next up previous contents index
Next: Shift-and-Invert QEP. Up: Spectral Transformations for QEP Previous: Invert QEP.   Contents   Index

Shifted QEP.

With a shift $\lambda=\mu+\sigma$, the shifted QEP is
\begin{displaymath}
\left(\mu^2 \widehat{M} + \mu \widehat{C} + \widehat{K} \right) x = 0,
\end{displaymath} (260)

where $\widehat{M}=M$, $\widehat{C} = C + 2\sigma M$, and $\widehat{K} = K + \sigma C + \sigma^2 M$. The shift transforms eigenvalues $\lambda$ of (9.1) close to $\sigma$ into eigenvalues $\mu$ close to $0$.

The corresponding generalized ``linear'' eigenvalue problem is (again in terms of $\lambda$, rather than $\mu$)

\begin{displaymath}
\twobytwo{0}{I}{-\widehat{K}}{-\widehat{C}}
\twobyone{x}{(\l...
...twobytwo{I}{0}{0}{\widehat{M}} \twobyone{x}{(\lambda-\sigma)x}
\end{displaymath}

or

\begin{displaymath}
\twobytwo{0}{\widehat{K}}{\widehat{K}}{\widehat{C}}
\twobyon...
...dehat{K}}{0}{0}{-\widehat{M}} \twobyone{x}{(\lambda-\sigma)x},
\end{displaymath}

if the Hermitian of the matrix triplet $\{M,K,C\}$ wants to be preserved.



Susan Blackford 2000-11-20