Mesh Generation and Load Balancing

Stan Tomov
Innovative Computing Laboratory
Computer Science Department
The University of Tennessee

March 29, 2017
Outline

• Motivation
 – Reliable & efficient PDE simulations for high end computing systems

• Background
 – PDE simulation concept: approximation is over a mesh

• Error Analysis
 – Simulation error: related to “local mesh size”

• Adaptive Mesh Generation
 – Support parallel refinement/derefinement and “element migration”

• Load Balancing
 – Scalability of the computation on modern architectures

• Data structures
 – Algorithmically motivated: multigrid, domain decomposition, etc.
 – For performance optimization: architecture aware computing

• Numerical Example

• Conclusions
Motivation

- PDE simulations have **errors** stemming from the numerical approximation (related to the mesh, ...)
- The need for
 - **Reliable**: “error” to be less than desirable tolerance
 - **Efficient**: do not do “overkill” computation
- PDE simulations for
 - **High end computing systems.**
Background

- In general: “Error” from the discretization is proportional to the mesh size
- A problem: localized physical phenomena deteriorate the approximation properties of classical PDE approximations
- How can we find a “good” mesh, i.e. yielding small and reliable error and efficient computation

For example flows near
- wells;
- faults;
- moving fronts, etc.
Background

- **Solution:** (1) determine (automatically) the regions of singular behaviour, and
 (2) refine them in a “balanced” manner

Example: *Efficiency* of locally adapted *vs* uniform approximation of $r^{1/2} \sin(\theta/2)$ on an L-shaped domain
Background

- Computational framework of the **Adaptive methods**:

 1. Solve PDE
 2. Evaluate the approximation “error”
 3. Is “error” acceptable
 - yes: done
 - no: Improve the approximation (h/p refinement)

- i.e. a process of continuous feedback from the computation to find a reliable and efficient numerical PDE approximation
Error Analysis

• The numerical solution of PDE (e.g. FEM)
 – Boundary value problem: \(Au = f \), subject to boundary conditions
 – Get a “weak” formulation: \((Au, \phi) = (f, \phi) \) - multiply by test function \(\phi \) and integrate over the domain

\[
a(u, \phi) = <f, \phi> \quad \text{for } \forall \phi \in S
\]

– Galerkin (FEM) problem: Find \(u_h \in S_h \subset S \) s.t.
 \[
a(u_h, \phi_h) = <f, \phi_h> \quad \text{for } \forall \phi_h \in S_h
\]

• The error \(e \equiv u - u_h \)
 – The Error problem: \(a(e, \phi) = a(u - u_h, \phi) = <A(u - u_h, \phi) = <f - A u_h, \phi> = <R_h, \phi> \quad \text{for } \forall \phi \in S
\]
 – Various error estimators: depend on how we “solve” the Error problem
Adaptive Mesh Generation

• “good” mesh ~ “good” approximation
• Huge area of research and software development
 – See Steven Owen’s (Sandia) survey
 http://www.andrew.cmu.edu/user/sowen/mesh.html
• Which one to choose?
 – Classification: structured/unstructured, element type, support/or no adaptivity,
 sequential/parallel, etc.
 – Algorithm requirements: conforming/non-conforming, problem size, etc
• For HPC on 100s of 1000s of processors: parallel adaptive
 – Software design: framework (application is embedded) or
 toolkits (CCA interface compliant)
 – Important algorithmic issues to consider
 • “low bookkeeping” and storage overhead, easy “data transfer” between
 meshes, load balancing
Adaptive Mesh Generation

• Mesh generation techniques
 – Regenerate the mesh
 • locally or globally;
 • Appealing only for steady state problems;
 • produce meshes with particular properties (Delaunay/Voronoi, etc.).
 – Hierarchical refinement (common method of choice in AMR; used in ParaGrid*)
 • keep hierarchy of meshes;
 • good for both steady & transient problems;
 • algorithms to maintain mesh quality.
 – Various hybrid methods
 • h-refinement with various local node movements (r-refinement/mesh smoothing);
 • various patch-grid refinement strategies;
 • techniques for coupling various grids, etc.
Adaptive Mesh Generation

- Hierarchical mesh generation
 - Element subdivision (e.g. tetrahedral edge bisection)
 - Hierarchy is usually stored in tree (e.g. quad/octrees in 2/3D)
 - Facilitate coarsening
 - Natural creation of multilevel data structures for multilevel solvers
 - Research on various formats/tricks to reduce storage overhead
 - Exploring the “deterministic” nature of refinement
 (relation of parent-child elements)
Load Balancing

• The need for load balance throughout the adaptive solution process
 – Minimize idle time + interprocessor comm.
 ~ scalability

• Partitioning for
 – Load balance, and
 – minimal interface

is NP-complete but there are many heuristics discovered,
See the survey

History of partitioning algorithms

Spectral (1992)

Multilevel Spectral (1993)

Kemighan-Lin (1970)
Fiduccia-Mattheyses (1982)
Space-filling Curves (1995)
Coordinate/Inertial Bisection (1993)
Levelized Nested Dissection (1973)

Multilevel k-way Partitioning (1996, Karypis-Kumar)
(available in Metis, Jostle, Party)

Partitioning Quality

Computational Requirements

low

Cartesian nested dissection

Multilevel partitioning

Space filling curve
Dynamic Load Balancing

- **Issues to consider:**
 - Load balance (what about DD with \(\neq\) conditioned subdomain matrices?)
 - Minimize edge cut
 - Minimize data redistribution cost (most expensive)
 - Rebuild internal and shared data structures
 - What about balance for multilevel data structures?
- **Two main techniques (ParMETIS supports both):**
 - Diffusive (“diffuse” load among neighbors)
 - Global (global repartition + smart remapping to minimize redistribution cost)
- **Which one to choose?**
 - See for example: R. Biswas, S. Das, D. Harvey, L. Oliker, Parallel Dynamic Load Balancing Strategies For Adaptive Irregular Applications
Data Structures

• Adaptive methods run at a fraction of the performance peak of cache-based machines:
 – This is due to irregular memory access patterns
 • because of their dynamic nature and unstructured sparse matrices produced
 • Can be improved but efficient parallel programming is difficult for this class of problems
 – A lot of current work in the field is on data structures
 • Improve memory access patterns for better cache reuse

(to be discussed further in Lecture #3 …)
Data Structures

- In particular: for adaptive mesh generation
 - Need distributed tree (quadtree/octree) for efficient derefinement
 - Contiguous storage space + hash table access (performance)
 - Use the “deterministic” nature of the refinement/coarsening (minimize data storage)
Data Structures

• Algorithmically motivated
 – Multigrid
 – Domain decomposition

• For performance of parallel matrix-vector product
 – Pre-compute & block inter-processor communication patterns
 – Index ordering (SAW, space filling curves, Cuthill McKee, etc)
and structures for sparse matrix storage for
 • register blocking, and
 • cache blocking

see the Sparsity & BeBOP projects at Berkeley;
Techniques: similar to blocking for dense matrices;
arithmetic dependant (need processor-specific tuning)
• When does register/cache blocking work?
 (see R. Nishtala et.al., 2006; R. Vuduc 2003; Berkeley optimization group)

• Discontinuous Galerkin FEM is of great current interest
 – Mesh and nonzero matrix structures for approximation of order 1 and 3
 (pictures from D.Darmofal, 2004; MIT; aerospace applications)
 – Naturally occurring dense blocks: open possibilities for various register and multiple level of cache
 blocking techniques

• Tuning:
 – Machine dependant
 – Performance can be surprising
 – Need for automatic machine-specific search (Vuduc, 2003)
 • register blocking for sparse 3-diagonal matrix consisting of 8x8 dense blocks (on Intel Itanium 2)
 • explored by storing them as 8x8 blocks
 • what about r x c block storage?
 • shown is the speedup relative to unblocked 1 x 1 code

<table>
<thead>
<tr>
<th>Block Size</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1</td>
<td>1.00</td>
</tr>
<tr>
<td>2 x 2</td>
<td>1.35</td>
</tr>
<tr>
<td>3 x 3</td>
<td>1.12</td>
</tr>
<tr>
<td>4 x 4</td>
<td>1.39</td>
</tr>
</tbody>
</table>
Numerical Example

An example of contaminant flow in porous media:

(0,0,0)

Γ₃

30 mg/l

(1000,500,500)

http://www.cs.utk.edu/~tomov/cflow/
Conclusions

Adaptive methods:

– A computational methodology for reliable and efficient numerical solution of PDE problems

– Multidisciplinary field
 • CS, math, engineering
 • Need multidisciplinary effort for their successful development
 • Overview of the CS aspects

– The goal: develop the methodology and build it into an
 • intelligent
 • adaptable
 • reconfigurable system

for current and next generation supercomputers