projects are also concerned with efficiency. NetSolve ensures efficiency thanks
to an agent-based design and computational servers that run optimized compiled Fortran
numerical library functions. f2j depends on the efficiency of the runtime environment in
which the generated class files are executed. Future work with f2j will minimize overhead
by optimizing the emitted JVM opcode.

The NetSolve and f2j are emerging developmental projects and are quite likely to undergo
substantial modification and improvement as the research issues involved become better
understood. Both projects aim at making Java-based scientific computing not only feasible
but attractive for a broad class of applications and users.

REFERENCES

1. Inc. The Math Works, MATLAB Reference Guide, 1992.
2. S. Wolfram. The Mathematica Book, 3 Edn, Wolfram Median, Inc. and Cambridge University

Press, 1996.
3. J. Czyzyk, M. Mesnier and J. Moré, ‘Neos : The network-enabled optimization system’, Techni-

cal Report MCS-P615-1096, Mathematics and Computer Science Division, Argonne National
Laboratory, 1996.

4. S. Browne, J. Dongarra, E. Grosse and T. Rowan, ‘The Netlib Mathematical Software Reposi-
tory’, D-Lib Magazine, Sept. 1995, accessible at http://www.dlib.org/.

5. H. Casanova and J. Dongarra, ‘The use of Java in the NetSolve project Computational Science
Problems’, in Proc. of the 15th IMACS World Congress on Scientific Computation, Modelling
and Applied Mathematics, Berlin, Department of Computer Science, University of Tennessee,
Knoxville, 1997.

6. A. Cline, ‘Scalar- and planar-valued curve fitting using splines under tension’, Commun. ACM,
17, 218–220 (1974).

7. D. Young, D. Kincaid, J. Respess and R. Grimes, ‘Itpack2c: a FORTRAN package for solv-
ing large sparse linear systems by adaptive accelerated iterative methods’, Technical Report,
University of Texas at Austin, Boeing Computer Services Company, 1996.

8. J. Moré, B. Garbow and K. Hillstrom, ‘Minpack’, documentation file accessible at
http://www.netlib.org/minpack/readme.

9. P. Swarztrauber, ‘FftPack’, documentation file accessible at
ftp://ftp.ucar.edu/ftp/dsl/lib/fftpack/readme.

10. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users’ Guide, 2 Edn, SIAM,
Philadelphia, PA, 1995.

11. C. Lawson, R. Hanson, D. Kincaid and F. Krogh, ‘Basic linear algebra subprograms for Fortran
usage’, ACM Trans. Math. Softw., 5, 308–325 (1979).

12. J. Dongarra, J. Du Croz, S. Hammarling and R. Hanson, ‘An extended set of Fortran basic linear
algebra subprograms’, ACM Trans. Math. Softw. 14(1), 1–32 (1988).

13. J. Dongarra, J. Du Croz, I Duff and S. Hammarling, ‘A set of level 3 basic linear algebra
subprograms’, ACM Trans. Math. Softw. 16(1), 1–17 (1990).

14. R. W. Freund and N. M. Nachtigal, ‘QMR: A quasi-minimal residual method for non-Hermitian
linear systems’, Numer. Math., 60, 315–339 (1991).

15. H. Casanova and J. Dongarra, ‘NetSolve: A network server for solving computational science
problems, in Proc. of Supercomputing’96, Pittsburgh, Department of Computer Science, Uni-
versity of Tennessee, Knoxville, 1996, to appear in Int. J. Supercomput. Appl. High Perform.
Comput.

16. H. Casanova, J. Dongarra and K. Seymour, ‘Client user’s guide to Netsolve’, Technical Report
CS-96-343, Department of Computer Science, University of Tennessee, 1996.

17. Inc. Sun Microsystems, ‘XDR: External data representation standard’, RFC 1014, Sun
Microsystems, Inc., June 1987.

18. John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.
19. I. Graham, Object Oriented Methods, Addison-Wesley, Berkeley, CA, 2 Edn, 1994.

Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997) 1997 John Wiley & Sons, Ltd.

JAVA ACCESS TO NUMERICAL LIBRARIES 1291

20. S. I. Feldman, D. M. Gay, M. W. Maimone and N. L. Schryer, ‘A Fortran-to-C converter’,
Computing Science Technical Report 149, AT&T Bell Laboratories, Murray Hill, NJ, 1995.

21. L. E. Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Engle-
wood Cliffs, NJ, 1969.

22. J. C. S. Long, J. S. Remer, C. R. Wilson and P. A. Witherspoon, ‘Porous media equivalents for
networks of discontinuous fractures’, WRR, 18, 645–658 (1982).

23. A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-
Wesley Publishing Company, Reading, MA, 1988.

24. J. R. Levine, lex & yacc, O’Reilly and Associates, Cambridge, MA, 2 Edn, 1992.
25. J. Meyer and T. Downing, Java Virtual Machine, O’Reilly & Associates, Sebastopol, CA, 1997.
26. T. Lindholm and F. Yellin, The Java Virtual Machine Specification, Addison-Wesley, Berkeley,

CA, 1997.

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1279–1291 (1997)

	1. INTRODUCTION
	2. ACCESS TO NUMERICAL SOFTWARE VIA NetSolve
	2.1. Rationale
	2.2. Overview of the NetSolve project
	2.2.1. Architecture
	2.2.2. Load balancing
	2.2.3. Fault tolerance
	2.2.4. Multiple user interfaces

	2.3. Java interface to NetSolve
	2.3.1. Graphical interface
	2.3.2. NetSolve's Java API

	2.4. Future developments

	3. DIRECT Java ACCESS TO NUMERICAL SOFTWARE
	3.1. Motivation
	3.2. Implementation
	3.3. Future developments

	4. CONCLUSION
	REFERENCES

