Static Strategies for Worksharing with Unrecoverable Interruptions

Anne Benoit, Yves Robert,
Arnold Rosenberg and Frédéric Vivien

École Normale Supérieure de Lyon
Yves.Robert@ens-lyon.fr
http://graal.ens-lyon.fr/~yrobert

Asheville, September 2008
My historical perspective

- I made it to the 9 CCGSC workshops!
- I talked about a nice little scheduling problem in 1992
- I talked about a nice little scheduling problem in 1994
- I talked about a nice little scheduling problem in 1996
- I talked about a nice little scheduling problem in 1998
- I talked about a nice little scheduling problem in 2000
- I talked about a nice little scheduling problem in 2002
- I talked about a nice little scheduling problem in 2004
- I talked about a nice little scheduling problem in 2006
- I wondered what I should do this year?
- Maybe I should find a nice little scheduling problem! 😊
My historical perspective

- I made it to the 9 CCGSC workshops!
- I talked about a nice little scheduling problem in 1992
- I talked about a nice little scheduling problem in 1994
- I talked about a nice little scheduling problem in 1996
- I talked about a nice little scheduling problem in 1998
- I talked about a nice little scheduling problem in 2000
- I talked about a nice little scheduling problem in 2002
- I talked about a nice little scheduling problem in 2004
- I talked about a nice little scheduling problem in 2006
- I wondered what I should do this year?
- Maybe I should find a nice little scheduling problem! 😊
My historical perspective

- I made it to the 9 CCGSC workshops!
- I talked about a nice little scheduling problem in 1992
- I talked about a nice little scheduling problem in 1994
- I talked about a nice little scheduling problem in 1996
- I talked about a nice little scheduling problem in 1998
- I talked about a nice little scheduling problem in 2000
- I talked about a nice little scheduling problem in 2002
- I talked about a nice little scheduling problem in 2004
- I talked about a nice little scheduling problem in 2006
- I wondered what I should do this year?
- Maybe I should find a nice little scheduling problem! 😊
My historical perspective

I made it to the 9 CCGSC workshops!

Maybe I should find a nice little scheduling problem!

Or rather, a fundamental problem in cloud computing?!
Outline

1. Problem description
2. Technical framework
3. Single remote computer
4. Two remote computers
5. \(p \) remote computers
Outline

1. Problem description
2. Technical framework
3. Single remote computer
4. Two remote computers
5. p remote computers
Problem

- Large divisible computational workload
- Assemblage of p identical computers
- Unrecoverable interruptions
- A-priori knowledge of risk (failure probability)

Goal: maximize expected amount of work done
Related work

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

😊 Fault tolerant computing (hence scheduling) unavoidable for top500 machines, grids and clouds

😊 Well, same story told since first CCGSC?
Related work

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

😊 Fault tolerant computing (hence scheduling) unavoidable for top500 machines, grids and clouds

🤔 Well, same story told since first CCGSC?
Related work

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

😊 Fault tolerant computing (hence scheduling) unavoidable for top500 machines, grids and clouds

😊 Well, same story told since first CCGSC?
Chunking

- Sending each remote computer **large** amounts of work:
 - 😊 decrease message packaging overhead
 - 😞 maximize vulnerability to interruption-induced losses

- Sending each remote computer **small** amounts of work:
 - 😊 minimize vulnerability to interruption-induced losses
 - 😞 maximize message packaging overhead
Chunking

- Sending each remote computer **large** amounts of work:
 - 😊 decrease message packaging overhead
 - 😞 maximize vulnerability to interruption-induced losses

- Sending each remote computer **small** amounts of work:
 - 😊 minimize vulnerability to interruption-induced losses
 - 😞 maximize message packaging overhead
Replication

- Replicating tasks (same work sent to $q \geq 2$ remote computers):
 - 😊 lessen vulnerability to interruption-induced losses
 - 😞 minimize opportunities for “parallelism” and productivity

- Communication/control to/of remote computers costly
 ⇒ orchestrate task replication statically
 - 😞 duplicate work unnecessarily when few interruptions
 - 😊 prevent server from becoming bottleneck
Replication

- Replicating tasks (same work sent to $q \geq 2$ remote computers):
 - ☺ lessen vulnerability to interruption-induced losses
 - ☹ minimize opportunities for “parallelism” and productivity

- Communication/control to/of remote computers costly
 ⇒ orchestrate task replication statically
 - ☹ duplicate work unnecessarily when few interruptions
 - ☺ prevent server from becoming bottleneck
Risk increases with time

\[P_1 \begin{array}{cccc} A & B & C & D \\ 1 & 2 & 3 & 4 \end{array} \]
Risk increases with time

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>P_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk increases with time

\[
P_1 \quad 1 \quad 2 \quad 3 \quad 4 \\
P_2 \quad 4 \quad 3 \quad 2 \quad 1
\]
Risk increases with time

\[
P_1 \quad 1 \quad 2 \quad 3 \quad 4 \\
P_2 \quad 4 \quad 3 \quad 2 \quad 1 \\
P_3
\]
Risk increases with time

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Risk increases with time

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
P_1 & 1 & 2 & 3 & 4 \\
P_2 & 4 & 3 & 2 & 1 \\
P_3 & 4 & 3 & 2 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
P_1 & 1 & 2 & 3 & 4 \\
P_2 & 4 & 3 & 1 & 2 \\
P_3 & 3 & 2 & 4 & 1 \\
\end{array}
\]
Outline

1. Problem description
2. Technical framework
3. Single remote computer
4. Two remote computers
5. p remote computers
Interruption model

\[
dPr = \begin{cases}
\kappa dt & \text{for } t \in [0, 1/\kappa] \\
0 & \text{otherwise}
\end{cases}
\]

\[
Pr(w) = \min \left\{ 1, \int_0^w \kappa dt \right\} = \min\{1, \kappa w\}
\]

Goal: maximize expected work production
Interruption model

\[
dPr = \begin{cases}
\kappa dt & \text{for } t \in [0, 1/\kappa] \\
0 & \text{otherwise}
\end{cases}
\]

\[
Pr(w) = \min \left\{ 1, \int_0^w \kappa dt \right\} = \min \{1, \kappa w\}
\]

Goal: maximize expected work production
Free-initiation model (1/2)

Regimen \(\Theta \): allocate whole workload on a single computer

\[
E^{(f)}(\text{jobdone}, \Theta) = \int_{0}^{\infty} Pr(\text{jobdone} \geq u \text{ under } \Theta) \, du
\]

Single chunk

\[
E^{(f)}(W, \Theta_1) = W (1 - Pr(W))
\]

Two chunks with \(\omega_1 + \omega_2 = W \)

\[
E^{(f)}(W, \Theta_2) = \omega_1 (1 - Pr(\omega_1)) + \omega_2 (1 - Pr(\omega_1 + \omega_2))
\]
Free-initiation model (1/2)

Regimen Θ: allocate whole workload on a single computer

$$E^{(f)}(\text{jobdone}, \Theta) = \int_0^\infty Pr(\text{jobdone} \geq u \text{ under } \Theta) \, du$$

Single chunk

$$E^{(f)}(W, \Theta_1) = W (1 - Pr(W))$$

Two chunks with $\omega_1 + \omega_2 = W$

$$E^{(f)}(W, \Theta_2) = \omega_1 (1 - Pr(\omega_1)) + \omega_2 (1 - Pr(\omega_1 + \omega_2))$$
Free-initiation model (1/2)

Regimen Θ: allocate whole workload on a single computer

$$E^{(f)}(\text{jobdone}, \Theta) = \int_{0}^{\infty} Pr(\text{jobdone} \geq u \text{ under } \Theta) \, du$$

Single chunk

$$E^{(f)}(W, \Theta_1) = W \,(1 - Pr(W))$$

Two chunks with $\omega_1 + \omega_2 = W$

$$E^{(f)}(W, \Theta_2) = \omega_1 (1 - Pr(\omega_1)) + \omega_2 (1 - Pr(\omega_1 + \omega_2))$$
Free-initiation model (2/2)

With n chunks, maximize

\[E^{(f)}(W, n) = \omega_1(1 - \text{Pr}(\omega_1)) + \omega_2(1 - \text{Pr}(\omega_1 + \omega_2)) + \cdots + \omega_n(1 - \text{Pr}(\omega_1 + \cdots + \omega_n)) \]

where

\[\omega_1 > 0, \omega_2 > 0, \ldots, \omega_n > 0 \]

\[\omega_1 + \omega_2 + \cdots + \omega_n \leq W \]
Free-initiation model (2/2)

With \(n \) chunks, maximize

\[
E^{(f)}(W, n) = \omega_1(1 - Pr(\omega_1)) + \omega_2(1 - Pr(\omega_1 + \omega_2)) \\
\quad + \cdots + \omega_n(1 - Pr(\omega_1 + \cdots + \omega_n))
\]

where

\[
\omega_1 > 0, \omega_2 > 0, \ldots, \omega_n > 0
\]

\[
\omega_1 + \omega_2 + \cdots + \omega_n \leq W
\]
Charged-initiation model

\[E^{(c)}(\text{jobdone}) = \int_{0}^{\infty} Pr(\text{jobdone} \geq u + \varepsilon) \, du. \]

Single chunk

\[E^{(c)}(W, 1) = W \left(1 - Pr(W + \varepsilon)\right) \]

Two chunks with \(\omega_1 + \omega_2 \leq W \)

\[E^{(c)}(W, 2) = \omega_1 \left(1 - Pr(\omega_1 + \varepsilon)\right) + \omega_2 \left(1 - Pr(\omega_1 + \omega_2 + 2\varepsilon)\right) \]
Charged-initiation model

\[E^{(c)}(\text{jobdone}) = \int_{0}^{\infty} Pr(\text{jobdone} \geq u + \epsilon) \, du. \]

Single chunk

\[E^{(c)}(W, 1) = W (1 - Pr(W + \epsilon)) \]

Two chunks with \(\omega_1 + \omega_2 \leq W \)

\[E^{(c)}(W, 2) = \omega_1(1 - Pr(\omega_1 + \epsilon)) + \omega_2(1 - Pr(\omega_1 + \omega_2 + 2\epsilon)) \]
Charged-initiation model

\[E^{(c)}(\text{jobdone}) = \int_{0}^{\infty} Pr(\text{jobdone} \geq u + \varepsilon) \, du. \]

Single chunk

\[E^{(c)}(W, 1) = W \left(1 - Pr(W + \varepsilon) \right) \]

Two chunks with \(\omega_1 + \omega_2 \leq W \)

\[E^{(c)}(W, 2) = \omega_1 \left(1 - Pr(\omega_1 + \varepsilon) \right) + \omega_2 \left(1 - Pr(\omega_1 + \omega_2 + 2\varepsilon) \right) \]
Relating the two models

Theorem

\[E^{(f)}(W, n) \geq E^{(c)}(W, n) \geq E^{(f)}(W, n) - n\varepsilon \]
Outline

1. Problem description
2. Technical framework
3. Single remote computer
4. Two remote computers
5. p remote computers
Free-initiation model

\[E^{(f)}(W, \Theta_1) = W - \kappa W^2 \]

\[E^{(f)}(W, \Theta_2) = \omega_1(1 - \omega_1 \kappa) + \omega_2(1 - (\omega_1 + \omega_2)\kappa) \]

\[= E^{(f)}(W, \Theta_1) + \omega_1 \omega_2 \kappa \]

Theorem

Optimal schedule to deploy \(W \in [0, \frac{1}{\kappa}] \) units of work in \(n \) chunks:

use identical chunks of size \(Z/n \):

\[Z = \min \left\{ W, \frac{n}{n + 1} \frac{1}{\kappa} \right\} \]

\[E^{(f)}(W, n) = Z - \frac{n + 1}{2n} Z^2 \kappa \]
Free-initiation model

\[E^{(f)}(W, \Theta_1) = W - \kappa W^2 \]

\[E^{(f)}(W, \Theta_2) = \omega_1(1 - \omega_1 \kappa) + \omega_2(1 - (\omega_1 + \omega_2) \kappa)) \]

\[= E^{(f)}(W, \Theta_1) + \omega_1 \omega_2 \kappa \]

Theorem

Optimal schedule to deploy \(W \in [0, \frac{1}{\kappa}] \) units of work in \(n \) chunks:

use **identical** chunks of size \(Z/n \):

\[Z = \min \left\{ W, \frac{n}{n + 1} \frac{1}{\kappa} \right\} \]

\[E^{(f)}(W, n) = Z - \frac{n + 1}{2n} Z^2 \kappa \]
Chargéd-initiation model

Theorem

Optimal schedule to deploy $W \in [0, \frac{1}{\kappa}]$ units of work in n chunks (assume $\min(W, \frac{1}{\kappa}) \geq \frac{n(n+1)}{2}\varepsilon$):

$$\omega_{1,n} = \frac{Z}{n} + \frac{n+1}{2}\varepsilon - \varepsilon$$

$$\omega_{i+1,n} = \omega_{i,n} - \varepsilon$$

$$Z = \min \left\{ W, \frac{n}{n+1} \frac{1}{\kappa} - \frac{n}{2}\varepsilon \right\}$$

$$E^{(c)}(W, n) = Z - \frac{n+1}{2n}Z^2\kappa - \frac{n+1}{2}Z\varepsilon\kappa + \frac{(n-1)n(n+1)}{24}\varepsilon^2\kappa$$
Outline

1. Problem description
2. Technical framework
3. Single remote computer
4. Two remote computers
5. p remote computers
General shape of optimal solution

\[\begin{array}{cccc}
W_{1,1} & W_{1,2} & W_{1,3} & \\
& \mathcal{W}_{2,3} & \mathcal{W}_{2,2} & \mathcal{W}_{2,1}
\end{array} \]

Theorem

\(W_1 \) and \(W_2 \) assigned workloads in optimal solution:

1. Either \(W_1 \cap W_2 = \emptyset \) or \(W_1 \cup W_2 = W \)
2. \(P_1 \) processes \(W_1 \setminus W_2 \) before \(W_1 \cap W_2 \)
3. \(P_1 \) and \(P_2 \) process \(W_1 \cap W_2 \) in reverse order

😊 Optimal out of reach even for 2 or 3 chunks per processor
General shape of optimal solution

\[W_{1,1} \rightarrow W_{1,2} \rightarrow W_{1,3} \rightarrow W_{2,3} \rightarrow W_{2,2} \rightarrow W_{2,1} \]

Theorem

\(W_1 \) and \(W_2 \) assigned workloads in optimal solution:

1. Either \(W_1 \cap W_2 = \emptyset \) or \(W_1 \cup W_2 = W \)
2. \(P_1 \) processes \(W_1 \setminus W_2 \) before \(W_1 \cap W_2 \)
3. \(P_1 \) and \(P_2 \) process \(W_1 \cap W_2 \) in reverse order

😊 **Optimal out of reach even for 2 or 3 chunks per processor**
Algorithm (at most n chunks per computer)

If $W \geq \frac{2}{\kappa}$ then
\[
\forall i \in [1, n], \mathcal{W}_{1,i} = \left[\frac{i-1}{n} - \frac{n}{n+1} \frac{1}{\kappa}, \frac{i}{n} - \frac{n}{n+1} \frac{1}{\kappa} \right]
\]
\[
\forall i \in [1, n], \mathcal{W}_{2,i} = \left[W - \frac{i}{n} - \frac{n}{n+1} \frac{1}{\kappa}, W - \frac{i-1}{n} - \frac{n}{n+1} \frac{1}{\kappa} \right]
\]

If $W \leq \frac{1}{\kappa}$ then
\[
\forall i \in [1, n], \mathcal{W}_{1,i} = \mathcal{W}_{2,n-i+1} = \left[\frac{i-1}{n} W, \frac{i}{n} W \right]
\]

If $\frac{1}{\kappa} < W \frac{2}{\kappa}$ then
\[
l \leftarrow \left\lceil \frac{n}{3} \right\rceil
\]
\[
\forall i \in [1, l], \mathcal{W}_{1,i} = \left[\frac{i-1}{l} (W - \frac{1}{\kappa}), \frac{i}{l} (W - \frac{1}{\kappa}) \right]
\]
\[
\forall i \in [1, l], \mathcal{W}_{2,i} = \left[W - \frac{i}{l} (W - \frac{1}{\kappa}), W - \frac{i-1}{l} (W - \frac{1}{\kappa}) \right]
\]
\[
\forall i \in [1, 2l], \mathcal{W}_{1,l+i} = \mathcal{W}_{2,3l-i+1} =
\left[(W - \frac{1}{\kappa}) + \frac{i-1}{2l} (\frac{2}{\kappa} - W), (W - \frac{1}{\kappa}) + \frac{i}{2l} (\frac{2}{\kappa} - W) \right]
\]
Algorithm (at most n chunks per computer)

Theorem

Previous algorithm is:

1. **Optimal when $W \geq 2\frac{1}{\kappa}$:**
 \[
 E^{(f,2)}(W, n) = \frac{n - 1}{n} \frac{1}{\kappa} \quad \text{as} \quad n \to \infty \quad \frac{1}{\kappa};
 \]

2. **Asymptotically optimal when $W \leq \frac{1}{\kappa}$**
 \[
 E^{(f,2)}(W, n) = W - \frac{W^3\kappa^2}{6} \left(1 + \frac{3}{n} + \frac{2}{n^2}\right) \quad \text{as} \quad n \to \infty \quad W - \frac{W^3\kappa^2}{6};
 \]

3. **Asymptotically optimal when $\frac{1}{\kappa} < W < 2\frac{1}{\kappa}$**
 \[
 \text{horrible formula for } E^{(f,2)}(W, n)
 \]
 \[
 E^{(f,2)}(W, n) \xrightarrow{n \to \infty} 2W - \frac{1}{3} \frac{1}{\kappa} - W^2\kappa + \frac{W^3\kappa^2}{6}.
 \]
Algorithm (at most n chunks per computer)

Theorem

Previous algorithm is:

1. Optimal when $W \geq 2 \frac{1}{\kappa}$:

$$E^{(f,1)}(W, n) = \frac{n - 1}{\kappa} \quad \text{as} \quad n \to \infty$$

2. Asymptotically optimal when $W \leq \frac{1}{\kappa}$

$$E^{(f,2)}(W, n) = W - \frac{3}{6} \kappa^2 \left(1 + \frac{3}{n} + \frac{2}{n^2}\right) \quad \text{as} \quad n \to \infty$$

3. Asymptotically optimal when $\frac{1}{\kappa} < W < 2 \frac{1}{\kappa}$

$$E^{(f,3)}(W, n) \quad \text{as} \quad n \to \infty$$

Getting lost?!
Asymptotically optimal solution when $W \leq \frac{1}{\kappa}$

Optimal scheduling with n chunks
Asymptotically optimal solution when $W \leq \frac{1}{\kappa}$

<table>
<thead>
<tr>
<th>$w_{1,1}$</th>
<th>$w_{1,2}$</th>
<th>$w_{1,3}$</th>
<th>$w_{1,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$w_{2,3}$</td>
<td>$w_{2,2}$</td>
<td>$w_{2,1}$</td>
</tr>
</tbody>
</table>

Optimal scheduling with n chunks

<table>
<thead>
<tr>
<th>$w_{1,1}$</th>
<th>$w_{1,2}$</th>
<th>$w_{1,3}$</th>
<th>$w_{1,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_{2,4}$</td>
<td>$w_{2,3}$</td>
<td>$w_{2,2}$</td>
<td>$w_{2,1}$</td>
</tr>
</tbody>
</table>

Solution extended with $(n + 1)$-st chunk
Asymptotically optimal solution when $W \leq \frac{1}{\kappa}$

<table>
<thead>
<tr>
<th>$\omega_{1,1}$</th>
<th>$\omega_{1,2}$</th>
<th>$\omega_{1,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\omega_{2,3}$</td>
<td>$\omega_{2,2}$</td>
<td>$\omega_{2,1}$</td>
</tr>
</tbody>
</table>

Optimal scheduling with n chunks

<table>
<thead>
<tr>
<th>$\omega_{1,1}$</th>
<th>$\omega_{1,2}$</th>
<th>$\omega_{1,3}$</th>
<th>$\omega_{1,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\omega_{2,4}$</td>
<td>$\omega_{2,3}$</td>
<td>$\omega_{2,2}$</td>
<td>$\omega_{2,1}$</td>
</tr>
</tbody>
</table>

Solution extended with $(n + 1)$-st chunk

Dividing chunks so that boundaries coincide
Asymptotically optimal solution when $W \leq \frac{1}{\kappa}$

Optimal scheduling with n chunks

Solution extended with $(n + 1)$-st chunk

Dividing chunks so that boundaries coincide

Solution returned by algorithm with $2n + 1$ equal-size chunks
Outline

1. Problem description
2. Technical framework
3. Single remote computer
4. Two remote computers
5. p remote computers
Pragmatic approach

- Difficult \Rightarrow only heuristics!

- Partition
 - workload into slices
 - resources into groups

- Replicate each slice on every processor in its group
Pragmatic approach

- Difficult ⇒ only heuristics!

- Partition
 - workload into slices
 - resources into groups

- Replicate each slice on every processor in its group
Pragmatic approach

- Difficult \Rightarrow only heuristics!
- **Partition**
 - workload into slices
 - resources into groups
- Replicate each slice on every processor in its group
Pragmatic approach

- Difficult \Rightarrow only heuristics!

- **Partition**
 - workload into slices
 - resources into groups

- Replicate each slice on every processor in its group
 ... and *orchestrate* execution!

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Partitioning

- Small $W \leq \frac{1}{\kappa}$: single slice, replicated on all p computers

- Large $W \geq p\frac{1}{\kappa}$: p independent slices of size $\frac{1}{\kappa}$

- General case $\frac{1}{\kappa} < W < p\frac{1}{\kappa}$:
 - partition work into $q = \lceil W\kappa \rceil$ slices of size $sl = W/q$
 - deploy these q slices to disjoint subsets of computers
 - replicate each slice on either $\lfloor p/q \rfloor$ or $\lceil p/q \rceil$ computers
Partitioning

- **Small** $W \leq \frac{1}{\kappa}$: single slice, replicated on all p computers

- **Large** $W \geq p\frac{1}{\kappa}$: p independent slices of size $\frac{1}{\kappa}$

- General case $\frac{1}{\kappa} < W < p\frac{1}{\kappa}$:
 - partition work into $q = \lceil W\kappa \rceil$ slices of size $sl = W/q$
 - deploy these q slices to disjoint subsets of computers
 - replicate each slice on either $\lfloor p/q \rfloor$ or $\lceil p/q \rceil$ computers
Partitioning

- Small $W \leq \frac{1}{\kappa}$: single slice, replicated on all p computers

- Large $W \geq p\frac{1}{\kappa}$: p independent slices of size $\frac{1}{\kappa}$

- General case $\frac{1}{\kappa} < W < p\frac{1}{\kappa}$:
 - partition work into $q = \lceil W\kappa \rceil$ slices of size $sl = W/q$
 - deploy these q slices to disjoint subsets of computers
 - replicate each slice on either $\lfloor p/q \rfloor$ or $\lceil p/q \rceil$ computers
Orchestrating

<table>
<thead>
<tr>
<th>Chunk</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>P_2</td>
<td>12</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>P_3</td>
<td>9</td>
<td>12</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>P_4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Time-steps for execution of $n = 12$ chunks with $g = 4$ processors
Group schedules

<table>
<thead>
<tr>
<th>Chunk</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>P_2</td>
<td>12</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>P_3</td>
<td>9</td>
<td>12</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>P_4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>chunks 1-4</td>
<td>chunks 5-8</td>
<td>chunks 9-12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Time-steps for group execution
Group schedules

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>
Group schedules

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

All four executions fail with probability proportional to $1 \times 6 \times 9 \times 12$
Group schedules

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

All four executions fail with probability proportional to $2 \times 5 \times 8 \times 11$
Group schedules

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

All four executions fail with probability proportional to $3 \times 4 \times 7 \times 10$
Group schedules

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

All four executions fail with probability proportional to $3 \times 4 \times 7 \times 10$

\[
K = \sum_{j=1}^{n} \prod_{i=1}^{g} G_{i,j} = 1.6.9.12 + 2.5.8.11 + 3.4.7.10
\]

Better performance for small K
Scheduling objective

\[E(sl, n) = sl \left(1 - \frac{g}{n} \left(\frac{sl\kappa}{n} \right)^g \sum_{j=1}^{\frac{n}{g}} \prod_{i=1}^{g} G_{i,j} \right) \]

Problem
Minimize

\[K = \sum_{j=1}^{\frac{n}{g}} \prod_{i=1}^{g} G_{i,j} \]

where entries of \(G \) are a permutation of \([1..n]\)

Bound

\[K_{\min} = \left\lceil \frac{n}{g} (n!)^{\frac{g}{n}} \right\rceil \]
Heuristics (1/3)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

(a) Cyclic: $K = 3104$

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

(b) Reverse: $K = 2368$
Heuristics (2/3)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

(c) **Mirror:** \(K = 2572 \)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

(d) **Snake:** \(K = 2464 \)
Heuristics (3/3)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

(e) **Worm:** $K = 2364$

<table>
<thead>
<tr>
<th>Step 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Step 2</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>CCP</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Step 3</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>CCP</td>
<td>54</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>Step 4</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

(f) **Greedy:** $K = 2368 \geq K_{\text{min}} = 2348$
Comparing group schedules for $n = 9$ and $g = 3$

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td>4 5 6</td>
<td>6 5 4</td>
<td>6 5 4</td>
</tr>
<tr>
<td>7 8 9</td>
<td>7 8 9</td>
<td>9 8 7</td>
</tr>
</tbody>
</table>

$K_{\text{cyclic}} = 270$ $K_{\text{snake}} = 230$ $K_{\text{reverse}} = K_{\text{greedy}} = 218$

<table>
<thead>
<tr>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td>8 6 4</td>
<td>8 5 4</td>
<td>9 7 6</td>
</tr>
</tbody>
</table>

$K_{\text{worm}} = 216$ $K_{\text{optimal}} = K_{\text{min}} = 214$
Comparing group schedules for $n = 20$ and $g = 4$

<table>
<thead>
<tr>
<th></th>
<th>$K_{cyclic} = 34104$</th>
<th>$K_{mirror} = 27284$</th>
<th>$K_{reverse} = 24396$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 7 8 9 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 12 13 14 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 17 18 19 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{snake} = 25784$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 9 8 7 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 12 13 14 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 19 18 17 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{worm} = 24276$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 9 8 7 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 12 13 14 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 19 18 16 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{greedy} = 24390$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$K_{min} = 23780$
More on group schedules!

- Lower and upper performance bounds
- Extensive comparisons against greedy (re-balancing row-by-row)
- Lots of simulation results

Please see paper or ask us 😊
Conclusion

- Turned out much more difficult than expected (😊 or 🙁?)
- Extension to resources with different risk functions
- Extension to resources with different computation capacities
- Master-slave approach with communication costs
- Comparison with dynamic approaches