Homework 5

An implementation of Laplace’s equation using OpenSHMEM

Deadline: February 20th 2018
\[U_{i,j}^{n+1} = \frac{1}{4} \left(U_{i-1,j}^n + U_{i+1,j}^n + U_{i,j-1}^n + U_{i,j+1}^n \right) \]

Laplace’s equation - OpenSHMEM

for \(j = 1 \) to \(j_{\text{max}} \)
for \(i = 1 \) to \(i_{\text{max}} \)
\[U_{\text{new}}(i,j) = 0.25 \times (U(i-1,j) + U(i+1,j) + U(i,j-1) + U(i,j+1)) \]
end for
end for
• Assuming you have a 2 dimensional matrix stored in row-major format, compute a well defined number of iterations of the computation of the Laplace equation using multiple-threads coordinated manually.
 – Special attention should be payed to minimize the extra memory requirements
 – is highly parallelizable (it should be visible from your perfoHint: the algorithm performance graphs)

• Originally the matrix is initialized with 0 everywhere except the boundaries (first and last row and first and last column) which are initialized differently.

• Highlight the impact of using multiple OpenSHMEM PE to execute this algorithm by doing an analysis of the algorithm’s performance. Vary the number of processes and the problem size (weak and strong scaling) and comment on the results.
 – Present the average over multiple runs to account for any measuring error or outside effects
• Benchmarking of the Laplace algorithm should be measured excluding all initializations
 – Keep everything related to setting up the problem outside of the timed section
• A skeleton code was made available (or can be obtained by email from the TA).
• You are strongly encourage to explore different OpenSHMEM programming technique, especially with regard to synchronizations improve the scalability of your solution.
 – Can you implement without global barriers?
 – How can you decrease the synchronization pressure?
 – Can you implement it using only PUT ? Only GET ? What is their impact on performance?
 – Detail your approach on the final document.