Corona project - solving the many core interconnect crisis
Cores Per Die

Past

Present

Future
More cores, more flops, but

- External memory bandwidth limited by pincount and power

- Intrachip communications limited by electronic interconnect power
The Memory Wall in the Many Core Era
Solution - Integrated Photonics

- Low power per bit – fJ range
- Requires modulation, detection and transmission all in an integrated process
- Laser is off-chip
- Compatible with standard CMOS processes
- Chip stacking allows integration with specialization
Ring Resonators

One basic structure, 3 applications

- A modulator – move in and out of resonance to modulate light on adjacent waveguide
- A switch – transfers light between waveguides only when the resonator is tuned
- A wavelength specific detector - add a doped junction to perform the receive function
Corona many core architecture

Optically enabled 256 core processor

16 September, 2008
Corona Chip Stack

- Stacking technology minimizes electrical path lengths
- Compatible layers, each tailored to their function
- Chip to chip and intrachip communications > 5mm are optical
Optically Connected Memory (OCM)
The Optical Interconnect

The Optical Crossbar Interconnect

L1 ↔ L2 Interface

My X-bar Connection
Peer X-bar Connection

Modulators
Detectors
Splitters

Modulators
Detectors
Splitter

Optically Connected Memory

4-waveguide bundles

Arbitration
Injectors
Detectors

Modulators
Modulators
Modulators
Modulators

Crossbar

Star Coupler
Laser

Core Die
Cache Die

L2 Cache
Through Silicon Via Array

12 September, 2008

LABS hp
Corona Performance Projections
System Performance Simulation

• Compare 5 systems using:
 − Three different on-chip interconnects
 • Electrical 2D on-chip mesh, 0.64 TB/s and 5 cycle hops (LMesh)
 • Electrical 2D on-chip mesh, 1.28 TB/s and 5 cycle hops (HMesh)
 • Optical crossbar, 20.48 TB/s and 8 cycles total
 − Two different memory interconnects
 • Electrical 0.96 TB/s, 1536 signal pins, memory latency is 20 ns
 • Optical 10.24 TB/s, 256 fibers, memory latency is 20 ns
Methodology

• Simulate using COTSon + M5
• Workloads:
 - 5 synthetic benchmarks
 - SPLASH-2
Bandwidth

Bandwidth (TB/s)

Uniform Hot Spot Tornado Transpose Barnes Cholesky FFT FMM LU Ocean Radiosity Radix Raytrace Volrend Water-Sp
Latency

![Latency Chart]

- Uniform
- Hot Spot
- Tornado
- Transpose
- Barnes
- Cholesky
- FFT
- FMM
- LU
- Ocean
- Radiosity
- Radix
- Raytrace
- Volfrend
- Water-Sp

Average Request Latency (ns)

17 September, 2008
Relative Performance

The graph shows the normalized speedup for various benchmarks on different architectures. The x-axis represents the benchmarks, and the y-axis shows the normalized speedup. The benchmarks include Uniform, Hot Spot, Tornado, Transpose, Barnes, Cholesky, FFT, FMM, LU, Ocean, Radiosity, Raytrace, Volrend, Water-Sp, etc. The architectures compared are LMesh/ECM, HMesh/ECM, LMesh/OCM, HMesh/OCM, and XBar/OCM.
Power comparison

![Power comparison graph]

- **Legend:**
 - LMesh/ECM
 - HMesh/ECM
 - I Mesh/OCM
 - HMesh/OCM
 - XBar/OCM

- **Axes:**
 - **Y-axis:** Power (W)
 - **X-axis:** Benchmarks (Uniform, Hot Spot, Tornado, Transpose, Barnes, Cholesky, FFT, FMM, LU, Ocean, Radiosity, Radix, Raytrace, Volrend, Water-Sp)

16 September, 2008
Corona Benefits from Optics

- Bandwidth scales to 1,000 threads
 - 10 TB/s off-chip bandwidth
 - 20 TB/s bandwidth between cores
 - Modest power requirements
- Low, uniform latencies between cores & memory
 - Optical crossbar
- Coherent shared memory
Acknowledgements

• Ray Beausoleil, Marco Fiorentino, David Fattal
• Jung Ho Ahn, Nate Binkert, Al Davis, Norm Jouppi, Matteo Monchiero, Dana Vantrease
Some interesting programming issues

- When do large scale shared memory codes win over MPI codes?
- What factors limit the scalability of large scale shared memory codes?
- If you can have 256 cache coherent cores in one socket what should the programming model be between sockets?