Data Services for Scientific Computing

Tony Hey
Corporate Vice President
Microsoft Research
In 2000 the Sloan Digital Sky Survey collected more data in its 1st week than was collected in the entire history of Astronomy.

By 2016 the New Large Synoptic Survey Telescope in Chile will acquire 140 terabytes in 5 days - more than Sloan acquired in 10 years.

The Large Hadron Collider at CERN generates 40 terabytes of data every second.

Sources: The Economist, Feb ‘10; IDC
<table>
<thead>
<tr>
<th>Year</th>
<th>Information Created</th>
<th>Available Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>2,000 exabytes</td>
<td>1,750 exabytes</td>
</tr>
<tr>
<td>2006</td>
<td>1,500 exabytes</td>
<td>1,200 exabytes</td>
</tr>
<tr>
<td>2007</td>
<td>1,000 exabytes</td>
<td>750 exabytes</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Forecast: 1 exabyte = 1 million terabytes, equivalent to 10 billion copies of *The Economist*.

Source: IDC, as reported in *The Economist*, Feb 25, 2010.
Economics of Storage

Hard Drive Storage (per gigabyte) $0.07

Web Storage (per gigabyte) $10,215.00

Source: Wired Magazine April 2010; Figures represented in USD
Cost per Genome

Source: George Church, Harvard Medical School, as reported in IEEE Spectrum, Feb '10. Figures represented in USD
Moore’s Law is alive and well...

…but a hardware issue just became a software problem

Source: Jack Dongarra, Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, Krste Asanovic, and Kathy Yelick
Computing Tools for Big Data

Scientific Workflow Workbench (Trident)

- Built on top of Windows Workflow Foundation
- Visually program workflows with the use of libraries of activities and workflows
- Scale from desktops to HPC clusters
- Distribution: Moving work closer to the data source
- Workflow sharing in myExperiment social Web site for researchers

Version 1.2 available for download on CodePlex (Apache 2.0 open source)

Dryad and DryadLINQ

- Programming models for writing distributed data-parallel applications that scale from a small cluster to a large data-center.
- A DryadLINQ programmer can use thousands of machines, each of them with multiple processors or cores, without prior knowledge in parallel programming.

Academic release available for download
Dryad

- Continuously deployed since 2006
- The execution engine for Bing analytics
- Running on $> 10^4$ machines
- Runs on clusters > 3000 machines
- Sifting through $> 10^{10}$ data daily
Dryad & DryadLINQ

- **DryadLINQ**
 - High-level language API (C#)
 - Dataflow graph as the computation model, distributed execution, fault-tolerance, scheduling

- **Dryad**
 - Remote process execution, naming, storage

- **Cluster Services**
- **Windows Server**
- **Windows Server**
DryadLINQ leverages LINQ’s extensibility

LINQ - Microsoft’s Language INtegrated Query
Released with .NET Framework 3.5, extremely extensible
WorldWide Telescope - TeraPixel

Challenge: Create the largest, clearest seamless image of the sky

Digitized Sky Survey (DSS)
• Produced photographic plates of overlapping regions of the sky
• 1,791 pairs of red-light and blue-light images acquired from two telescopes
• Scanned over 15 year period into 3,120,100 files, 417 GB

Create Spherical Image
1. Create color plates from DSS data
2. Stitch and smooth images
3. Create sky image pyramid for WWT
WorldWide Telescope - TeraPixel

Computational and Data Intensive

- Create RGB color plates from DSS data
 - Vignetting Correction (Red, Blue)
 - Astrometric Alignment
 - Statistical Analysis (Saturation & noise floor)
 - Colored Plate Creation

- Stitch and smooth images
 - Project Sphere Image onto Plane
 - Distributed gradient-domain processing

- Create sky image pyramid for WWT
 - Tiled Multi-resolution

Large-scale data aggregation easily performed with integrated set of technologies
- DryadLINQ => concise code
- .NET Parallel Extension => faster decompression of DSS data
- DryadLINQ + Windows HPC => Efficient and robust execution

Managed and Coordinated by Project Trident: A Scientific Workflow Workbench
Workflows for Processing Data in Parallel

Local Desktop Machine (process automation and reruns)

Collecting User Inputs

Staging Data Across the HPC Cluster

Using DryadLINQ for Parallel Processing

Post Processing

HPC Cluster (processing data in parallel – e.g. generating color images)

Data partition
\UserData\Terapixel\All\Part
1791, 56, MSR-SCR-Dryad1
1,56, MSR-SCR-Dryad4
2,56, MSR-SCR-Dryad5
......
1790, 56, MSR-SCR-Dryad32

Executing the workflow in parallel on the HPC cluster

Trident workflow runtime close to data on each node
Deployment Architecture

Generating RGB color plates
- Generation of 1,791 plates with 64 compute nodes
- Processing time: 5 hrs.
- Input: 417 GB (compressed, 4 TB uncompressed)
- Output: 790 GB (approx. 450 MB/plate)
WorldWide Telescope - TeraPixel

Result: Largest, clearest, and smoothest sky image in the world

Special Thanks to
- Brian McLean (Space Telescope Science Institute),
- Misha Kazhdan (Johns Hopkins University), Hugues Hoppe (MSR), and Dinoj Surendran (MSR)
- Dean Guo (MSR), Christophe Poulain (MSR)
- Aditi Team
Cloud Computing: One Definition

For the US National Institute of Standards and Technology (NIST), Cloud Computing means:

• On-demand service
• Broad network access
• Resource pooling
• Flexible resource allocation
• Measured service
Microsoft’s Datacenter Evolution

- **Datacenter Co-Location Generation 1**
- **Quincy and San Antonio Generation 2**
- **Chicago and Dublin Generation 3**
- **Modular Datacenter Generation 4**

Deployment Scale Unit
- Server: Capacity
- Rack: Density and Deployment
- Containers: Scalability and Sustainability
- IT PAC: Time to Market, Lower TCO
- Facility PAC
Cloud Options

- Public Cloud
- Internal IT Enterprise
- Private Cloud
- Dedicated Cloud
- Secure Cloud Federation
Cloud Services

Infrastructure as a Service (IaaS)
- Provide a way to host virtual machines on demand

Platform as a Service (PaaS)
- You write an Application to Cloud APIs and the platform manages and scales it for you.

Software as a Service (SaaS)
- Delivery of software to the desktop from the Cloud
Azure Programming Model

Abstract Programming Model:

Public Internet

Load Balancer

Front-end Web Role

Worker Role(s)

Azure Services (storage)

In-band communication – software control

Load-balancers

Switches

Highly-available Fabric Controller
MODIS Azure: Computing Evapotranspiration (ET) in the Cloud

A pipeline for download, processing, and reduction of diverse NASA MODIS satellite imagery.

Contributors: Catharine van Ingen (MSR), Youngryel Ryu (UC Berkeley), Jie Li (Univ. of Virginia)
• Evapotranspiration (ET) is the release of water to the atmosphere by evaporation from open water bodies and transpiration, or evaporation through plant membranes, by plants.

• Climate change isn’t just about a change in temperature, it’s also about a change in the water balance and hence water supply which is critical to human activity.

Source: Youngryel Ryu’s PhD project
MODIS Azure

Aqua, Terra: Time series raster data, 36 spectral bands, 1-2d

- Over some period of time at some time frequency at some spatial granularity over some spatial area
- Conversion from L0 data to L2 and beyond as well as reprojection
MODIS Azure: Four Stage Image Processing Pipeline

Data collection stage
• Downloads requested input tiles from NASA ftp sites
• Includes geospatial lookup for non-sinusoidal tiles that will contribute to a reprojected sinusoidal tile

Reprojection stage
• Converts source tile(s) to intermediate result sinusoidal tiles
• Simple nearest neighbor or spline algorithms

Derivation reduction stage
• First stage visible to scientist
• Computes ET in our initial use

Analysis reduction stage
• Optional second visible stage
• Enables production of science analysis artifacts such as maps
ModisAzure Service is the Web Role front door

- Receives all user requests
- Queues request to appropriate Download, Reprojection, or Reduction Job Queue

Service Monitor is a dedicated Worker Role

- Parses all job requests into tasks – recoverable units of work
- Execution status of all jobs and tasks persisted in Tables
Computing a one US Year ET Computation

• Computational costs driven by data scale and need to run reduction multiple times
• Storage costs driven by data scale and 12 month project duration
• Small with respect to the people costs even at graduate student rates!

Total: $1420

$50 upload
$450 storage
$420 cpu
$60 download
$216 cpu
$1 download
$6 storage
$216 cpu
$2 download
$9 storage

Collection Stage
400-500 GB
60K files
10 MB/sec
11 hours
<10 workers

Reprojection Stage
400 GB
45K files
3500 hours
20-100 workers

Derivation Reduction Stage
5-7 GB
5.5K files
1800 hours
20-100 workers

Analysis Reduction Stage
<10 GB
~1K files
1800 hours
20-100 workers

Source Imagery Download Sites
Download Queue
Request Queue
Scientist
Scientific Results
Download

Source Metadata

Azured MODIS
Service Web Role Portal
Project Junior

Chemists need to know:

What are the properties of a molecule?

What molecule would have aqueous solubility of 0.1 µg/mL?

How can this be done without expensive, time-consuming experimentation?
Project Junior

The Discovery Bus builds “QSAR” predictive models automatically

Data → Model-Builders → Models → Model Generation → New Data or Model-Builders

New/Improved Models

www.openqsar.com
Increasing amounts of data for model building...

CHEMBL:
- data on 622,824 compounds,
- collected from 33,956 publications

WOMBAT:
- data on 251,560 structures,
- for over 1,966 targets

WOMBAT-PK:
- data on 1,230 compounds,
- for over 13,000 clinical measurements

All contain **structure** information & **numerical** activity data

- More models
- Better models

- Computationally expensive:
 - 5 years for new datasets on existing Discovery Bus server
Used Windows Azure to generate models in parallel

- 100 workers for 3 weeks (not 5 years!)
- 750K new models available on www.openqsar.com (50x more than previously available)
Chemical Property Prediction on Azure

- QSAR predicts molecular properties
 - e.g. toxicity, solubility
 - reduces time and cost c.f. experimentation
- Vast amounts of new data are now available to build predictive models
 - est. 5 years to process on existing single-server solution
- 100 Azure workers reduced 5 years to 3 weeks
 - used competitive workflow algorithm
 - 10,000 data sets \(\implies \) 750,000 models
 (50x more than before)
VENUS-C

- **Virtual multidisciplinary Environments Using Cloud infrastructures**
- EU will fund the project with 4.5 M€ over the first 2 years (1/6/2010-30/5/2012)
- Microsoft will invest up to 3 M€ in Azure resources and research manpower in Redmond, Cambridge/UK, EMIC in Germany and MIC GR in Greece
- This is part of the XCG Cloud Initiative for Research in Europe which includes also direct collaboration with some of the main national funding agencies
Supports multiple basic research disciplines

• **Biomedicine**: Integrating widely used tools for Bioinformatics (UPV), System Biology (CosBI) and Drug Discovery (NCL) into the VENUS-C infrastructure

• **Civil Protection and Emergency**: Early fire risk detection (AEG), through an application that will run models on the VENUS-C infrastructure, based on multiple data sources

• **Civil Engineering**: Support complex computing tasks on Building Information Management for green constructions (provided by COLB) and dynamic building structure analysis (provided by UPV)

• **D4Science**: Integrating computing through VENUS-C on data repositories (CNR). In particular focus will be on Marine Biodiversity through Aquamaps
Emergence of a Fourth Research Paradigm

1. Thousand years ago – Experimental Science
 – Description of natural phenomena
2. Last few hundred years – Theoretical Science
 – Newton’s Laws, Maxwell’s Equations…
3. Last few decades – Computational Science
 – Simulation of complex phenomena
4. Today – Data-Intensive Science
 – Scientists overwhelmed with data sets
 from many different sources
 • Data captured by instruments
 • Data generated by simulations
 • Data generated by sensor networks
 ➢ eScience is the set of tools and technologies
to support data federation and collaboration
 • For analysis and data mining
 • For data visualization and exploration
 • For scholarly communication and dissemination

(With thanks to Jim Gray)
The Fourth Paradigm
Data-Intensive Scientific Discovery

Edited by Tony Hey, Stewart Tansley, and Kristin Tolle
An edited collection of 26 short technical essays, divided into 4 sections
“The impact of Jim Gray’s thinking is continuing to get people to think in a new way about how data and software are redefining what it means to do science.”
— Bill Gates, Chairman, Microsoft Corporation

“One of the greatest challenges for 21st-century science is how we respond to this new era of data-intensive science. This is recognized as a new paradigm beyond experimental and theoretical research and computer simulations of natural phenomena—one that requires new tools, techniques, and ways of working.”
— Douglas Kell, University of Manchester

“The contributing authors in this volume have done an extraordinary job of helping to refine an understanding of this new paradigm from a variety of disciplinary perspectives.”
— Gordon Bell, Microsoft Research
Future Cyberinfrastructure for Research

Mixture of Client + Cloud resources

- visualization and analysis services
- scholarly communications
- domain-specific services
- blogs & social networking
- search books citations
- instant messaging
- identity
- notification
- document store
- storage/data services
- compute services virtualization
- knowledge management
- knowledge discovery
- project management
- reference management
Data Task Force - Co-Chairs:
 Dan Atkins, University of Michigan
 Tony Hey, Microsoft Research

Open Workshop on Data Management and Data Visualization
Needs and Priorities for 21st Century CyberInfrastructure
Berkeley, CA
Oct 10, 2010

For more information email: hedstrom@umich.edu
jimpi@microsoft.com