Overview

- Covers details you may have missed in David Walker’s MPI / Message Passing class.

Assumes that you know and understand MPI and PVM.

Closely coupled vs Cluster Computing

- Bottom line
 - MPI is better at message passing than PVM
 - More complex
 - Less flexible at anything else
 - I.e. it’s a message passing system not a distributed environment

Scheduling

- Not built into MPI as it has no process control
 - But maybe an option under MPIRUN
 - Yep PVM has it all
 - user controllable pvm_spawn()
 - pvm_rm interface
 - Also
 - pvm_tasker interface
 - pvm_hoster interface
Scheduling

- Two types to worry about
 - At spawn time
 - static allocation based on the environment
 - At run time
 - I.e. migration of tasks
 - system level migration
 - Special support needed (Condor)
 - User level
 - check points / restarts
 - Change work load allocated (bag of tasks)

Task allocation in PVM
I.e. pvm_spawn()

- Before improving on it, had to figure out how it worked as it wasn’t random but round-robin
- Aimed at using spare capacity
 - what spare capacity??

What is spare (what is even machine load?)

- Condor people claimed 10% utilisation for their systems
 - At Reading was more like 40-60% all the time.
- Load
 - machine average is not a good metric but without more specific help from the kernel it would have to do.
- Defined user classes and loading based on observations on the RDG system over a year...

Typical loading

Better Spawn

- Added checks for load before starting.
 - Based on two methods, central RPC and distributed monitor daemons
 - Checked effects of this system on startup performance, and accuracy of placement.
User level migration

Back to load or not
- The load was not always a good measure and soon the network was very heterogeneous...
- Could you use a benchmark to find the real load?

Modified spawn using effective speed-up
- Takes into account benchmark and loading
 - Helps on heterogeneous networks

Very advanced Schedulers

Fault Tolerance
- Multiple methods
 - System level
 - from checkpoint file
 - User level
 - from data check point
- How do we detect the failure?
 - Notify Message and/or time out